| Step | Hyp | Ref
| Expression |
| 1 | | crngring 20210 |
. . . 4
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 2 | | prmidlidl 33464 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝐼 ∈ (LIdeal‘𝑅)) |
| 3 | 1, 2 | sylan 580 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝐼 ∈ (LIdeal‘𝑅)) |
| 4 | | qsidom.1 |
. . . 4
⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) |
| 5 | | eqid 2736 |
. . . 4
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) |
| 6 | 4, 5 | quscrng 21249 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝑄 ∈ CRing) |
| 7 | 3, 6 | syldan 591 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝑄 ∈ CRing) |
| 8 | 5 | crng2idl 21247 |
. . . . . . . 8
⊢ (𝑅 ∈ CRing →
(LIdeal‘𝑅) =
(2Ideal‘𝑅)) |
| 9 | 8 | eleq2d 2821 |
. . . . . . 7
⊢ (𝑅 ∈ CRing → (𝐼 ∈ (LIdeal‘𝑅) ↔ 𝐼 ∈ (2Ideal‘𝑅))) |
| 10 | 9 | biimpa 476 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (2Ideal‘𝑅)) |
| 11 | 3, 10 | syldan 591 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝐼 ∈ (2Ideal‘𝑅)) |
| 12 | | eqid 2736 |
. . . . . 6
⊢
(2Ideal‘𝑅) =
(2Ideal‘𝑅) |
| 13 | 4, 12 | qusring 21241 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → 𝑄 ∈ Ring) |
| 14 | 1, 11, 13 | syl2an2r 685 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝑄 ∈ Ring) |
| 15 | | eqid 2736 |
. . . . . . . . 9
⊢
(Base‘𝑄) =
(Base‘𝑄) |
| 16 | | eqid 2736 |
. . . . . . . . 9
⊢
(0g‘𝑄) = (0g‘𝑄) |
| 17 | 15, 16 | ring0cl 20232 |
. . . . . . . 8
⊢ (𝑄 ∈ Ring →
(0g‘𝑄)
∈ (Base‘𝑄)) |
| 18 | 14, 17 | syl 17 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) →
(0g‘𝑄)
∈ (Base‘𝑄)) |
| 19 | 18 | snssd 4790 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) →
{(0g‘𝑄)}
⊆ (Base‘𝑄)) |
| 20 | | lidlnsg 21214 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (NrmSGrp‘𝑅)) |
| 21 | 1, 20 | sylan 580 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (NrmSGrp‘𝑅)) |
| 22 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 23 | 4, 22 | qus0 19177 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ (NrmSGrp‘𝑅) →
[(0g‘𝑅)](𝑅 ~QG 𝐼) = (0g‘𝑄)) |
| 24 | 21, 23 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) →
[(0g‘𝑅)](𝑅 ~QG 𝐼) = (0g‘𝑄)) |
| 25 | 5 | lidlsubg 21189 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (SubGrp‘𝑅)) |
| 26 | 1, 25 | sylan 580 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (SubGrp‘𝑅)) |
| 27 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 28 | | eqid 2736 |
. . . . . . . . . . . 12
⊢ (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼) |
| 29 | 27, 28, 22 | eqgid 19168 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ (SubGrp‘𝑅) →
[(0g‘𝑅)](𝑅 ~QG 𝐼) = 𝐼) |
| 30 | 26, 29 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) →
[(0g‘𝑅)](𝑅 ~QG 𝐼) = 𝐼) |
| 31 | 24, 30 | eqtr3d 2773 |
. . . . . . . . 9
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) →
(0g‘𝑄) =
𝐼) |
| 32 | 3, 31 | syldan 591 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) →
(0g‘𝑄) =
𝐼) |
| 33 | 32 | sneqd 4618 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) →
{(0g‘𝑄)} =
{𝐼}) |
| 34 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 35 | 27, 34 | isprmidlc 33467 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ CRing → (𝐼 ∈ (PrmIdeal‘𝑅) ↔ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) ∈ 𝐼 → (𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼))))) |
