Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsidomlem2 Structured version   Visualization version   GIF version

Theorem qsidomlem2 33424
Description: A quotient by a prime ideal is an integral domain. (Contributed by Thierry Arnoux, 16-Jan-2024.)
Hypothesis
Ref Expression
qsidom.1 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
Assertion
Ref Expression
qsidomlem2 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝑄 ∈ IDomn)

Proof of Theorem qsidomlem2
Dummy variables 𝑎 𝑦 𝑏 𝑒 𝑓 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 20154 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 prmidlidl 33415 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝐼 ∈ (LIdeal‘𝑅))
31, 2sylan 580 . . 3 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝐼 ∈ (LIdeal‘𝑅))
4 qsidom.1 . . . 4 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
5 eqid 2729 . . . 4 (LIdeal‘𝑅) = (LIdeal‘𝑅)
64, 5quscrng 21193 . . 3 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝑄 ∈ CRing)
73, 6syldan 591 . 2 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝑄 ∈ CRing)
85crng2idl 21191 . . . . . . . 8 (𝑅 ∈ CRing → (LIdeal‘𝑅) = (2Ideal‘𝑅))
98eleq2d 2814 . . . . . . 7 (𝑅 ∈ CRing → (𝐼 ∈ (LIdeal‘𝑅) ↔ 𝐼 ∈ (2Ideal‘𝑅)))
109biimpa 476 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (2Ideal‘𝑅))
113, 10syldan 591 . . . . 5 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝐼 ∈ (2Ideal‘𝑅))
12 eqid 2729 . . . . . 6 (2Ideal‘𝑅) = (2Ideal‘𝑅)
134, 12qusring 21185 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → 𝑄 ∈ Ring)
141, 11, 13syl2an2r 685 . . . 4 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝑄 ∈ Ring)
15 eqid 2729 . . . . . . . . 9 (Base‘𝑄) = (Base‘𝑄)
16 eqid 2729 . . . . . . . . 9 (0g𝑄) = (0g𝑄)
1715, 16ring0cl 20176 . . . . . . . 8 (𝑄 ∈ Ring → (0g𝑄) ∈ (Base‘𝑄))
1814, 17syl 17 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → (0g𝑄) ∈ (Base‘𝑄))
1918snssd 4773 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → {(0g𝑄)} ⊆ (Base‘𝑄))
20 lidlnsg 21158 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (NrmSGrp‘𝑅))
211, 20sylan 580 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (NrmSGrp‘𝑅))
22 eqid 2729 . . . . . . . . . . . 12 (0g𝑅) = (0g𝑅)
234, 22qus0 19121 . . . . . . . . . . 11 (𝐼 ∈ (NrmSGrp‘𝑅) → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
2421, 23syl 17 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
255lidlsubg 21133 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (SubGrp‘𝑅))
261, 25sylan 580 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (SubGrp‘𝑅))
27 eqid 2729 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
28 eqid 2729 . . . . . . . . . . . 12 (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼)
2927, 28, 22eqgid 19112 . . . . . . . . . . 11 (𝐼 ∈ (SubGrp‘𝑅) → [(0g𝑅)](𝑅 ~QG 𝐼) = 𝐼)
3026, 29syl 17 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → [(0g𝑅)](𝑅 ~QG 𝐼) = 𝐼)
3124, 30eqtr3d 2766 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (0g𝑄) = 𝐼)
323, 31syldan 591 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → (0g𝑄) = 𝐼)
3332sneqd 4601 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → {(0g𝑄)} = {𝐼})
34 eqid 2729 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
3527, 34isprmidlc 33418 . . . . . . . . . . 11 (𝑅 ∈ CRing → (𝐼 ∈ (PrmIdeal‘𝑅) ↔ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼)))))
3635biimpa 476 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼))))
3736simp2d 1143 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝐼 ≠ (Base‘𝑅))
38 ringgrp 20147 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
391, 38syl 17 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑅 ∈ Grp)
