Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdrngd Structured version   Visualization version   GIF version

Theorem isdrngd 19518
 Description: Properties that characterize a division ring among rings: it should be nonzero, have no nonzero zero-divisors, and every nonzero element 𝑥 should have a left-inverse 𝐼(𝑥). See isdrngd 19518 for the characterization using right-inverses. (Contributed by NM, 2-Aug-2013.)
Hypotheses
Ref Expression
isdrngd.b (𝜑𝐵 = (Base‘𝑅))
isdrngd.t (𝜑· = (.r𝑅))
isdrngd.z (𝜑0 = (0g𝑅))
isdrngd.u (𝜑1 = (1r𝑅))
isdrngd.r (𝜑𝑅 ∈ Ring)
isdrngd.n ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ≠ 0 )
isdrngd.o (𝜑10 )
isdrngd.i ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼𝐵)
isdrngd.j ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼0 )
isdrngd.k ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝐼 · 𝑥) = 1 )
Assertion
Ref Expression
isdrngd (𝜑𝑅 ∈ DivRing)
Distinct variable groups:   𝑥,𝑦, 0   𝑥, 1 ,𝑦   𝑥,𝐵,𝑦   𝑦,𝐼   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦   𝑥, · ,𝑦
Allowed substitution hint:   𝐼(𝑥)

Proof of Theorem isdrngd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 isdrngd.r . . 3 (𝜑𝑅 ∈ Ring)
2 difss 4083 . . . . . 6 (𝐵 ∖ { 0 }) ⊆ 𝐵
3 isdrngd.b . . . . . 6 (𝜑𝐵 = (Base‘𝑅))
42, 3sseqtrid 3994 . . . . 5 (𝜑 → (𝐵 ∖ { 0 }) ⊆ (Base‘𝑅))
5 eqid 2822 . . . . . 6 ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))
6 eqid 2822 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
7 eqid 2822 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
86, 7mgpbas 19236 . . . . . 6 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
95, 8ressbas2 16546 . . . . 5 ((𝐵 ∖ { 0 }) ⊆ (Base‘𝑅) → (𝐵 ∖ { 0 }) = (Base‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
104, 9syl 17 . . . 4 (𝜑 → (𝐵 ∖ { 0 }) = (Base‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
11 isdrngd.t . . . . 5 (𝜑· = (.r𝑅))
12 fvex 6665 . . . . . . 7 (Base‘𝑅) ∈ V
133, 12eqeltrdi 2922 . . . . . 6 (𝜑𝐵 ∈ V)
14 difexg 5207 . . . . . 6 (𝐵 ∈ V → (𝐵 ∖ { 0 }) ∈ V)
15 eqid 2822 . . . . . . . 8 (.r𝑅) = (.r𝑅)
166, 15mgpplusg 19234 . . . . . . 7 (.r𝑅) = (+g‘(mulGrp‘𝑅))
175, 16ressplusg 16603 . . . . . 6 ((𝐵 ∖ { 0 }) ∈ V → (.r𝑅) = (+g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
1813, 14, 173syl 18 . . . . 5 (𝜑 → (.r𝑅) = (+g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
1911, 18eqtrd 2857 . . . 4 (𝜑· = (+g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
20 eldifsn 4693 . . . . 5 (𝑥 ∈ (𝐵 ∖ { 0 }) ↔ (𝑥𝐵𝑥0 ))
21 eldifsn 4693 . . . . . 6 (𝑦 ∈ (𝐵 ∖ { 0 }) ↔ (𝑦𝐵𝑦0 ))
227, 15ringcl 19305 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑦) ∈ (Base‘𝑅))
231, 22syl3an1 1160 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑦) ∈ (Base‘𝑅))
24233expib 1119 . . . . . . . . . . 11 (𝜑 → ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑦) ∈ (Base‘𝑅)))
253eleq2d 2899 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝑅)))
263eleq2d 2899 . . . . . . . . . . . 12 (𝜑 → (𝑦𝐵𝑦 ∈ (Base‘𝑅)))
2725, 26anbi12d 633 . . . . . . . . . . 11 (𝜑 → ((𝑥𝐵𝑦𝐵) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))))
2811oveqd 7157 . . . . . . . . . . . 12 (𝜑 → (𝑥 · 𝑦) = (𝑥(.r𝑅)𝑦))