| 36 | 35 | biimpa 476 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) ∈ 𝐼 → (𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼)))) |
| 37 | 36 | simp2d 1143 |
. . . . . . . . 9
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝐼 ≠ (Base‘𝑅)) |
| 38 | | ringgrp 20203 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
| 39 | 1, 38 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Grp) |
| 40 | 39 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ (Base‘𝑄) = {𝐼}) → 𝑅 ∈ Grp) |
| 41 | 1 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ (Base‘𝑄) = {𝐼}) → 𝑅 ∈ Ring) |
| 42 | 3 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ (Base‘𝑄) = {𝐼}) → 𝐼 ∈ (LIdeal‘𝑅)) |
| 43 | 41, 42, 25 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ (Base‘𝑄) = {𝐼}) → 𝐼 ∈ (SubGrp‘𝑅)) |
| 44 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ (Base‘𝑄) = {𝐼}) → (Base‘𝑄) = {𝐼}) |
| 45 | 27, 4 | qustrivr 33385 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ (SubGrp‘𝑅) ∧ (Base‘𝑄) = {𝐼}) → 𝐼 = (Base‘𝑅)) |
| 46 | 40, 43, 44, 45 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ (Base‘𝑄) = {𝐼}) → 𝐼 = (Base‘𝑅)) |
| 47 | 37, 46 | mteqand 3024 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → (Base‘𝑄) ≠ {𝐼}) |
| 48 | 47 | necomd 2988 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → {𝐼} ≠ (Base‘𝑄)) |
| 49 | 33, 48 | eqnetrd 3000 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) →
{(0g‘𝑄)}
≠ (Base‘𝑄)) |
| 50 | | pssdifn0 4348 |
. . . . . 6
⊢
(({(0g‘𝑄)} ⊆ (Base‘𝑄) ∧ {(0g‘𝑄)} ≠ (Base‘𝑄)) → ((Base‘𝑄) ∖
{(0g‘𝑄)})
≠ ∅) |
| 51 | 19, 49, 50 | syl2anc 584 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → ((Base‘𝑄) ∖
{(0g‘𝑄)})
≠ ∅) |
| 52 | | n0 4333 |
. . . . 5
⊢
(((Base‘𝑄)
∖ {(0g‘𝑄)}) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ((Base‘𝑄) ∖ {(0g‘𝑄)})) |
| 53 | 51, 52 | sylib 218 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → ∃𝑥 𝑥 ∈ ((Base‘𝑄) ∖ {(0g‘𝑄)})) |
| 54 | 16, 15 | ringelnzr 20488 |
. . . . . 6
⊢ ((𝑄 ∈ Ring ∧ 𝑥 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)}))
→ 𝑄 ∈
NzRing) |
| 55 | 54 | ex 412 |
. . . . 5
⊢ (𝑄 ∈ Ring → (𝑥 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)})
→ 𝑄 ∈
NzRing)) |
| 56 | 55 | exlimdv 1933 |
. . . 4
⊢ (𝑄 ∈ Ring →
(∃𝑥 𝑥 ∈ ((Base‘𝑄) ∖
{(0g‘𝑄)})
→ 𝑄 ∈
NzRing)) |
| 57 | 14, 53, 56 | sylc 65 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝑄 ∈ NzRing) |
| 58 | 36 | simp3d 1144 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) ∈ 𝐼 → (𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼))) |
| 59 | 58 | ad7antr 738 |
. . . . . . . . . 10
⊢
(((((((((𝑅 ∈
CRing ∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) ∈ 𝐼 → (𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼))) |
| 60 | | simp-4r 783 |
. . . . . . . . . 10
⊢
(((((((((𝑅 ∈
CRing ∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → 𝑥 ∈ (Base‘𝑅)) |
| 61 | | simplr 768 |
. . . . . . . . . 10
⊢
(((((((((𝑅 ∈
CRing ∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → 𝑦 ∈ (Base‘𝑅)) |
| 62 | | simp-8l 790 |
. . . . . . . . . . . 12
⊢
(((((((((𝑅 ∈
CRing ∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → 𝑅 ∈ CRing) |
| 63 | 62, 39 | syl 17 |
. . . . . . . . . . 11
⊢
(((((((((𝑅 ∈
CRing ∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → 𝑅 ∈ Grp) |
| 64 | 3 | ad7antr 738 |
. . . . . . . . . . . 12
⊢
(((((((((𝑅 ∈