4039ad2antrr 726 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ (Base‘𝑄) = {𝐼}) → 𝑅 ∈ Grp)
411ad2antrr 726 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ (Base‘𝑄) = {𝐼}) → 𝑅 ∈ Ring)
423adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ (Base‘𝑄) = {𝐼}) → 𝐼 ∈ (LIdeal‘𝑅))
4341, 42, 25syl2anc 584 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ (Base‘𝑄) = {𝐼}) → 𝐼 ∈ (SubGrp‘𝑅))
44 simpr 484 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ (Base‘𝑄) = {𝐼}) → (Base‘𝑄) = {𝐼})
4527, 4qustrivr 33336 . . . . . . . . . 10 ((𝑅 ∈ Grp ∧ 𝐼 ∈ (SubGrp‘𝑅) ∧ (Base‘𝑄) = {𝐼}) → 𝐼 = (Base‘𝑅))
4640, 43, 44, 45syl3anc 1373 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ (Base‘𝑄) = {𝐼}) → 𝐼 = (Base‘𝑅))
4737, 46mteqand 3016 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → (Base‘𝑄) ≠ {𝐼})
4847necomd 2980 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → {𝐼} ≠ (Base‘𝑄))
4933, 48eqnetrd 2992 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → {(0g𝑄)} ≠ (Base‘𝑄))
50 pssdifn0 4331 . . . . . 6 (({(0g𝑄)} ⊆ (Base‘𝑄) ∧ {(0g𝑄)} ≠ (Base‘𝑄)) → ((Base‘𝑄) ∖ {(0g𝑄)}) ≠ ∅)
5119, 49, 50syl2anc 584 . . . . 5 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → ((Base‘𝑄) ∖ {(0g𝑄)}) ≠ ∅)
52 n0 4316 . . . . 5 (((Base‘𝑄) ∖ {(0g𝑄)}) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)}))
5351, 52sylib 218 . . . 4 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → ∃𝑥 𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)}))
5416, 15ringelnzr 20432 . . . . . 6 ((𝑄 ∈ Ring ∧ 𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) → 𝑄 ∈ NzRing)
5554ex 412 . . . . 5 (𝑄 ∈ Ring → (𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)}) → 𝑄 ∈ NzRing))
5655exlimdv 1933 . . . 4 (𝑄 ∈ Ring → (∃𝑥 𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)}) → 𝑄 ∈ NzRing))
5714, 53, 56sylc 65 . . 3 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝑄 ∈ NzRing)
5836simp3d 1144 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼)))
5958ad7antr 738 . . . . . . . . . 10 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼)))
60 simp-4r 783 . . . . . . . . . 10 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → 𝑥 ∈ (Base‘𝑅))
61 simplr 768 . . . . . . . . . 10 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → 𝑦 ∈ (Base‘𝑅))
62 simp-8l 790 . . . . . . . . . . . 12 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → 𝑅 ∈ CRing)
6362, 39syl 17 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → 𝑅 ∈ Grp)
643ad7antr 738 . . . . . . . . . . . 12 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → 𝐼 ∈ (LIdeal‘𝑅))
6562, 64, 26syl2anc 584 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → 𝐼 ∈ (SubGrp‘𝑅))
664a1i 11 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)))
67 eqidd 2730 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (Base‘𝑅) = (Base‘𝑅))
6827, 28eqger 19110 . . . . . . . . . . . . . . 15 (𝐼 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝐼) Er (Base‘𝑅))
6926, 68syl 17 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (𝑅 ~QG 𝐼) Er (Base‘𝑅))
70 simpl 482 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝑅 ∈ CRing)
7127, 28, 12, 342idlcpbl 21182 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → ((𝑔(𝑅 ~QG 𝐼)𝑒(𝑅 ~QG 𝐼)𝑓) → (𝑔(.r𝑅))(𝑅 ~QG 𝐼)(𝑒(.r𝑅)𝑓)))
721, 10, 71syl2an2r 685 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ((𝑔(𝑅 ~QG 𝐼)𝑒(𝑅 ~QG 𝐼)𝑓) → (𝑔(.r𝑅))(𝑅 ~QG 𝐼)(𝑒(.r𝑅)𝑓)))
731ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅))) → 𝑅 ∈ Ring)
74 simprl 770 . . . . . . . . . . . . . . 15 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅))) → 𝑒 ∈ (Base‘𝑅))
75 simprr 772 . . . . . . . . . . . . . . 15 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅))) → 𝑓 ∈ (Base‘𝑅))
7627, 34ringcl 20159 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅)) → (𝑒(.r𝑅)𝑓) ∈ (Base‘𝑅))
