MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdrngd Structured version   Visualization version   GIF version

Theorem isdrngd 18982
Description: Properties that determine a division ring. 𝐼 (reciprocal) is normally dependent on 𝑥 i.e. read it as 𝐼(𝑥)." (Contributed by NM, 2-Aug-2013.)
Hypotheses
Ref Expression
isdrngd.b (𝜑𝐵 = (Base‘𝑅))
isdrngd.t (𝜑· = (.r𝑅))
isdrngd.z (𝜑0 = (0g𝑅))
isdrngd.u (𝜑1 = (1r𝑅))
isdrngd.r (𝜑𝑅 ∈ Ring)
isdrngd.n ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ≠ 0 )
isdrngd.o (𝜑10 )
isdrngd.i ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼𝐵)
isdrngd.j ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼0 )
isdrngd.k ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝐼 · 𝑥) = 1 )
Assertion
Ref Expression
isdrngd (𝜑𝑅 ∈ DivRing)
Distinct variable groups:   𝑥,𝑦, 0   𝑥, 1 ,𝑦   𝑥,𝐵,𝑦   𝑦,𝐼   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦   𝑥, · ,𝑦
Allowed substitution hint:   𝐼(𝑥)

Proof of Theorem isdrngd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 isdrngd.r . . 3 (𝜑𝑅 ∈ Ring)
2 difss 3888 . . . . . 6 (𝐵 ∖ { 0 }) ⊆ 𝐵
3 isdrngd.b . . . . . 6 (𝜑𝐵 = (Base‘𝑅))
42, 3syl5sseq 3802 . . . . 5 (𝜑 → (𝐵 ∖ { 0 }) ⊆ (Base‘𝑅))
5 eqid 2771 . . . . . 6 ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))
6 eqid 2771 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
7 eqid 2771 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
86, 7mgpbas 18703 . . . . . 6 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
95, 8ressbas2 16138 . . . . 5 ((𝐵 ∖ { 0 }) ⊆ (Base‘𝑅) → (𝐵 ∖ { 0 }) = (Base‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
104, 9syl 17 . . . 4 (𝜑 → (𝐵 ∖ { 0 }) = (Base‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
11 isdrngd.t . . . . 5 (𝜑· = (.r𝑅))
12 fvex 6342 . . . . . . 7 (Base‘𝑅) ∈ V
133, 12syl6eqel 2858 . . . . . 6 (𝜑𝐵 ∈ V)
14 difexg 4942 . . . . . 6 (𝐵 ∈ V → (𝐵 ∖ { 0 }) ∈ V)
15 eqid 2771 . . . . . . . 8 (.r𝑅) = (.r𝑅)
166, 15mgpplusg 18701 . . . . . . 7 (.r𝑅) = (+g‘(mulGrp‘𝑅))
175, 16ressplusg 16201 . . . . . 6 ((𝐵 ∖ { 0 }) ∈ V → (.r𝑅) = (+g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
1813, 14, 173syl 18 . . . . 5 (𝜑 → (.r𝑅) = (+g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
1911, 18eqtrd 2805 . . . 4 (𝜑· = (+g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
20 eldifsn 4453 . . . . 5 (𝑥 ∈ (𝐵 ∖ { 0 }) ↔ (𝑥𝐵𝑥0 ))
21 eldifsn 4453 . . . . . 6 (𝑦 ∈ (𝐵 ∖ { 0 }) ↔ (𝑦𝐵𝑦0 ))
227, 15ringcl 18769 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑦) ∈ (Base‘𝑅))
231, 22syl3an1 1166 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑦) ∈ (Base‘𝑅))
24233expib 1116 . . . . . . . . . . 11 (𝜑 → ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑦) ∈ (Base‘𝑅)))
253eleq2d 2836 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝑅)))
263eleq2d 2836 . . . . . . . . . . . 12 (𝜑 → (𝑦𝐵𝑦 ∈ (Base‘𝑅)))
2725, 26anbi12d 608 . . . . . . . . . . 11 (𝜑 → ((𝑥𝐵𝑦𝐵) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))))
2811oveqd 6810 . . . . . . . . . . . 12 (𝜑 → (𝑥 · 𝑦) = (𝑥(.r𝑅)𝑦))
2928, 3eleq12d 2844 . . . . . . . . . . 11 (𝜑 → ((𝑥 · 𝑦) ∈ 𝐵 ↔ (𝑥(.r𝑅)𝑦) ∈ (Base‘𝑅)))
