MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdrngd Structured version   Visualization version   GIF version

Theorem isdrngd 19263
Description: Properties that characterize a division ring among rings: it should be nonzero, have no nonzero zero-divisors, and every nonzero element 𝑥 should have a left-inverse 𝐼(𝑥). See isdrngd 19263 for the characterization using right-inverses. (Contributed by NM, 2-Aug-2013.)
Hypotheses
Ref Expression
isdrngd.b (𝜑𝐵 = (Base‘𝑅))
isdrngd.t (𝜑· = (.r𝑅))
isdrngd.z (𝜑0 = (0g𝑅))
isdrngd.u (𝜑1 = (1r𝑅))
isdrngd.r (𝜑𝑅 ∈ Ring)
isdrngd.n ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ≠ 0 )
isdrngd.o (𝜑10 )
isdrngd.i ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼𝐵)
isdrngd.j ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼0 )
isdrngd.k ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝐼 · 𝑥) = 1 )
Assertion
Ref Expression
isdrngd (𝜑𝑅 ∈ DivRing)
Distinct variable groups:   𝑥,𝑦, 0   𝑥, 1 ,𝑦   𝑥,𝐵,𝑦   𝑦,𝐼   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦   𝑥, · ,𝑦
Allowed substitution hint:   𝐼(𝑥)

Proof of Theorem isdrngd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 isdrngd.r . . 3 (𝜑𝑅 ∈ Ring)
2 difss 3993 . . . . . 6 (𝐵 ∖ { 0 }) ⊆ 𝐵
3 isdrngd.b . . . . . 6 (𝜑𝐵 = (Base‘𝑅))
42, 3syl5sseq 3904 . . . . 5 (𝜑 → (𝐵 ∖ { 0 }) ⊆ (Base‘𝑅))
5 eqid 2773 . . . . . 6 ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))
6 eqid 2773 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
7 eqid 2773 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
86, 7mgpbas 18981 . . . . . 6 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
95, 8ressbas2 16410 . . . . 5 ((𝐵 ∖ { 0 }) ⊆ (Base‘𝑅) → (𝐵 ∖ { 0 }) = (Base‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
104, 9syl 17 . . . 4 (𝜑 → (𝐵 ∖ { 0 }) = (Base‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
11 isdrngd.t . . . . 5 (𝜑· = (.r𝑅))
12 fvex 6510 . . . . . . 7 (Base‘𝑅) ∈ V
133, 12syl6eqel 2869 . . . . . 6 (𝜑𝐵 ∈ V)
14 difexg 5084 . . . . . 6 (𝐵 ∈ V → (𝐵 ∖ { 0 }) ∈ V)
15 eqid 2773 . . . . . . . 8 (.r𝑅) = (.r𝑅)
166, 15mgpplusg 18979 . . . . . . 7 (.r𝑅) = (+g‘(mulGrp‘𝑅))
175, 16ressplusg 16467 . . . . . 6 ((𝐵 ∖ { 0 }) ∈ V → (.r𝑅) = (+g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
1813, 14, 173syl 18 . . . . 5 (𝜑 → (.r𝑅) = (+g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
1911, 18eqtrd 2809 . . . 4 (𝜑· = (+g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
20 eldifsn 4590 . . . . 5 (𝑥 ∈ (𝐵 ∖ { 0 }) ↔ (𝑥𝐵𝑥0 ))
21 eldifsn 4590 . . . . . 6 (𝑦 ∈ (𝐵 ∖ { 0 }) ↔ (𝑦𝐵𝑦0 ))
227, 15ringcl 19047 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑦) ∈ (Base‘𝑅))
231, 22syl3an1 1144 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑦) ∈ (Base‘𝑅))
24233expib 1103 . . . . . . . . . . 11 (𝜑 → ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑦) ∈ (Base‘𝑅)))
253eleq2d 2846 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝑅)))
263eleq2d 2846 . . . . . . . . . . . 12 (𝜑 → (𝑦𝐵𝑦 ∈ (Base‘𝑅)))
2725, 26anbi12d 622 . . . . . . . . . . 11 (𝜑 → ((𝑥𝐵𝑦𝐵) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))))
2811oveqd 6992 . . . . . . . . . . . 12 (𝜑 → (𝑥 · 𝑦) = (𝑥(.r𝑅)𝑦))
2928, 3eleq12d 2855 . . . . . . . . . . 11 (𝜑 → ((𝑥 · 𝑦) ∈ 𝐵 ↔ (𝑥(.r𝑅)𝑦) ∈ (Base‘𝑅)))
