Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsidomlem2 Structured version   Visualization version   GIF version

Theorem qsidomlem2 33425
Description: A quotient by a prime ideal is an integral domain. (Contributed by Thierry Arnoux, 16-Jan-2024.)
Hypothesis
Ref Expression
qsidom.1 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
Assertion
Ref Expression
qsidomlem2 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝑄 ∈ IDomn)

Proof of Theorem qsidomlem2
Dummy variables 𝑎 𝑦 𝑏 𝑒 𝑓 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 20165 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 prmidlidl 33416 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝐼 ∈ (LIdeal‘𝑅))
31, 2sylan 580 . . 3 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝐼 ∈ (LIdeal‘𝑅))
4 qsidom.1 . . . 4 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
5 eqid 2733 . . . 4 (LIdeal‘𝑅) = (LIdeal‘𝑅)
64, 5quscrng 21222 . . 3 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝑄 ∈ CRing)
73, 6syldan 591 . 2 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝑄 ∈ CRing)
85crng2idl 21220 . . . . . . . 8 (𝑅 ∈ CRing → (LIdeal‘𝑅) = (2Ideal‘𝑅))
98eleq2d 2819 . . . . . . 7 (𝑅 ∈ CRing → (𝐼 ∈ (LIdeal‘𝑅) ↔ 𝐼 ∈ (2Ideal‘𝑅)))
109biimpa 476 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (2Ideal‘𝑅))
113, 10syldan 591 . . . . 5 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝐼 ∈ (2Ideal‘𝑅))
12 eqid 2733 . . . . . 6 (2Ideal‘𝑅) = (2Ideal‘𝑅)
134, 12qusring 21214 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → 𝑄 ∈ Ring)
141, 11, 13syl2an2r 685 . . . 4 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝑄 ∈ Ring)
15 eqid 2733 . . . . . . . . 9 (Base‘𝑄) = (Base‘𝑄)
16 eqid 2733 . . . . . . . . 9 (0g𝑄) = (0g𝑄)
1715, 16ring0cl 20187 . . . . . . . 8 (𝑄 ∈ Ring → (0g𝑄) ∈ (Base‘𝑄))
1814, 17syl 17 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → (0g𝑄) ∈ (Base‘𝑄))
1918snssd 4760 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → {(0g𝑄)} ⊆ (Base‘𝑄))
20 lidlnsg 21187 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (NrmSGrp‘𝑅))
211, 20sylan 580 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (NrmSGrp‘𝑅))
22 eqid 2733 . . . . . . . . . . . 12 (0g𝑅) = (0g𝑅)
234, 22qus0 19103 . . . . . . . . . . 11 (𝐼 ∈ (NrmSGrp‘𝑅) → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
2421, 23syl 17 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
255lidlsubg 21162 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (SubGrp‘𝑅))
261, 25sylan 580 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (SubGrp‘𝑅))
27 eqid 2733 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
28 eqid 2733 . . . . . . . . . . . 12 (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼)
2927, 28, 22eqgid 19094 . . . . . . . . . . 11 (𝐼 ∈ (SubGrp‘𝑅) → [(0g𝑅)](𝑅 ~QG 𝐼) = 𝐼)
3026, 29syl 17 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → [(0g𝑅)](𝑅 ~QG 𝐼) = 𝐼)
3124, 30eqtr3d 2770 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (0g𝑄) = 𝐼)