CRing ∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → 𝐼 ∈ (LIdeal‘𝑅)) |
| 65 | 62, 64, 26 | syl2anc 584 |
. . . . . . . . . . 11
⊢
(((((((((𝑅 ∈
CRing ∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → 𝐼 ∈ (SubGrp‘𝑅)) |
| 66 | 4 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))) |
| 67 | | eqidd 2737 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (Base‘𝑅) = (Base‘𝑅)) |
| 68 | 27, 28 | eqger 19166 |
. . . . . . . . . . . . . . 15
⊢ (𝐼 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝐼) Er (Base‘𝑅)) |
| 69 | 26, 68 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (𝑅 ~QG 𝐼) Er (Base‘𝑅)) |
| 70 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝑅 ∈ CRing) |
| 71 | 27, 28, 12, 34 | 2idlcpbl 21238 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → ((𝑔(𝑅 ~QG 𝐼)𝑒 ∧ ℎ(𝑅 ~QG 𝐼)𝑓) → (𝑔(.r‘𝑅)ℎ)(𝑅 ~QG 𝐼)(𝑒(.r‘𝑅)𝑓))) |
| 72 | 1, 10, 71 | syl2an2r 685 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ((𝑔(𝑅 ~QG 𝐼)𝑒 ∧ ℎ(𝑅 ~QG 𝐼)𝑓) → (𝑔(.r‘𝑅)ℎ)(𝑅 ~QG 𝐼)(𝑒(.r‘𝑅)𝑓))) |
| 73 | 1 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅))) → 𝑅 ∈ Ring) |
| 74 | | simprl 770 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅))) → 𝑒 ∈ (Base‘𝑅)) |
| 75 | | simprr 772 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅))) → 𝑓 ∈ (Base‘𝑅)) |
| 76 | 27, 34 | ringcl 20215 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧ 𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅)) → (𝑒(.r‘𝑅)𝑓) ∈ (Base‘𝑅)) |
| 77 | 73, 74, 75, 76 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅))) → (𝑒(.r‘𝑅)𝑓) ∈ (Base‘𝑅)) |
| 78 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢
(.r‘𝑄) = (.r‘𝑄) |
| 79 | 66, 67, 69, 70, 72, 77, 34, 78 | qusmulval 17574 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ([𝑥](𝑅 ~QG 𝐼)(.r‘𝑄)[𝑦](𝑅 ~QG 𝐼)) = [(𝑥(.r‘𝑅)𝑦)](𝑅 ~QG 𝐼)) |
| 80 | 62, 64, 60, 61, 79 | syl211anc 1378 |
. . . . . . . . . . . 12
⊢
(((((((((𝑅 ∈
CRing ∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → ([𝑥](𝑅 ~QG 𝐼)(.r‘𝑄)[𝑦](𝑅 ~QG 𝐼)) = [(𝑥(.r‘𝑅)𝑦)](𝑅 ~QG 𝐼)) |
| 81 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ CRing
∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) → (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) |
| 82 | 81 | ad4antr 732 |
. . . . . . . . . . . . 13
⊢
(((((((((𝑅 ∈
CRing ∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) |
| 83 | | simpllr 775 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝑅 ∈
CRing ∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → 𝑎 = [𝑥](𝑅 ~QG 𝐼)) |
| 84 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝑅 ∈
CRing ∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → 𝑏 = [𝑦](𝑅 ~QG 𝐼)) |
| 85 | 83, 84 | oveq12d 7428 |
. . . . . . . . . . . . 13
⊢
(((((((((𝑅 ∈
CRing ∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑎(.r‘𝑄)𝑏) = ([𝑥](𝑅 ~QG 𝐼)(.r‘𝑄)[𝑦](𝑅 ~QG 𝐼))) |
| 86 | 62, 64, 31 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢
(((((((((𝑅 ∈
CRing ∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (0g‘𝑄) = 𝐼) |
| 87 | 82, 85, 86 | 3eqtr3d 2779 |
. . . . . . . . . . . 12
⊢
(((((((((𝑅 ∈
CRing ∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → ([𝑥](𝑅 ~QG 𝐼)(.r‘𝑄)[𝑦](𝑅 ~QG 𝐼)) = 𝐼) |
| 88 | 80, 87 | eqtr3d 2773 |
. . . . . . . . . . 11
⊢
(((((((((𝑅 ∈
CRing ∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → [(𝑥(.r‘𝑅)𝑦)](𝑅 ~QG 𝐼) = 𝐼) |