7773, 74, 75, 76syl3anc 1373 . . . . . . . . . . . . . 14 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅))) → (𝑒(.r𝑅)𝑓) ∈ (Base‘𝑅))
78 eqid 2729 . . . . . . . . . . . . . 14 (.r𝑄) = (.r𝑄)
7966, 67, 69, 70, 72, 77, 34, 78qusmulval 17518 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ([𝑥](𝑅 ~QG 𝐼)(.r𝑄)[𝑦](𝑅 ~QG 𝐼)) = [(𝑥(.r𝑅)𝑦)](𝑅 ~QG 𝐼))
8062, 64, 60, 61, 79syl211anc 1378 . . . . . . . . . . . 12 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → ([𝑥](𝑅 ~QG 𝐼)(.r𝑄)[𝑦](𝑅 ~QG 𝐼)) = [(𝑥(.r𝑅)𝑦)](𝑅 ~QG 𝐼))
81 simpr 484 . . . . . . . . . . . . . 14 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) → (𝑎(.r𝑄)𝑏) = (0g𝑄))
8281ad4antr 732 . . . . . . . . . . . . 13 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑎(.r𝑄)𝑏) = (0g𝑄))
83 simpllr 775 . . . . . . . . . . . . . 14 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → 𝑎 = [𝑥](𝑅 ~QG 𝐼))
84 simpr 484 . . . . . . . . . . . . . 14 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → 𝑏 = [𝑦](𝑅 ~QG 𝐼))
8583, 84oveq12d 7405 . . . . . . . . . . . . 13 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑎(.r𝑄)𝑏) = ([𝑥](𝑅 ~QG 𝐼)(.r𝑄)[𝑦](𝑅 ~QG 𝐼)))
8662, 64, 31syl2anc 584 . . . . . . . . . . . . 13 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (0g𝑄) = 𝐼)
8782, 85, 863eqtr3d 2772 . . . . . . . . . . . 12 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → ([𝑥](𝑅 ~QG 𝐼)(.r𝑄)[𝑦](𝑅 ~QG 𝐼)) = 𝐼)
8880, 87eqtr3d 2766 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → [(𝑥(.r𝑅)𝑦)](𝑅 ~QG 𝐼) = 𝐼)
8928eqg0el 19115 . . . . . . . . . . . 12 ((𝑅 ∈ Grp ∧ 𝐼 ∈ (SubGrp‘𝑅)) → ([(𝑥(.r𝑅)𝑦)](𝑅 ~QG 𝐼) = 𝐼 ↔ (𝑥(.r𝑅)𝑦) ∈ 𝐼))
9089biimpa 476 . . . . . . . . . . 11 (((𝑅 ∈ Grp ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ [(𝑥(.r𝑅)𝑦)](𝑅 ~QG 𝐼) = 𝐼) → (𝑥(.r𝑅)𝑦) ∈ 𝐼)
9163, 65, 88, 90syl21anc 837 . . . . . . . . . 10 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑥(.r𝑅)𝑦) ∈ 𝐼)
92 rsp2 3254 . . . . . . . . . . . 12 (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼)) → ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼))))
9392impl 455 . . . . . . . . . . 11 (((∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼)))
9493imp 406 . . . . . . . . . 10 ((((∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → (𝑥𝐼𝑦𝐼))
9559, 60, 61, 91, 94syl1111anc 840 . . . . . . . . 9 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑥𝐼𝑦𝐼))
9686eqeq2d 2740 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑎 = (0g𝑄) ↔ 𝑎 = 𝐼))
9783eqeq1d 2731 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑎 = 𝐼 ↔ [𝑥](𝑅 ~QG 𝐼) = 𝐼))
9828eqg0el 19115 . . . . . . . . . . . 12 ((𝑅 ∈ Grp ∧ 𝐼 ∈ (SubGrp‘𝑅)) → ([𝑥](𝑅 ~QG 𝐼) = 𝐼𝑥𝐼))
9963, 65, 98syl2anc 584 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → ([𝑥](𝑅 ~QG 𝐼) = 𝐼𝑥𝐼))
10096, 97, 993bitrrd 306 . . . . . . . . . 10 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑥𝐼𝑎 = (0g𝑄)))
10186eqeq2d 2740 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑏 = (0g𝑄) ↔ 𝑏 = 𝐼))
10284eqeq1d 2731 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑏 = 𝐼 ↔ [𝑦](𝑅 ~QG 𝐼) = 𝐼))
10328eqg0el 19115 . . . . . . . . . . . 12 ((𝑅 ∈ Grp ∧ 𝐼 ∈ (SubGrp‘𝑅)) → ([𝑦](𝑅 ~QG 𝐼) = 𝐼𝑦𝐼))
10463, 65, 103syl2anc 584 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → ([𝑦](𝑅 ~QG 𝐼) = 𝐼𝑦𝐼))
105101, 102, 1043bitrrd 306 . . . . . . . . . 10 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑦𝐼𝑏 = (0g𝑄)))
106100, 105orbi12d 918 . . . . . . . . 9 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → ((𝑥𝐼𝑦𝐼) ↔ (𝑎 = (0g𝑄) ∨ 𝑏 = (0g𝑄))))
10795, 106mpbid 232 . . . . . . . 8 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑎 = (0g𝑄) ∨ 𝑏 = (0g𝑄)))
108 simplr 768 . . . . . . . . . . 11 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) → 𝑏 ∈ (Base‘𝑄))