323, 31syldan 591 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → (0g𝑄) = 𝐼)
3332sneqd 4587 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → {(0g𝑄)} = {𝐼})
34 eqid 2733 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
3527, 34isprmidlc 33419 . . . . . . . . . . 11 (𝑅 ∈ CRing → (𝐼 ∈ (PrmIdeal‘𝑅) ↔ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼)))))
3635biimpa 476 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼))))
3736simp2d 1143 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝐼 ≠ (Base‘𝑅))
38 ringgrp 20158 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
391, 38syl 17 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑅 ∈ Grp)
4039ad2antrr 726 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ (Base‘𝑄) = {𝐼}) → 𝑅 ∈ Grp)
411ad2antrr 726 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ (Base‘𝑄) = {𝐼}) → 𝑅 ∈ Ring)
423adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ (Base‘𝑄) = {𝐼}) → 𝐼 ∈ (LIdeal‘𝑅))
4341, 42, 25syl2anc 584 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ (Base‘𝑄) = {𝐼}) → 𝐼 ∈ (SubGrp‘𝑅))
44 simpr 484 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ (Base‘𝑄) = {𝐼}) → (Base‘𝑄) = {𝐼})
4527, 4qustrivr 33337 . . . . . . . . . 10 ((𝑅 ∈ Grp ∧ 𝐼 ∈ (SubGrp‘𝑅) ∧ (Base‘𝑄) = {𝐼}) → 𝐼 = (Base‘𝑅))
4640, 43, 44, 45syl3anc 1373 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ (Base‘𝑄) = {𝐼}) → 𝐼 = (Base‘𝑅))
4737, 46mteqand 3020 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → (Base‘𝑄) ≠ {𝐼})
4847necomd 2984 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → {𝐼} ≠ (Base‘𝑄))
4933, 48eqnetrd 2996 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → {(0g𝑄)} ≠ (Base‘𝑄))
50 pssdifn0 4317 . . . . . 6 (({(0g𝑄)} ⊆ (Base‘𝑄) ∧ {(0g𝑄)} ≠ (Base‘𝑄)) → ((Base‘𝑄) ∖ {(0g𝑄)}) ≠ ∅)
5119, 49, 50syl2anc 584 . . . . 5 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → ((Base‘𝑄) ∖ {(0g𝑄)}) ≠ ∅)
52 n0 4302 . . . . 5 (((Base‘𝑄) ∖ {(0g𝑄)}) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)}))
5351, 52sylib 218 . . . 4 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → ∃𝑥 𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)}))
5416, 15ringelnzr 20440 . . . . . 6 ((𝑄 ∈ Ring ∧ 𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)})) → 𝑄 ∈ NzRing)
5554ex 412 . . . . 5 (𝑄 ∈ Ring → (𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)}) → 𝑄 ∈ NzRing))
5655exlimdv 1934 . . . 4 (𝑄 ∈ Ring → (∃𝑥 𝑥 ∈ ((Base‘𝑄) ∖ {(0g𝑄)}) → 𝑄 ∈ NzRing))
5714, 53, 56sylc 65 . . 3 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝑄 ∈ NzRing)
5836simp3d 1144 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼)))
5958ad7antr 738 . . . . . . . . . 10 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼)))
60 simp-4r 783 . . . . . . . . . 10 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → 𝑥 ∈ (Base‘𝑅))
61 simplr 768 . . . . . . . . . 10 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → 𝑦 ∈ (Base‘𝑅))
62 simp-8l 790 . . . . . . . . . . . 12 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → 𝑅 ∈ CRing)