2928, 3eleq12d 2908 . . . . . . . . . . 11 (𝜑 → ((𝑥 · 𝑦) ∈ 𝐵 ↔ (𝑥(.r𝑅)𝑦) ∈ (Base‘𝑅)))
3024, 27, 293imtr4d 297 . . . . . . . . . 10 (𝜑 → ((𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵))
31303impib 1113 . . . . . . . . 9 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
32313adant2r 1176 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ 𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
33323adant3r 1178 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ∈ 𝐵)
34 isdrngd.n . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ≠ 0 )
35 eldifsn 4693 . . . . . . 7 ((𝑥 · 𝑦) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑥 · 𝑦) ∈ 𝐵 ∧ (𝑥 · 𝑦) ≠ 0 ))
3633, 34, 35sylanbrc 586 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ∈ (𝐵 ∖ { 0 }))
3721, 36syl3an3b 1402 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑥 · 𝑦) ∈ (𝐵 ∖ { 0 }))
3820, 37syl3an2b 1401 . . . 4 ((𝜑𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑥 · 𝑦) ∈ (𝐵 ∖ { 0 }))
397, 15ringass 19308 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑧) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑧)))
4039ex 416 . . . . . . 7 (𝑅 ∈ Ring → ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑧) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑧))))
411, 40syl 17 . . . . . 6 (𝜑 → ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑧) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑧))))
423eleq2d 2899 . . . . . . 7 (𝜑 → (𝑧𝐵𝑧 ∈ (Base‘𝑅)))
4325, 26, 423anbi123d 1433 . . . . . 6 (𝜑 → ((𝑥𝐵𝑦𝐵𝑧𝐵) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))))
44 eqidd 2823 . . . . . . . 8 (𝜑𝑧 = 𝑧)
4511, 28, 44oveq123d 7161 . . . . . . 7 (𝜑 → ((𝑥 · 𝑦) · 𝑧) = ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑧))
46 eqidd 2823 . . . . . . . 8 (𝜑𝑥 = 𝑥)
4711oveqd 7157 . . . . . . . 8 (𝜑 → (𝑦 · 𝑧) = (𝑦(.r𝑅)𝑧))
4811, 46, 47oveq123d 7161 . . . . . . 7 (𝜑 → (𝑥 · (𝑦 · 𝑧)) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑧)))
4945, 48eqeq12d 2838 . . . . . 6 (𝜑 → (((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)) ↔ ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑧) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑧))))
5041, 43, 493imtr4d 297 . . . . 5 (𝜑 → ((𝑥𝐵𝑦𝐵𝑧𝐵) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))))
51 eldifi 4078 . . . . . 6 (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥𝐵)
52 eldifi 4078 . . . . . 6 (𝑦 ∈ (𝐵 ∖ { 0 }) → 𝑦𝐵)
53 eldifi 4078 . . . . . 6 (𝑧 ∈ (𝐵 ∖ { 0 }) → 𝑧𝐵)
5451, 52, 533anim123i 1148 . . . . 5 ((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }) ∧ 𝑧 ∈ (𝐵 ∖ { 0 })) → (𝑥𝐵𝑦𝐵𝑧𝐵))
5550, 54impel 509 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }) ∧ 𝑧 ∈ (𝐵 ∖ { 0 }))) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
56 eqid 2822 . . . . . . . 8 (1r𝑅) = (1r𝑅)
577, 56ringidcl 19312 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
581, 57syl 17 . . . . . 6 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
59 isdrngd.u . . . . . 6 (𝜑1 = (1r𝑅))
6058, 59, 33eltr4d 2929 . . . . 5 (𝜑1𝐵)
61 isdrngd.o . . . . 5 (𝜑10 )
62 eldifsn 4693 . . . . 5 ( 1 ∈ (𝐵 ∖ { 0 }) ↔ ( 1𝐵10 ))
6360, 61, 62sylanbrc 586 . . . 4 (𝜑1 ∈ (𝐵 ∖ { 0 }))