3024, 27, 293imtr4d 283 . . . . . . . . . 10 (𝜑 → ((𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵))
31303impib 1108 . . . . . . . . 9 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
32313adant2r 1191 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ 𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
33323adant3r 1195 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ∈ 𝐵)
34 isdrngd.n . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ≠ 0 )
35 eldifsn 4453 . . . . . . 7 ((𝑥 · 𝑦) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑥 · 𝑦) ∈ 𝐵 ∧ (𝑥 · 𝑦) ≠ 0 ))
3633, 34, 35sylanbrc 564 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ∈ (𝐵 ∖ { 0 }))
3721, 36syl3an3b 1511 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑥 · 𝑦) ∈ (𝐵 ∖ { 0 }))
3820, 37syl3an2b 1510 . . . 4 ((𝜑𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑥 · 𝑦) ∈ (𝐵 ∖ { 0 }))
39 eldifi 3883 . . . . . 6 (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥𝐵)
40 eldifi 3883 . . . . . 6 (𝑦 ∈ (𝐵 ∖ { 0 }) → 𝑦𝐵)
41 eldifi 3883 . . . . . 6 (𝑧 ∈ (𝐵 ∖ { 0 }) → 𝑧𝐵)
4239, 40, 413anim123i 1154 . . . . 5 ((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }) ∧ 𝑧 ∈ (𝐵 ∖ { 0 })) → (𝑥𝐵𝑦𝐵𝑧𝐵))
437, 15ringass 18772 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑧) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑧)))
4443ex 397 . . . . . . . 8 (𝑅 ∈ Ring → ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑧) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑧))))
451, 44syl 17 . . . . . . 7 (𝜑 → ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑧) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑧))))
463eleq2d 2836 . . . . . . . 8 (𝜑 → (𝑧𝐵𝑧 ∈ (Base‘𝑅)))
4725, 26, 463anbi123d 1547 . . . . . . 7 (𝜑 → ((𝑥𝐵𝑦𝐵𝑧𝐵) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))))
48 eqidd 2772 . . . . . . . . 9 (𝜑𝑧 = 𝑧)
4911, 28, 48oveq123d 6814 . . . . . . . 8 (𝜑 → ((𝑥 · 𝑦) · 𝑧) = ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑧))
50 eqidd 2772 . . . . . . . . 9 (𝜑𝑥 = 𝑥)
5111oveqd 6810 . . . . . . . . 9 (𝜑 → (𝑦 · 𝑧) = (𝑦(.r𝑅)𝑧))
5211, 50, 51oveq123d 6814 . . . . . . . 8 (𝜑 → (𝑥 · (𝑦 · 𝑧)) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑧)))
5349, 52eqeq12d 2786 . . . . . . 7 (𝜑 → (((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)) ↔ ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑧) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑧))))
5445, 47, 533imtr4d 283 . . . . . 6 (𝜑 → ((𝑥𝐵𝑦𝐵𝑧𝐵) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))))
5554imp 393 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
5642, 55sylan2 572 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }) ∧ 𝑧 ∈ (𝐵 ∖ { 0 }))) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
57 eqid 2771 . . . . . . . 8 (1r𝑅) = (1r𝑅)
587, 57ringidcl 18776 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
591, 58syl 17 . . . . . 6 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
60 isdrngd.u . . . . . 6 (𝜑1 = (1r𝑅))
6159, 60, 33eltr4d 2865 . . . . 5 (𝜑1𝐵)
62 isdrngd.o . . . . 5 (𝜑10 )
