Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsidomlem2 Structured version   Visualization version   GIF version

Theorem qsidomlem2 31638
Description: A quotient by a prime ideal is an integral domain. (Contributed by Thierry Arnoux, 16-Jan-2024.)
Hypothesis
Ref Expression
qsidom.1 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
Assertion
Ref Expression
qsidomlem2 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝑄 ∈ IDomn)

Proof of Theorem qsidomlem2
Dummy variables 𝑎 𝑦 𝑏 𝑒 𝑓 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 19804 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 prmidlidl 31628 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝐼 ∈ (LIdeal‘𝑅))
31, 2sylan 580 . . 3 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝐼 ∈ (LIdeal‘𝑅))
4 qsidom.1 . . . 4 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
5 eqid 2739 . . . 4 (LIdeal‘𝑅) = (LIdeal‘𝑅)
64, 5quscrng 20520 . . 3 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝑄 ∈ CRing)
73, 6syldan 591 . 2 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝑄 ∈ CRing)
85crng2idl 20519 . . . . . . . 8 (𝑅 ∈ CRing → (LIdeal‘𝑅) = (2Ideal‘𝑅))
98eleq2d 2825 . . . . . . 7 (𝑅 ∈ CRing → (𝐼 ∈ (LIdeal‘𝑅) ↔ 𝐼 ∈ (2Ideal‘𝑅)))
109biimpa 477 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (2Ideal‘𝑅))
113, 10syldan 591 . . . . 5 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝐼 ∈ (2Ideal‘𝑅))
12 eqid 2739 . . . . . 6 (2Ideal‘𝑅) = (2Ideal‘𝑅)
134, 12qusring 20516 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → 𝑄 ∈ Ring)
141, 11, 13syl2an2r 682 . . . 4 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝑄 ∈ Ring)
15 eqid 2739 . . . . . . . . 9 (Base‘𝑄) = (Base‘𝑄)
16 eqid 2739 . . . . . . . . 9 (0g𝑄) = (0g𝑄)
1715, 16ring0cl 19817 . . . . . . . 8 (𝑄 ∈ Ring → (0g𝑄) ∈ (Base‘𝑄))
1814, 17syl 17 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → (0g𝑄) ∈ (Base‘𝑄))
1918snssd 4743 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → {(0g𝑄)} ⊆ (Base‘𝑄))
20 lidlnsg 31630 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (NrmSGrp‘𝑅))
211, 20sylan 580 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (NrmSGrp‘𝑅))
22 eqid 2739 . . . . . . . . . . . 12 (0g𝑅) = (0g𝑅)
234, 22qus0 18823 . . . . . . . . . . 11 (𝐼 ∈ (NrmSGrp‘𝑅) → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
2421, 23syl 17 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
255lidlsubg 20495 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (SubGrp‘𝑅))
261, 25sylan 580 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (SubGrp‘𝑅))
27 eqid 2739 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
28 eqid 2739 . . . . . . . . . . . 12 (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼)
2927, 28, 22eqgid 18817 . . . . . . . . . . 11 (𝐼 ∈ (SubGrp‘𝑅) → [(0g𝑅)](𝑅 ~QG 𝐼) = 𝐼)
3026, 29syl 17 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → [(0g𝑅)](𝑅 ~QG 𝐼) = 𝐼)
3124, 30eqtr3d 2781 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (0g𝑄) = 𝐼)
323, 31syldan 591 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → (0g𝑄) = 𝐼)