| 89 | 28 | eqg0el 19171 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ (SubGrp‘𝑅)) → ([(𝑥(.r‘𝑅)𝑦)](𝑅 ~QG 𝐼) = 𝐼 ↔ (𝑥(.r‘𝑅)𝑦) ∈ 𝐼)) |
| 90 | 89 | biimpa 476 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ [(𝑥(.r‘𝑅)𝑦)](𝑅 ~QG 𝐼) = 𝐼) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐼) |
| 91 | 63, 65, 88, 90 | syl21anc 837 |
. . . . . . . . . 10
⊢
(((((((((𝑅 ∈
CRing ∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐼) |
| 92 | | rsp2 3263 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
(Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) ∈ 𝐼 → (𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼)) → ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r‘𝑅)𝑦) ∈ 𝐼 → (𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼)))) |
| 93 | 92 | impl 455 |
. . . . . . . . . . 11
⊢
(((∀𝑥 ∈
(Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) ∈ 𝐼 → (𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r‘𝑅)𝑦) ∈ 𝐼 → (𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼))) |
| 94 | 93 | imp 406 |
. . . . . . . . . 10
⊢
((((∀𝑥 ∈
(Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) ∈ 𝐼 → (𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝐼) → (𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼)) |
| 95 | 59, 60, 61, 91, 94 | syl1111anc 840 |
. . . . . . . . 9
⊢
(((((((((𝑅 ∈
CRing ∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼)) |
| 96 | 86 | eqeq2d 2747 |
. . . . . . . . . . 11
⊢
(((((((((𝑅 ∈
CRing ∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑎 = (0g‘𝑄) ↔ 𝑎 = 𝐼)) |
| 97 | 83 | eqeq1d 2738 |
. . . . . . . . . . 11
⊢
(((((((((𝑅 ∈
CRing ∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑎 = 𝐼 ↔ [𝑥](𝑅 ~QG 𝐼) = 𝐼)) |
| 98 | 28 | eqg0el 19171 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ (SubGrp‘𝑅)) → ([𝑥](𝑅 ~QG 𝐼) = 𝐼 ↔ 𝑥 ∈ 𝐼)) |
| 99 | 63, 65, 98 | syl2anc 584 |
. . . . . . . . . . 11
⊢
(((((((((𝑅 ∈
CRing ∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → ([𝑥](𝑅 ~QG 𝐼) = 𝐼 ↔ 𝑥 ∈ 𝐼)) |
| 100 | 96, 97, 99 | 3bitrrd 306 |
. . . . . . . . . 10
⊢
(((((((((𝑅 ∈
CRing ∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑥 ∈ 𝐼 ↔ 𝑎 = (0g‘𝑄))) |
| 101 | 86 | eqeq2d 2747 |
. . . . . . . . . . 11
⊢
(((((((((𝑅 ∈
CRing ∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑏 = (0g‘𝑄) ↔ 𝑏 = 𝐼)) |
| 102 | 84 | eqeq1d 2738 |
. . . . . . . . . . 11
⊢
(((((((((𝑅 ∈
CRing ∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑏 = 𝐼 ↔ [𝑦](𝑅 ~QG 𝐼) = 𝐼)) |
| 103 | 28 | eqg0el 19171 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ (SubGrp‘𝑅)) → ([𝑦](𝑅 ~QG 𝐼) = 𝐼 ↔ 𝑦 ∈ 𝐼)) |
| 104 | 63, 65, 103 | syl2anc 584 |
. . . . . . . . . . 11
⊢
(((((((((𝑅 ∈
CRing ∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → ([𝑦](𝑅 ~QG 𝐼) = 𝐼 ↔ 𝑦 ∈ 𝐼)) |
| 105 | 101, 102,
104 | 3bitrrd 306 |
. . . . . . . . . 10
⊢
(((((((((𝑅 ∈
CRing ∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑦 ∈ 𝐼 ↔ 𝑏 = (0g‘𝑄))) |
| 106 | 100, 105 | orbi12d 918 |
. . . . . . . . 9
⊢
(((((((((𝑅 ∈
CRing ∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → ((𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼) ↔ (𝑎 = (0g‘𝑄) ∨ 𝑏 = (0g‘𝑄)))) |
| 107 | 95, 106 | mpbid 232 |
. . . . . . . 8
⊢
(((((((((𝑅 ∈
CRing ∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑎 = (0g‘𝑄) ∨ 𝑏 = (0g‘𝑄))) |
| 108 | | simplr 768 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈ CRing
∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) → 𝑏 ∈ (Base‘𝑄)) |
| 109 | 4 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ CRing → 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))) |
| 110 | | eqidd 2737 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ CRing →
(Base‘𝑅) =
(Base‘𝑅)) |
| 111 | | ovexd 7445 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ CRing → (𝑅 ~QG 𝐼) ∈ V) |
| 112 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ CRing → 𝑅 ∈ CRing) |
| 113 | 109, 110,
111, 112 | qusbas 17564 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ CRing →
((Base‘𝑅) /
(𝑅 ~QG
𝐼)) = (Base‘𝑄)) |
| 114 | 113 | ad4antr 732 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈ CRing
∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) → ((Base‘𝑅) / (𝑅 ~QG 𝐼)) = (Base‘𝑄)) |
| 115 | 108, 114 | eleqtrrd 2838 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈ CRing
∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) → 𝑏 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝐼))) |
| 116 | 115 | ad2antrr 726 |
. . . . . . . . 9
⊢
(((((((𝑅 ∈
CRing ∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) → 𝑏 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝐼))) |
| 117 | | elqsi 8789 |
. . . . . . . . 9
⊢ (𝑏 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝐼)) → ∃𝑦 ∈ (Base‘𝑅)𝑏 = [𝑦](𝑅 ~QG 𝐼)) |
| 118 | 116, 117 | syl 17 |
. . . . . . . 8
⊢
(((((((𝑅 ∈
CRing ∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) → ∃𝑦 ∈ (Base‘𝑅)𝑏 = [𝑦](𝑅 ~QG 𝐼)) |
| 119 | 107, 118 | r19.29a 3149 |
. . . . . . 7
⊢
(((((((𝑅 ∈
CRing ∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) → (𝑎 = (0g‘𝑄) ∨ 𝑏 = (0g‘𝑄))) |
| 120 | | simpllr 775 |
. . . . . . . . 9
⊢
(((((𝑅 ∈ CRing
∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) → 𝑎 ∈ (Base‘𝑄)) |
| 121 | 120, 114 | eleqtrrd 2838 |
. . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) → 𝑎 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝐼))) |
| 122 | | elqsi 8789 |
. . . . . . . 8
⊢ (𝑎 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝐼)) → ∃𝑥 ∈ (Base‘𝑅)𝑎 = [𝑥](𝑅 ~QG 𝐼)) |
| 123 | 121, 122 | syl 17 |
. . . . . . 7
⊢
(((((𝑅 ∈ CRing
∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) → ∃𝑥 ∈ (Base‘𝑅)𝑎 = [𝑥](𝑅 ~QG 𝐼)) |
| 124 | 119, 123 | r19.29a 3149 |
. . . . . 6
⊢
(((((𝑅 ∈ CRing
∧ 𝐼 ∈
(PrmIdeal‘𝑅)) ∧
𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r‘𝑄)𝑏) = (0g‘𝑄)) → (𝑎 = (0g‘𝑄) ∨ 𝑏 = (0g‘𝑄))) |
| 125 | 124 | ex 412 |
. . . . 5
⊢ ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) → ((𝑎(.r‘𝑄)𝑏) = (0g‘𝑄) → (𝑎 = (0g‘𝑄) ∨ 𝑏 = (0g‘𝑄)))) |
| 126 | 125 | anasss 466 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ (𝑎 ∈ (Base‘𝑄) ∧ 𝑏 ∈ (Base‘𝑄))) → ((𝑎(.r‘𝑄)𝑏) = (0g‘𝑄) → (𝑎 = (0g‘𝑄) ∨ 𝑏 = (0g‘𝑄)))) |
| 127 | 126 | ralrimivva 3188 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → ∀𝑎 ∈ (Base‘𝑄)∀𝑏 ∈ (Base‘𝑄)((𝑎(.r‘𝑄)𝑏) = (0g‘𝑄) → (𝑎 = (0g‘𝑄) ∨ 𝑏 = (0g‘𝑄)))) |
| 128 | 15, 78, 16 | isdomn 20670 |
. . 3
⊢ (𝑄 ∈ Domn ↔ (𝑄 ∈ NzRing ∧
∀𝑎 ∈
(Base‘𝑄)∀𝑏 ∈ (Base‘𝑄)((𝑎(.r‘𝑄)𝑏) = (0g‘𝑄) → (𝑎 = (0g‘𝑄) ∨ 𝑏 = (0g‘𝑄))))) |
| 129 | 57, 127, 128 | sylanbrc 583 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝑄 ∈ Domn) |
| 130 | | isidom 20690 |
. 2
⊢ (𝑄 ∈ IDomn ↔ (𝑄 ∈ CRing ∧ 𝑄 ∈ Domn)) |
| 131 | 7, 129, 130 | sylanbrc 583 |
1
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝑄 ∈ IDomn) |