6362, 39syl 17 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → 𝑅 ∈ Grp)
643ad7antr 738 . . . . . . . . . . . 12 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → 𝐼 ∈ (LIdeal‘𝑅))
6562, 64, 26syl2anc 584 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → 𝐼 ∈ (SubGrp‘𝑅))
664a1i 11 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)))
67 eqidd 2734 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (Base‘𝑅) = (Base‘𝑅))
6827, 28eqger 19092 . . . . . . . . . . . . . . 15 (𝐼 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝐼) Er (Base‘𝑅))
6926, 68syl 17 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (𝑅 ~QG 𝐼) Er (Base‘𝑅))
70 simpl 482 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝑅 ∈ CRing)
7127, 28, 12, 342idlcpbl 21211 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → ((𝑔(𝑅 ~QG 𝐼)𝑒(𝑅 ~QG 𝐼)𝑓) → (𝑔(.r𝑅))(𝑅 ~QG 𝐼)(𝑒(.r𝑅)𝑓)))
721, 10, 71syl2an2r 685 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ((𝑔(𝑅 ~QG 𝐼)𝑒(𝑅 ~QG 𝐼)𝑓) → (𝑔(.r𝑅))(𝑅 ~QG 𝐼)(𝑒(.r𝑅)𝑓)))
731ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅))) → 𝑅 ∈ Ring)
74 simprl 770 . . . . . . . . . . . . . . 15 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅))) → 𝑒 ∈ (Base‘𝑅))
75 simprr 772 . . . . . . . . . . . . . . 15 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅))) → 𝑓 ∈ (Base‘𝑅))
7627, 34ringcl 20170 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅)) → (𝑒(.r𝑅)𝑓) ∈ (Base‘𝑅))
7773, 74, 75, 76syl3anc 1373 . . . . . . . . . . . . . 14 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅))) → (𝑒(.r𝑅)𝑓) ∈ (Base‘𝑅))
78 eqid 2733 . . . . . . . . . . . . . 14 (.r𝑄) = (.r𝑄)
7966, 67, 69, 70, 72, 77, 34, 78qusmulval 17461 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ([𝑥](𝑅 ~QG 𝐼)(.r𝑄)[𝑦](𝑅 ~QG 𝐼)) = [(𝑥(.r𝑅)𝑦)](𝑅 ~QG 𝐼))
8062, 64, 60, 61, 79syl211anc 1378 . . . . . . . . . . . 12 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → ([𝑥](𝑅 ~QG 𝐼)(.r𝑄)[𝑦](𝑅 ~QG 𝐼)) = [(𝑥(.r𝑅)𝑦)](𝑅 ~QG 𝐼))
81 simpr 484 . . . . . . . . . . . . . 14 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) → (𝑎(.r𝑄)𝑏) = (0g𝑄))
8281ad4antr 732 . . . . . . . . . . . . 13 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑎(.r𝑄)𝑏) = (0g𝑄))
83 simpllr 775 . . . . . . . . . . . . . 14 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → 𝑎 = [𝑥](𝑅 ~QG 𝐼))
84 simpr 484 . . . . . . . . . . . . . 14 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → 𝑏 = [𝑦](𝑅 ~QG 𝐼))
8583, 84oveq12d 7370 . . . . . . . . . . . . 13 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑎(.r𝑄)𝑏) = ([𝑥](𝑅 ~QG 𝐼)(.r𝑄)[𝑦](𝑅 ~QG 𝐼)))
8662, 64, 31syl2anc 584 . . . . . . . . . . . . 13 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (0g𝑄) = 𝐼)
8782, 85, 863eqtr3d 2776 . . . . . . . . . . . 12 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → ([𝑥](𝑅 ~QG 𝐼)(.r𝑄)[𝑦](𝑅 ~QG 𝐼)) = 𝐼)
8880, 87eqtr3d 2770 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → [(𝑥(.r𝑅)𝑦)](𝑅 ~QG 𝐼) = 𝐼)
8928eqg0el 19097 . . . . . . . . . . . 12 ((𝑅 ∈ Grp ∧ 𝐼 ∈ (SubGrp‘𝑅)) → ([(𝑥(.r𝑅)𝑦)](𝑅 ~QG 𝐼) = 𝐼 ↔ (𝑥(.r𝑅)𝑦) ∈ 𝐼))