647, 15, 56ringlidm 19315 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥)
6564ex 416 . . . . . . . . 9 (𝑅 ∈ Ring → (𝑥 ∈ (Base‘𝑅) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥))
661, 65syl 17 . . . . . . . 8 (𝜑 → (𝑥 ∈ (Base‘𝑅) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥))
6711, 59, 46oveq123d 7161 . . . . . . . . 9 (𝜑 → ( 1 · 𝑥) = ((1r𝑅)(.r𝑅)𝑥))
6867eqeq1d 2824 . . . . . . . 8 (𝜑 → (( 1 · 𝑥) = 𝑥 ↔ ((1r𝑅)(.r𝑅)𝑥) = 𝑥))
6966, 25, 683imtr4d 297 . . . . . . 7 (𝜑 → (𝑥𝐵 → ( 1 · 𝑥) = 𝑥))
7069imp 410 . . . . . 6 ((𝜑𝑥𝐵) → ( 1 · 𝑥) = 𝑥)
7170adantrr 716 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → ( 1 · 𝑥) = 𝑥)
7220, 71sylan2b 596 . . . 4 ((𝜑𝑥 ∈ (𝐵 ∖ { 0 })) → ( 1 · 𝑥) = 𝑥)
73 isdrngd.i . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼𝐵)
74 isdrngd.j . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼0 )
75 eldifsn 4693 . . . . . 6 (𝐼 ∈ (𝐵 ∖ { 0 }) ↔ (𝐼𝐵𝐼0 ))
7673, 74, 75sylanbrc 586 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼 ∈ (𝐵 ∖ { 0 }))
7720, 76sylan2b 596 . . . 4 ((𝜑𝑥 ∈ (𝐵 ∖ { 0 })) → 𝐼 ∈ (𝐵 ∖ { 0 }))
78 isdrngd.k . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝐼 · 𝑥) = 1 )
7920, 78sylan2b 596 . . . 4 ((𝜑𝑥 ∈ (𝐵 ∖ { 0 })) → (𝐼 · 𝑥) = 1 )
8010, 19, 38, 55, 63, 72, 77, 79isgrpd 18116 . . 3 (𝜑 → ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ∈ Grp)
81 isdrngd.z . . . . . . . 8 (𝜑0 = (0g𝑅))
8281sneqd 4551 . . . . . . 7 (𝜑 → { 0 } = {(0g𝑅)})
833, 82difeq12d 4075 . . . . . 6 (𝜑 → (𝐵 ∖ { 0 }) = ((Base‘𝑅) ∖ {(0g𝑅)}))
8483oveq2d 7156 . . . . 5 (𝜑 → ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) = ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})))
8584eleq1d 2898 . . . 4 (𝜑 → (((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ∈ Grp ↔ ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp))
8685anbi2d 631 . . 3 (𝜑 → ((𝑅 ∈ Ring ∧ ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ∈ Grp) ↔ (𝑅 ∈ Ring ∧ ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp)))
871, 80, 86mpbi2and 711 . 2 (𝜑 → (𝑅 ∈ Ring ∧ ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp))
88 eqid 2822 . . 3 (0g𝑅) = (0g𝑅)
89 eqid 2822 . . 3 ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) = ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))
907, 88, 89isdrng2 19503 . 2 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp))
9187, 90sylibr 237 1 (𝜑𝑅 ∈ DivRing)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2114   ≠ wne 3011  Vcvv 3469   ∖ cdif 3905   ⊆ wss 3908  {csn 4539  ‘cfv 6334  (class class class)co 7140  Basecbs 16474   ↾s cress 16475  +gcplusg 16556  .rcmulr 16557  0gc0g 16704  Grpcgrp 18094  mulGrpcmgp 19230  1rcur 19242  Ringcrg 19288  DivRingcdr 19493 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-tpos 7879  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-mulr 16570  df-0g 16706  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-grp 18097  df-minusg 18098  df-mgp 19231  df-ur 19243  df-ring 19290  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-drng 19495 This theorem is referenced by:  isdrngrd  19519  cndrng  20118  erngdvlem4  38246
 Copyright terms: Public domain W3C validator