3332sneqd 4574 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → {(0g𝑄)} = {𝐼})
34 eqid 2739 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
3527, 34isprmidlc 31632 . . . . . . . . . . 11 (𝑅 ∈ CRing → (𝐼 ∈ (PrmIdeal‘𝑅) ↔ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼)))))
3635biimpa 477 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼))))
3736simp2d 1142 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝐼 ≠ (Base‘𝑅))
38 ringgrp 19797 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
391, 38syl 17 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑅 ∈ Grp)
4039ad2antrr 723 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ (Base‘𝑄) = {𝐼}) → 𝑅 ∈ Grp)
411ad2antrr 723 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ (Base‘𝑄) = {𝐼}) → 𝑅 ∈ Ring)
423adantr 481 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ (Base‘𝑄) = {𝐼}) → 𝐼 ∈ (LIdeal‘𝑅))
4341, 42, 25syl2anc 584 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ (Base‘𝑄) = {𝐼}) → 𝐼 ∈ (SubGrp‘𝑅))
44 simpr 485 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ (Base‘𝑄) = {𝐼}) → (Base‘𝑄) = {𝐼})
4527, 4qustrivr 31570 . . . . . . . . . 10 ((𝑅 ∈ Grp ∧ 𝐼 ∈ (SubGrp‘𝑅) ∧ (Base‘𝑄) = {𝐼}) → 𝐼 = (Base‘𝑅))
4640, 43, 44, 45syl3anc 1370 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ (Base‘𝑄) = {𝐼}) → 𝐼 = (Base‘𝑅))
4737, 46mteqand 3049 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → (Base‘𝑄) ≠ {𝐼})
4847necomd 3000 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → {𝐼} ≠ (Base‘𝑄))
4933, 48eqnetrd 3012 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → {(0g𝑄)} ≠ (Base‘𝑄))
50 pssdifn0 4300 . . . . . 6 (({(0g𝑄)} ⊆ (Base‘𝑄) ∧ {(0g𝑄)} ≠ (Base‘𝑄)) → ((Base‘𝑄) ∖ {(0g𝑄)}) ≠ ∅)
5119, 49, 50syl2anc 584 . . . . 5 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → ((Base‘𝑄) ∖ {(0g𝑄)}) ≠ ∅)
52 n0 4281 . . . . 5 (((Base‘𝑄) ∖ {(0g𝑄)}) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)}))
5351, 52sylib 217 . . . 4 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → ∃𝑥 𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)}))
5416, 15ringelnzr 20546 . . . . . 6 ((𝑄 ∈ Ring ∧ 𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) → 𝑄 ∈ NzRing)
5554ex 413 . . . . 5 (𝑄 ∈ Ring → (𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)}) → 𝑄 ∈ NzRing))
5655exlimdv 1937 . . . 4 (𝑄 ∈ Ring → (∃𝑥 𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)}) → 𝑄 ∈ NzRing))
5714, 53, 56sylc 65 . . 3 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝑄 ∈ NzRing)
5836simp3d 1143 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼)))
5958ad7antr 735 . . . . . . . . . 10 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼)))
60 simp-4r 781 . . . . . . . . . 10 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → 𝑥 ∈ (Base‘𝑅))
61 simplr 766 . . . . . . . . . 10 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → 𝑦 ∈ (Base‘𝑅))
62 simp-8l 788 . . . . . . . . . . . 12 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → 𝑅 ∈ CRing)
6362, 39syl 17 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → 𝑅 ∈ Grp)