1094a1i 11 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)))
110 eqidd 2730 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → (Base‘𝑅) = (Base‘𝑅))
111 ovexd 7422 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → (𝑅 ~QG 𝐼) ∈ V)
112 id 22 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑅 ∈ CRing)
113109, 110, 111, 112qusbas 17508 . . . . . . . . . . . 12 (𝑅 ∈ CRing → ((Base‘𝑅) / (𝑅 ~QG 𝐼)) = (Base‘𝑄))
114113ad4antr 732 . . . . . . . . . . 11 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) → ((Base‘𝑅) / (𝑅 ~QG 𝐼)) = (Base‘𝑄))
115108, 114eleqtrrd 2831 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) → 𝑏 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝐼)))
116115ad2antrr 726 . . . . . . . . 9 (((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) → 𝑏 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝐼)))
117 elqsi 8739 . . . . . . . . 9 (𝑏 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝐼)) → ∃𝑦 ∈ (Base‘𝑅)𝑏 = [𝑦](𝑅 ~QG 𝐼))
118116, 117syl 17 . . . . . . . 8 (((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) → ∃𝑦 ∈ (Base‘𝑅)𝑏 = [𝑦](𝑅 ~QG 𝐼))
119107, 118r19.29a 3141 . . . . . . 7 (((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) → (𝑎 = (0g𝑄) ∨ 𝑏 = (0g𝑄)))
120 simpllr 775 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) → 𝑎 ∈ (Base‘𝑄))
121120, 114eleqtrrd 2831 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) → 𝑎 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝐼)))
122 elqsi 8739 . . . . . . . 8 (𝑎 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝐼)) → ∃𝑥 ∈ (Base‘𝑅)𝑎 = [𝑥](𝑅 ~QG 𝐼))
123121, 122syl 17 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) → ∃𝑥 ∈ (Base‘𝑅)𝑎 = [𝑥](𝑅 ~QG 𝐼))
124119, 123r19.29a 3141 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) → (𝑎 = (0g𝑄) ∨ 𝑏 = (0g𝑄)))
125124ex 412 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) → ((𝑎(.r𝑄)𝑏) = (0g𝑄) → (𝑎 = (0g𝑄) ∨ 𝑏 = (0g𝑄))))
126125anasss 466 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ (𝑎 ∈ (Base‘𝑄) ∧ 𝑏 ∈ (Base‘𝑄))) → ((𝑎(.r𝑄)𝑏) = (0g𝑄) → (𝑎 = (0g𝑄) ∨ 𝑏 = (0g𝑄))))
127126ralrimivva 3180 . . 3 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → ∀𝑎 ∈ (Base‘𝑄)∀𝑏 ∈ (Base‘𝑄)((𝑎(.r𝑄)𝑏) = (0g𝑄) → (𝑎 = (0g𝑄) ∨ 𝑏 = (0g𝑄))))
12815, 78, 16isdomn 20614 . . 3 (𝑄 ∈ Domn ↔ (𝑄 ∈ NzRing ∧ ∀𝑎 ∈ (Base‘𝑄)∀𝑏 ∈ (Base‘𝑄)((𝑎(.r𝑄)𝑏) = (0g𝑄) → (𝑎 = (0g𝑄) ∨ 𝑏 = (0g𝑄)))))
12957, 127, 128sylanbrc 583 . 2 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝑄 ∈ Domn)
130 isidom 20634 . 2 (𝑄 ∈ IDomn ↔ (𝑄 ∈ CRing ∧ 𝑄 ∈ Domn))
1317, 129, 130sylanbrc 583 1 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝑄 ∈ IDomn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3447  cdif 3911  wss 3914  c0 4296  {csn 4589   class class class wbr 5107  cfv 6511  (class class class)co 7387   Er wer 8668  [cec 8669   / cqs 8670  Basecbs 17179  .rcmulr 17221  0gc0g 17402   /s cqus 17468  Grpcgrp 18865  SubGrpcsubg 19052  NrmSGrpcnsg 19053   ~QG cqg 19054  Ringcrg 20142  CRingccrg 20143  NzRingcnzr 20421  Domncdomn 20601  IDomncidom 20602  LIdealclidl 21116  2Idealc2idl 21159  PrmIdealcprmidl 33406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-ec 8673  df-qs 8677  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-0g 17404  df-imas 17471  df-qus 17472  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-nsg 19056  df-eqg 19057  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-nzr 20422  df-subrg 20479  df-domn 20604  df-idom 20605  df-lmod 20768  df-lss 20838  df-lsp 20878  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119  df-2idl 21160  df-prmidl 33407
This theorem is referenced by:  qsidom  33425
  Copyright terms: Public domain W3C validator