9089biimpa 476 . . . . . . . . . . 11 (((𝑅 ∈ Grp ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ [(𝑥(.r𝑅)𝑦)](𝑅 ~QG 𝐼) = 𝐼) → (𝑥(.r𝑅)𝑦) ∈ 𝐼)
9163, 65, 88, 90syl21anc 837 . . . . . . . . . 10 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑥(.r𝑅)𝑦) ∈ 𝐼)
92 rsp2 3250 . . . . . . . . . . . 12 (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼)) → ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼))))
9392impl 455 . . . . . . . . . . 11 (((∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼)))
9493imp 406 . . . . . . . . . 10 ((((∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → (𝑥𝐼𝑦𝐼))
9559, 60, 61, 91, 94syl1111anc 840 . . . . . . . . 9 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑥𝐼𝑦𝐼))
9686eqeq2d 2744 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑎 = (0g𝑄) ↔ 𝑎 = 𝐼))
9783eqeq1d 2735 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑎 = 𝐼 ↔ [𝑥](𝑅 ~QG 𝐼) = 𝐼))
9828eqg0el 19097 . . . . . . . . . . . 12 ((𝑅 ∈ Grp ∧ 𝐼 ∈ (SubGrp‘𝑅)) → ([𝑥](𝑅 ~QG 𝐼) = 𝐼𝑥𝐼))
9963, 65, 98syl2anc 584 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → ([𝑥](𝑅 ~QG 𝐼) = 𝐼𝑥𝐼))
10096, 97, 993bitrrd 306 . . . . . . . . . 10 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑥𝐼𝑎 = (0g𝑄)))
10186eqeq2d 2744 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑏 = (0g𝑄) ↔ 𝑏 = 𝐼))
10284eqeq1d 2735 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑏 = 𝐼 ↔ [𝑦](𝑅 ~QG 𝐼) = 𝐼))
10328eqg0el 19097 . . . . . . . . . . . 12 ((𝑅 ∈ Grp ∧ 𝐼 ∈ (SubGrp‘𝑅)) → ([𝑦](𝑅 ~QG 𝐼) = 𝐼𝑦𝐼))
10463, 65, 103syl2anc 584 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → ([𝑦](𝑅 ~QG 𝐼) = 𝐼𝑦𝐼))
105101, 102, 1043bitrrd 306 . . . . . . . . . 10 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑦𝐼𝑏 = (0g𝑄)))
106100, 105orbi12d 918 . . . . . . . . 9 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → ((𝑥𝐼𝑦𝐼) ↔ (𝑎 = (0g𝑄) ∨ 𝑏 = (0g𝑄))))
10795, 106mpbid 232 . . . . . . . 8 (((((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑏 = [𝑦](𝑅 ~QG 𝐼)) → (𝑎 = (0g𝑄) ∨ 𝑏 = (0g𝑄)))
108 simplr 768 . . . . . . . . . . 11 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) → 𝑏 ∈ (Base‘𝑄))
1094a1i 11 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)))
110 eqidd 2734 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → (Base‘𝑅) = (Base‘𝑅))
111 ovexd 7387 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → (𝑅 ~QG 𝐼) ∈ V)
112 id 22 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑅 ∈ CRing)
113109, 110, 111, 112qusbas 17451 . . . . . . . . . . . 12 (𝑅 ∈ CRing → ((Base‘𝑅) / (𝑅 ~QG 𝐼)) = (Base‘𝑄))
114113ad4antr 732 . . . . . . . . . . 11 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) → ((Base‘𝑅) / (𝑅 ~QG 𝐼)) = (Base‘𝑄))
115108, 114eleqtrrd 2836 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) → 𝑏 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝐼)))
116115ad2antrr 726 . . . . . . . . 9 (((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) → 𝑏 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝐼)))
