MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdrngd Structured version   Visualization version   GIF version

Theorem isdrngd 19529
Description: Properties that characterize a division ring among rings: it should be nonzero, have no nonzero zero-divisors, and every nonzero element 𝑥 should have a left-inverse 𝐼(𝑥). See isdrngd 19529 for the characterization using right-inverses. (Contributed by NM, 2-Aug-2013.)
Hypotheses
Ref Expression
isdrngd.b (𝜑𝐵 = (Base‘𝑅))
isdrngd.t (𝜑· = (.r𝑅))
isdrngd.z (𝜑0 = (0g𝑅))
isdrngd.u (𝜑1 = (1r𝑅))
isdrngd.r (𝜑𝑅 ∈ Ring)
isdrngd.n ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ≠ 0 )
isdrngd.o (𝜑10 )
isdrngd.i ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼𝐵)
isdrngd.j ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼0 )
isdrngd.k ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝐼 · 𝑥) = 1 )
Assertion
Ref Expression
isdrngd (𝜑𝑅 ∈ DivRing)
Distinct variable groups:   𝑥,𝑦, 0   𝑥, 1 ,𝑦   𝑥,𝐵,𝑦   𝑦,𝐼   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦   𝑥, · ,𝑦
Allowed substitution hint:   𝐼(𝑥)

Proof of Theorem isdrngd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 isdrngd.r . . 3 (𝜑𝑅 ∈ Ring)
2 difss 4110 . . . . . 6 (𝐵 ∖ { 0 }) ⊆ 𝐵
3 isdrngd.b . . . . . 6 (𝜑𝐵 = (Base‘𝑅))
42, 3sseqtrid 4021 . . . . 5 (𝜑 → (𝐵 ∖ { 0 }) ⊆ (Base‘𝑅))
5 eqid 2823 . . . . . 6 ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))
6 eqid 2823 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
7 eqid 2823 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
86, 7mgpbas 19247 . . . . . 6 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
95, 8ressbas2 16557 . . . . 5 ((𝐵 ∖ { 0 }) ⊆ (Base‘𝑅) → (𝐵 ∖ { 0 }) = (Base‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
104, 9syl 17 . . . 4 (𝜑 → (𝐵 ∖ { 0 }) = (Base‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
11 isdrngd.t . . . . 5 (𝜑· = (.r𝑅))
12 fvex 6685 . . . . . . 7 (Base‘𝑅) ∈ V
133, 12eqeltrdi 2923 . . . . . 6 (𝜑𝐵 ∈ V)
14 difexg 5233 . . . . . 6 (𝐵 ∈ V → (𝐵 ∖ { 0 }) ∈ V)
15 eqid 2823 . . . . . . . 8 (.r𝑅) = (.r𝑅)
166, 15mgpplusg 19245 . . . . . . 7 (.r𝑅) = (+g‘(mulGrp‘𝑅))
175, 16ressplusg 16614 . . . . . 6 ((𝐵 ∖ { 0 }) ∈ V → (.r𝑅) = (+g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
1813, 14, 173syl 18 . . . . 5 (𝜑 → (.r𝑅) = (+g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
1911, 18eqtrd 2858 . . . 4 (𝜑· = (+g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
20 eldifsn 4721 . . . . 5 (𝑥 ∈ (𝐵 ∖ { 0 }) ↔ (𝑥𝐵𝑥0 ))
21 eldifsn 4721 . . . . . 6 (𝑦 ∈ (𝐵 ∖ { 0 }) ↔ (𝑦𝐵𝑦0 ))
227, 15ringcl 19313 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑦) ∈ (Base‘𝑅))
231, 22syl3an1 1159 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑦) ∈ (Base‘𝑅))
24233expib 1118 . . . . . . . . . . 11 (𝜑 → ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑦) ∈ (Base‘𝑅)))
253eleq2d 2900 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝑅)))
263eleq2d 2900 . . . . . . . . . . . 12 (𝜑 → (𝑦𝐵𝑦 ∈ (Base‘𝑅)))
2725, 26anbi12d 632 . . . . . . . . . . 11 (𝜑 → ((𝑥𝐵𝑦𝐵) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))))