643ad7antr 735 . . . . . . . . . . . 12 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → 𝐼 ∈ (LIdeal‘𝑅))
6562, 64, 26syl2anc 584 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → 𝐼 ∈ (SubGrp‘𝑅))
664a1i 11 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)))
67 eqidd 2740 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (Base‘𝑅) = (Base‘𝑅))
6827, 28eqger 18815 . . . . . . . . . . . . . . 15 (𝐼 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝐼) Er (Base‘𝑅))
6926, 68syl 17 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (𝑅 ~QG 𝐼) Er (Base‘𝑅))
70 simpl 483 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝑅 ∈ CRing)
7127, 28, 12, 342idlcpbl 20514 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → ((𝑔(𝑅 ~QG 𝐼)𝑒(𝑅 ~QG 𝐼)𝑓) → (𝑔(.r𝑅))(𝑅 ~QG 𝐼)(𝑒(.r𝑅)𝑓)))
721, 10, 71syl2an2r 682 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ((𝑔(𝑅 ~QG 𝐼)𝑒(𝑅 ~QG 𝐼)𝑓) → (𝑔(.r𝑅))(𝑅 ~QG 𝐼)(𝑒(.r𝑅)𝑓)))
731ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅))) → 𝑅 ∈ Ring)
74 simprl 768 . . . . . . . . . . . . . . 15 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅))) → 𝑒 ∈ (Base‘𝑅))
75 simprr 770 . . . . . . . . . . . . . . 15 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅))) → 𝑓 ∈ (Base‘𝑅))
7627, 34ringcl 19809 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅)) → (𝑒(.r𝑅)𝑓) ∈ (Base‘𝑅))
7773, 74, 75, 76syl3anc 1370 . . . . . . . . . . . . . 14 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅))) → (𝑒(.r𝑅)𝑓) ∈ (Base‘𝑅))
78 eqid 2739 . . . . . . . . . . . . . 14 (.r𝑄) = (.r𝑄)
7966, 67, 69, 70, 72, 77, 34, 78qusmulval 17275 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ([𝑥](𝑅 ~QG 𝐼)(.r𝑄)[𝑦](𝑅 ~QG 𝐼)) = [(𝑥(.r𝑅)𝑦)](𝑅 ~QG 𝐼))
8062, 64, 60, 61, 79syl211anc 1375 . . . . . . . . . . . 12 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → ([𝑥](𝑅 ~QG 𝐼)(.r𝑄)[𝑦](𝑅 ~QG 𝐼)) = [(𝑥(.r𝑅)𝑦)](𝑅 ~QG 𝐼))
81 simpr 485 . . . . . . . . . . . . . 14 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) → (𝑎(.r𝑄)𝑏) = (0g𝑄))
8281ad4antr 729 . . . . . . . . . . . . 13 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑎(.r𝑄)𝑏) = (0g𝑄))
83 simpllr 773 . . . . . . . . . . . . . 14 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → 𝑎 = [𝑥](𝑅 ~QG 𝐼))
84 simpr 485 . . . . . . . . . . . . . 14 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → 𝑏 = [𝑦](𝑅 ~QG 𝐼))
8583, 84oveq12d 7302 . . . . . . . . . . . . 13 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑎(.r𝑄)𝑏) = ([𝑥](𝑅 ~QG 𝐼)(.r𝑄)[𝑦](𝑅 ~QG 𝐼)))
8662, 64, 31syl2anc 584 . . . . . . . . . . . . 13 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (0g𝑄) = 𝐼)
8782, 85, 863eqtr3d 2787 . . . . . . . . . . . 12 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → ([𝑥](𝑅 ~QG 𝐼)(.r𝑄)[𝑦](𝑅 ~QG 𝐼)) = 𝐼)
8880, 87eqtr3d 2781 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → [(𝑥(.r𝑅)𝑦)](𝑅 ~QG 𝐼) = 𝐼)
8928eqg0el 31566 . . . . . . . . . . . 12 ((𝑅 ∈ Grp ∧ 𝐼 ∈ (SubGrp‘𝑅)) → ([(𝑥(.r𝑅)𝑦)](𝑅 ~QG 𝐼) = 𝐼 ↔ (𝑥(.r𝑅)𝑦) ∈ 𝐼))
9089biimpa 477 . . . . . . . . . . 11 (((𝑅 ∈ Grp ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ [(𝑥(.r𝑅)𝑦)](𝑅 ~QG 𝐼) = 𝐼) → (𝑥(.r𝑅)𝑦) ∈ 𝐼)