63 eldifsn 4453 . . . . 5 ( 1 ∈ (𝐵 ∖ { 0 }) ↔ ( 1𝐵10 ))
6461, 62, 63sylanbrc 564 . . . 4 (𝜑1 ∈ (𝐵 ∖ { 0 }))
657, 15, 57ringlidm 18779 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥)
6665ex 397 . . . . . . . . 9 (𝑅 ∈ Ring → (𝑥 ∈ (Base‘𝑅) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥))
671, 66syl 17 . . . . . . . 8 (𝜑 → (𝑥 ∈ (Base‘𝑅) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥))
6811, 60, 50oveq123d 6814 . . . . . . . . 9 (𝜑 → ( 1 · 𝑥) = ((1r𝑅)(.r𝑅)𝑥))
6968eqeq1d 2773 . . . . . . . 8 (𝜑 → (( 1 · 𝑥) = 𝑥 ↔ ((1r𝑅)(.r𝑅)𝑥) = 𝑥))
7067, 25, 693imtr4d 283 . . . . . . 7 (𝜑 → (𝑥𝐵 → ( 1 · 𝑥) = 𝑥))
7170imp 393 . . . . . 6 ((𝜑𝑥𝐵) → ( 1 · 𝑥) = 𝑥)
7271adantrr 688 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → ( 1 · 𝑥) = 𝑥)
7320, 72sylan2b 573 . . . 4 ((𝜑𝑥 ∈ (𝐵 ∖ { 0 })) → ( 1 · 𝑥) = 𝑥)
74 isdrngd.i . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼𝐵)
75 isdrngd.j . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼0 )
76 eldifsn 4453 . . . . . 6 (𝐼 ∈ (𝐵 ∖ { 0 }) ↔ (𝐼𝐵𝐼0 ))
7774, 75, 76sylanbrc 564 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼 ∈ (𝐵 ∖ { 0 }))
7820, 77sylan2b 573 . . . 4 ((𝜑𝑥 ∈ (𝐵 ∖ { 0 })) → 𝐼 ∈ (𝐵 ∖ { 0 }))
79 isdrngd.k . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝐼 · 𝑥) = 1 )
8020, 79sylan2b 573 . . . 4 ((𝜑𝑥 ∈ (𝐵 ∖ { 0 })) → (𝐼 · 𝑥) = 1 )
8110, 19, 38, 56, 64, 73, 78, 80isgrpd 17652 . . 3 (𝜑 → ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ∈ Grp)
82 isdrngd.z . . . . . . . 8 (𝜑0 = (0g𝑅))
8382sneqd 4328 . . . . . . 7 (𝜑 → { 0 } = {(0g𝑅)})
843, 83difeq12d 3880 . . . . . 6 (𝜑 → (𝐵 ∖ { 0 }) = ((Base‘𝑅) ∖ {(0g𝑅)}))
8584oveq2d 6809 . . . . 5 (𝜑 → ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) = ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})))
8685eleq1d 2835 . . . 4 (𝜑 → (((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ∈ Grp ↔ ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp))
8786anbi2d 606 . . 3 (𝜑 → ((𝑅 ∈ Ring ∧ ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ∈ Grp) ↔ (𝑅 ∈ Ring ∧ ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp)))
881, 81, 87mpbi2and 683 . 2 (𝜑 → (𝑅 ∈ Ring ∧ ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp))
89 eqid 2771 . . 3 (0g𝑅) = (0g𝑅)
90 eqid 2771 . . 3 ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) = ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))
917, 89, 90isdrng2 18967 . 2 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp))
9288, 91sylibr 224 1 (𝜑𝑅 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  Vcvv 3351  cdif 3720  wss 3723  {csn 4316  cfv 6031  (class class class)co 6793  Basecbs 16064  s cress 16065  +gcplusg 16149  .rcmulr 16150  0gc0g 16308  Grpcgrp 17630  mulGrpcmgp 18697  1rcur 18709  Ringcrg 18755  DivRingcdr 18957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-tpos 7504  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-mgp 18698  df-ur 18710  df-ring 18757  df-oppr 18831  df-dvdsr 18849  df-unit 18850  df-invr 18880  df-dvr 18891  df-drng 18959
This theorem is referenced by:  isdrngrd  18983  cndrng  19990  erngdvlem4  36800
  Copyright terms: Public domain W3C validator