2811oveqd 7175 . . . . . . . . . . . 12 (𝜑 → (𝑥 · 𝑦) = (𝑥(.r𝑅)𝑦))
2928, 3eleq12d 2909 . . . . . . . . . . 11 (𝜑 → ((𝑥 · 𝑦) ∈ 𝐵 ↔ (𝑥(.r𝑅)𝑦) ∈ (Base‘𝑅)))
3024, 27, 293imtr4d 296 . . . . . . . . . 10 (𝜑 → ((𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵))
31303impib 1112 . . . . . . . . 9 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
32313adant2r 1175 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ 𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
33323adant3r 1177 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ∈ 𝐵)
34 isdrngd.n . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ≠ 0 )
35 eldifsn 4721 . . . . . . 7 ((𝑥 · 𝑦) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑥 · 𝑦) ∈ 𝐵 ∧ (𝑥 · 𝑦) ≠ 0 ))
3633, 34, 35sylanbrc 585 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ∈ (𝐵 ∖ { 0 }))
3721, 36syl3an3b 1401 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑥 · 𝑦) ∈ (𝐵 ∖ { 0 }))
3820, 37syl3an2b 1400 . . . 4 ((𝜑𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑥 · 𝑦) ∈ (𝐵 ∖ { 0 }))
397, 15ringass 19316 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑧) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑧)))
4039ex 415 . . . . . . 7 (𝑅 ∈ Ring → ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑧) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑧))))
411, 40syl 17 . . . . . 6 (𝜑 → ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑧) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑧))))
423eleq2d 2900 . . . . . . 7 (𝜑 → (𝑧𝐵𝑧 ∈ (Base‘𝑅)))
4325, 26, 423anbi123d 1432 . . . . . 6 (𝜑 → ((𝑥𝐵𝑦𝐵𝑧𝐵) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))))
44 eqidd 2824 . . . . . . . 8 (𝜑𝑧 = 𝑧)
4511, 28, 44oveq123d 7179 . . . . . . 7 (𝜑 → ((𝑥 · 𝑦) · 𝑧) = ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑧))
46 eqidd 2824 . . . . . . . 8 (𝜑𝑥 = 𝑥)
4711oveqd 7175 . . . . . . . 8 (𝜑 → (𝑦 · 𝑧) = (𝑦(.r𝑅)𝑧))
4811, 46, 47oveq123d 7179 . . . . . . 7 (𝜑 → (𝑥 · (𝑦 · 𝑧)) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑧)))
4945, 48eqeq12d 2839 . . . . . 6 (𝜑 → (((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)) ↔ ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑧) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑧))))
5041, 43, 493imtr4d 296 . . . . 5 (𝜑 → ((𝑥𝐵𝑦𝐵𝑧𝐵) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))))
51 eldifi 4105 . . . . . 6 (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥𝐵)
52 eldifi 4105 . . . . . 6 (𝑦 ∈ (𝐵 ∖ { 0 }) → 𝑦𝐵)
53 eldifi 4105 . . . . . 6 (𝑧 ∈ (𝐵 ∖ { 0 }) → 𝑧𝐵)
5451, 52, 533anim123i 1147 . . . . 5 ((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }) ∧ 𝑧 ∈ (𝐵 ∖ { 0 })) → (𝑥𝐵𝑦𝐵𝑧𝐵))
5550, 54impel 508 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }) ∧ 𝑧 ∈ (𝐵 ∖ { 0 }))) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
56 eqid 2823 . . . . . . . 8 (1r𝑅) = (1r𝑅)
577, 56ringidcl 19320 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
581, 57syl 17 . . . . . 6 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
59 isdrngd.u . . . . . 6 (𝜑1 = (1r𝑅))
6058, 59, 33eltr4d 2930 . . . . 5 (𝜑1𝐵)
61 isdrngd.o . . . . 5 (𝜑10 )