9163, 65, 88, 90syl21anc 835 . . . . . . . . . 10 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑥(.r𝑅)𝑦) ∈ 𝐼)
92 rsp2 3139 . . . . . . . . . . . 12 (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼)) → ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼))))
9392impl 456 . . . . . . . . . . 11 (((∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼)))
9493imp 407 . . . . . . . . . 10 ((((∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → (𝑥𝐼𝑦𝐼))
9559, 60, 61, 91, 94syl1111anc 837 . . . . . . . . 9 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑥𝐼𝑦𝐼))
9686eqeq2d 2750 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑎 = (0g𝑄) ↔ 𝑎 = 𝐼))
9783eqeq1d 2741 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑎 = 𝐼 ↔ [𝑥](𝑅 ~QG 𝐼) = 𝐼))
9828eqg0el 31566 . . . . . . . . . . . 12 ((𝑅 ∈ Grp ∧ 𝐼 ∈ (SubGrp‘𝑅)) → ([𝑥](𝑅 ~QG 𝐼) = 𝐼𝑥𝐼))
9963, 65, 98syl2anc 584 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → ([𝑥](𝑅 ~QG 𝐼) = 𝐼𝑥𝐼))
10096, 97, 993bitrrd 306 . . . . . . . . . 10 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑥𝐼𝑎 = (0g𝑄)))
10186eqeq2d 2750 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑏 = (0g𝑄) ↔ 𝑏 = 𝐼))
10284eqeq1d 2741 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑏 = 𝐼 ↔ [𝑦](𝑅 ~QG 𝐼) = 𝐼))
10328eqg0el 31566 . . . . . . . . . . . 12 ((𝑅 ∈ Grp ∧ 𝐼 ∈ (SubGrp‘𝑅)) → ([𝑦](𝑅 ~QG 𝐼) = 𝐼𝑦𝐼))
10463, 65, 103syl2anc 584 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → ([𝑦](𝑅 ~QG 𝐼) = 𝐼𝑦𝐼))
105101, 102, 1043bitrrd 306 . . . . . . . . . 10 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑦𝐼𝑏 = (0g𝑄)))
106100, 105orbi12d 916 . . . . . . . . 9 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → ((𝑥𝐼𝑦𝐼) ↔ (𝑎 = (0g𝑄) ∨ 𝑏 = (0g𝑄))))
10795, 106mpbid 231 . . . . . . . 8 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑎 = (0g𝑄) ∨ 𝑏 = (0g𝑄)))
108 simplr 766 . . . . . . . . . . 11 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) → 𝑏 ∈ (Base‘𝑄))
1094a1i 11 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)))
110 eqidd 2740 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → (Base‘𝑅) = (Base‘𝑅))
111 ovexd 7319 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → (𝑅 ~QG 𝐼) ∈ V)
112 id 22 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑅 ∈ CRing)
113109, 110, 111, 112qusbas 17265 . . . . . . . . . . . 12 (𝑅 ∈ CRing → ((Base‘𝑅) / (𝑅 ~QG 𝐼)) = (Base‘𝑄))
114113ad4antr 729 . . . . . . . . . . 11 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) → ((Base‘𝑅) / (𝑅 ~QG 𝐼)) = (Base‘𝑄))
115108, 114eleqtrrd 2843 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) → 𝑏 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝐼)))
116115ad2antrr 723 . . . . . . . . 9 (((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) → 𝑏 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝐼)))
117 elqsi 8568 . . . . . . . . 9 (𝑏 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝐼)) → ∃𝑦 ∈ (Base‘𝑅)𝑏 = [𝑦](𝑅 ~QG 𝐼))
118116, 117syl 17 . . . . . . . 8 (((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) → ∃𝑦 ∈ (Base‘𝑅)𝑏 = [𝑦](𝑅 ~QG 𝐼))