117 elqsi 8696 . . . . . . . . 9 (𝑏 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝐼)) → ∃𝑦 ∈ (Base‘𝑅)𝑏 = [𝑦](𝑅 ~QG 𝐼))
118116, 117syl 17 . . . . . . . 8 (((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) → ∃𝑦 ∈ (Base‘𝑅)𝑏 = [𝑦](𝑅 ~QG 𝐼))
119107, 118r19.29a 3141 . . . . . . 7 (((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 = [𝑥](𝑅 ~QG 𝐼)) → (𝑎 = (0g𝑄) ∨ 𝑏 = (0g𝑄)))
120 simpllr 775 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) → 𝑎 ∈ (Base‘𝑄))
121120, 114eleqtrrd 2836 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) → 𝑎 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝐼)))
122 elqsi 8696 . . . . . . . 8 (𝑎 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝐼)) → ∃𝑥 ∈ (Base‘𝑅)𝑎 = [𝑥](𝑅 ~QG 𝐼))
123121, 122syl 17 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) → ∃𝑥 ∈ (Base‘𝑅)𝑎 = [𝑥](𝑅 ~QG 𝐼))
124119, 123r19.29a 3141 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) ∧ (𝑎(.r𝑄)𝑏) = (0g𝑄)) → (𝑎 = (0g𝑄) ∨ 𝑏 = (0g𝑄)))
125124ex 412 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ 𝑎 ∈ (Base‘𝑄)) ∧ 𝑏 ∈ (Base‘𝑄)) → ((𝑎(.r𝑄)𝑏) = (0g𝑄) → (𝑎 = (0g𝑄) ∨ 𝑏 = (0g𝑄))))
126125anasss 466 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ (𝑎 ∈ (Base‘𝑄) ∧ 𝑏 ∈ (Base‘𝑄))) → ((𝑎(.r𝑄)𝑏) = (0g𝑄) → (𝑎 = (0g𝑄) ∨ 𝑏 = (0g𝑄))))
127126ralrimivva 3176 . . 3 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → ∀𝑎 ∈ (Base‘𝑄)∀𝑏 ∈ (Base‘𝑄)((𝑎(.r𝑄)𝑏) = (0g𝑄) → (𝑎 = (0g𝑄) ∨ 𝑏 = (0g𝑄))))
12815, 78, 16isdomn 20622 . . 3 (𝑄 ∈ Domn ↔ (𝑄 ∈ NzRing ∧ ∀𝑎 ∈ (Base‘𝑄)∀𝑏 ∈ (Base‘𝑄)((𝑎(.r𝑄)𝑏) = (0g𝑄) → (𝑎 = (0g𝑄) ∨ 𝑏 = (0g𝑄)))))
12957, 127, 128sylanbrc 583 . 2 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝑄 ∈ Domn)
130 isidom 20642 . 2 (𝑄 ∈ IDomn ↔ (𝑄 ∈ CRing ∧ 𝑄 ∈ Domn))
1317, 129, 130sylanbrc 583 1 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝑄 ∈ IDomn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wex 1780  wcel 2113  wne 2929  wral 3048  wrex 3057  Vcvv 3437  cdif 3895  wss 3898  c0 4282  {csn 4575   class class class wbr 5093  cfv 6486  (class class class)co 7352   Er wer 8625  [cec 8626   / cqs 8627  Basecbs 17122  .rcmulr 17164  0gc0g 17345   /s cqus 17411  Grpcgrp 18848  SubGrpcsubg 19035  NrmSGrpcnsg 19036   ~QG cqg 19037  Ringcrg 20153  CRingccrg 20154  NzRingcnzr 20429  Domncdomn 20609  IDomncidom 20610  LIdealclidl 21145  2Idealc2idl 21188  PrmIdealcprmidl 33407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-ec 8630  df-qs 8634  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-0g 17347  df-imas 17414  df-qus 17415  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-sbg 18853  df-subg 19038  df-nsg 19039  df-eqg 19040  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-nzr 20430  df-subrg 20487  df-domn 20612  df-idom 20613  df-lmod 20797  df-lss 20867  df-lsp 20907  df-sra 21109  df-rgmod 21110  df-lidl 21147  df-rsp 21148  df-2idl 21189  df-prmidl 33408
This theorem is referenced by:  qsidom  33426
  Copyright terms: Public domain W3C validator