62 eldifsn 4721 . . . . 5 ( 1 ∈ (𝐵 ∖ { 0 }) ↔ ( 1𝐵10 ))
6360, 61, 62sylanbrc 585 . . . 4 (𝜑1 ∈ (𝐵 ∖ { 0 }))
647, 15, 56ringlidm 19323 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥)
6564ex 415 . . . . . . . . 9 (𝑅 ∈ Ring → (𝑥 ∈ (Base‘𝑅) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥))
661, 65syl 17 . . . . . . . 8 (𝜑 → (𝑥 ∈ (Base‘𝑅) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥))
6711, 59, 46oveq123d 7179 . . . . . . . . 9 (𝜑 → ( 1 · 𝑥) = ((1r𝑅)(.r𝑅)𝑥))
6867eqeq1d 2825 . . . . . . . 8 (𝜑 → (( 1 · 𝑥) = 𝑥 ↔ ((1r𝑅)(.r𝑅)𝑥) = 𝑥))
6966, 25, 683imtr4d 296 . . . . . . 7 (𝜑 → (𝑥𝐵 → ( 1 · 𝑥) = 𝑥))
7069imp 409 . . . . . 6 ((𝜑𝑥𝐵) → ( 1 · 𝑥) = 𝑥)
7170adantrr 715 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → ( 1 · 𝑥) = 𝑥)
7220, 71sylan2b 595 . . . 4 ((𝜑𝑥 ∈ (𝐵 ∖ { 0 })) → ( 1 · 𝑥) = 𝑥)
73 isdrngd.i . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼𝐵)
74 isdrngd.j . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼0 )
75 eldifsn 4721 . . . . . 6 (𝐼 ∈ (𝐵 ∖ { 0 }) ↔ (𝐼𝐵𝐼0 ))
7673, 74, 75sylanbrc 585 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼 ∈ (𝐵 ∖ { 0 }))
7720, 76sylan2b 595 . . . 4 ((𝜑𝑥 ∈ (𝐵 ∖ { 0 })) → 𝐼 ∈ (𝐵 ∖ { 0 }))
78 isdrngd.k . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝐼 · 𝑥) = 1 )
7920, 78sylan2b 595 . . . 4 ((𝜑𝑥 ∈ (𝐵 ∖ { 0 })) → (𝐼 · 𝑥) = 1 )
8010, 19, 38, 55, 63, 72, 77, 79isgrpd 18127 . . 3 (𝜑 → ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ∈ Grp)
81 isdrngd.z . . . . . . . 8 (𝜑0 = (0g𝑅))
8281sneqd 4581 . . . . . . 7 (𝜑 → { 0 } = {(0g𝑅)})
833, 82difeq12d 4102 . . . . . 6 (𝜑 → (𝐵 ∖ { 0 }) = ((Base‘𝑅) ∖ {(0g𝑅)}))
8483oveq2d 7174 . . . . 5 (𝜑 → ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) = ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})))
8584eleq1d 2899 . . . 4 (𝜑 → (((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ∈ Grp ↔ ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp))
8685anbi2d 630 . . 3 (𝜑 → ((𝑅 ∈ Ring ∧ ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ∈ Grp) ↔ (𝑅 ∈ Ring ∧ ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp)))
871, 80, 86mpbi2and 710 . 2 (𝜑 → (𝑅 ∈ Ring ∧ ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp))
88 eqid 2823 . . 3 (0g𝑅) = (0g𝑅)
89 eqid 2823 . . 3 ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) = ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))
907, 88, 89isdrng2 19514 . 2 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp))
9187, 90sylibr 236 1 (𝜑𝑅 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  Vcvv 3496  cdif 3935  wss 3938  {csn 4569  cfv 6357  (class class class)co 7158  Basecbs 16485  s cress 16486  +gcplusg 16567  .rcmulr 16568  0gc0g 16715  Grpcgrp 18105  mulGrpcmgp 19241  1rcur 19253  Ringcrg 19299  DivRingcdr 19504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-tpos 7894  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-mgp 19242  df-ur 19254  df-ring 19301  df-oppr 19375  df-dvdsr 19393  df-unit 19394  df-invr 19424  df-dvr 19435  df-drng 19506
This theorem is referenced by:  isdrngrd  19530  cndrng  20576  erngdvlem4  38129
  Copyright terms: Public domain W3C validator