119107, 118r19.29a 3219 . . . . . . 7 (((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) → (𝑎 = (0g𝑄) ∨ 𝑏 = (0g𝑄)))
120 simpllr 773 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) → 𝑎 ∈ (Base‘𝑄))
121120, 114eleqtrrd 2843 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) → 𝑎 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝐼)))
122 elqsi 8568 . . . . . . . 8 (𝑎 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝐼)) → ∃𝑥 ∈ (Base‘𝑅)𝑎 = [𝑥](𝑅 ~QG 𝐼))
123121, 122syl 17 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) → ∃𝑥 ∈ (Base‘𝑅)𝑎 = [𝑥](𝑅 ~QG 𝐼))
124119, 123r19.29a 3219 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) → (𝑎 = (0g𝑄) ∨ 𝑏 = (0g𝑄)))
125124ex 413 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) → ((𝑎(.r𝑄)𝑏) = (0g𝑄) → (𝑎 = (0g𝑄) ∨ 𝑏 = (0g𝑄))))
126125anasss 467 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ (𝑎 ∈ (Base‘𝑄) ∧ 𝑏 ∈ (Base‘𝑄))) → ((𝑎(.r𝑄)𝑏) = (0g𝑄) → (𝑎 = (0g𝑄) ∨ 𝑏 = (0g𝑄))))
127126ralrimivva 3124 . . 3 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → ∀𝑎 ∈ (Base‘𝑄)∀𝑏 ∈ (Base‘𝑄)((𝑎(.r𝑄)𝑏) = (0g𝑄) → (𝑎 = (0g𝑄) ∨ 𝑏 = (0g𝑄))))
12815, 78, 16isdomn 20574 . . 3 (𝑄 ∈ Domn ↔ (𝑄 ∈ NzRing ∧ ∀𝑎 ∈ (Base‘𝑄)∀𝑏 ∈ (Base‘𝑄)((𝑎(.r𝑄)𝑏) = (0g𝑄) → (𝑎 = (0g𝑄) ∨ 𝑏 = (0g𝑄)))))
12957, 127, 128sylanbrc 583 . 2 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝑄 ∈ Domn)
130 isidom 20584 . 2 (𝑄 ∈ IDomn ↔ (𝑄 ∈ CRing ∧ 𝑄 ∈ Domn))
1317, 129, 130sylanbrc 583 1 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝑄 ∈ IDomn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wex 1782  wcel 2107  wne 2944  wral 3065  wrex 3066  Vcvv 3433  cdif 3885  wss 3888  c0 4257  {csn 4562   class class class wbr 5075  cfv 6437  (class class class)co 7284   Er wer 8504  [cec 8505   / cqs 8506  Basecbs 16921  .rcmulr 16972  0gc0g 17159   /s cqus 17225  Grpcgrp 18586  SubGrpcsubg 18758  NrmSGrpcnsg 18759   ~QG cqg 18760  Ringcrg 19792  CRingccrg 19793  LIdealclidl 20441  2Idealc2idl 20511  NzRingcnzr 20537  Domncdomn 20560  IDomncidom 20561  PrmIdealcprmidl 31619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-1st 7840  df-2nd 7841  df-tpos 8051  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-er 8507  df-ec 8509  df-qs 8513  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-sup 9210  df-inf 9211  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-fz 13249  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-mulr 16985  df-sca 16987  df-vsca 16988  df-ip 16989  df-tset 16990  df-ple 16991  df-ds 16993  df-0g 17161  df-imas 17228  df-qus 17229  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-grp 18589  df-minusg 18590  df-sbg 18591  df-subg 18761  df-nsg 18762  df-eqg 18763  df-cmn 19397  df-abl 19398  df-mgp 19730  df-ur 19747  df-ring 19794  df-cring 19795  df-oppr 19871  df-subrg 20031  df-lmod 20134  df-lss 20203  df-lsp 20243  df-sra 20443  df-rgmod 20444  df-lidl 20445  df-rsp 20446  df-2idl 20512  df-nzr 20538  df-domn 20564  df-idom 20565  df-prmidl 31620
This theorem is referenced by:  qsidom  31639
  Copyright terms: Public domain W3C validator