3024, 27, 293imtr4d 286 . . . . . . . . . 10 (𝜑 → ((𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵))
31303impib 1097 . . . . . . . . 9 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
32313adant2r 1160 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ 𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
33323adant3r 1162 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ∈ 𝐵)
34 isdrngd.n . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ≠ 0 )
35 eldifsn 4590 . . . . . . 7 ((𝑥 · 𝑦) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑥 · 𝑦) ∈ 𝐵 ∧ (𝑥 · 𝑦) ≠ 0 ))
3633, 34, 35sylanbrc 575 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ∈ (𝐵 ∖ { 0 }))
3721, 36syl3an3b 1386 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑥 · 𝑦) ∈ (𝐵 ∖ { 0 }))
3820, 37syl3an2b 1385 . . . 4 ((𝜑𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑥 · 𝑦) ∈ (𝐵 ∖ { 0 }))
397, 15ringass 19050 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑧) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑧)))
4039ex 405 . . . . . . 7 (𝑅 ∈ Ring → ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑧) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑧))))
411, 40syl 17 . . . . . 6 (𝜑 → ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑧) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑧))))
423eleq2d 2846 . . . . . . 7 (𝜑 → (𝑧𝐵𝑧 ∈ (Base‘𝑅)))
4325, 26, 423anbi123d 1416 . . . . . 6 (𝜑 → ((𝑥𝐵𝑦𝐵𝑧𝐵) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))))
44 eqidd 2774 . . . . . . . 8 (𝜑𝑧 = 𝑧)
4511, 28, 44oveq123d 6996 . . . . . . 7 (𝜑 → ((𝑥 · 𝑦) · 𝑧) = ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑧))
46 eqidd 2774 . . . . . . . 8 (𝜑𝑥 = 𝑥)
4711oveqd 6992 . . . . . . . 8 (𝜑 → (𝑦 · 𝑧) = (𝑦(.r𝑅)𝑧))
4811, 46, 47oveq123d 6996 . . . . . . 7 (𝜑 → (𝑥 · (𝑦 · 𝑧)) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑧)))
4945, 48eqeq12d 2788 . . . . . 6 (𝜑 → (((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)) ↔ ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑧) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑧))))
5041, 43, 493imtr4d 286 . . . . 5 (𝜑 → ((𝑥𝐵𝑦𝐵𝑧𝐵) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))))
51 eldifi 3988 . . . . . 6 (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥𝐵)
52 eldifi 3988 . . . . . 6 (𝑦 ∈ (𝐵 ∖ { 0 }) → 𝑦𝐵)
53 eldifi 3988 . . . . . 6 (𝑧 ∈ (𝐵 ∖ { 0 }) → 𝑧𝐵)
5451, 52, 533anim123i 1132 . . . . 5 ((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }) ∧ 𝑧 ∈ (𝐵 ∖ { 0 })) → (𝑥𝐵𝑦𝐵𝑧𝐵))
5550, 54impel 498 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }) ∧ 𝑧 ∈ (𝐵 ∖ { 0 }))) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
56 eqid 2773 . . . . . . . 8 (1r𝑅) = (1r𝑅)
577, 56ringidcl 19054 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
581, 57syl 17 . . . . . 6 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
59 isdrngd.u . . . . . 6 (𝜑1 = (1r𝑅))
6058, 59, 33eltr4d 2876 . . . . 5 (𝜑1𝐵)
61 isdrngd.o . . . . 5 (𝜑10 )
62 eldifsn 4590 . . . . 5 ( 1 ∈ (𝐵 ∖ { 0 }) ↔ ( 1𝐵10 ))
6360, 61, 62sylanbrc 575 . . . 4 (𝜑1 ∈ (𝐵 ∖ { 0 }))
647, 15, 56ringlidm 19057 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥)
6564ex 405 . . . . . . . . 9 (𝑅 ∈ Ring → (𝑥 ∈ (Base‘𝑅) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥))
661, 65syl 17 . . . . . . . 8 (𝜑 → (𝑥 ∈ (Base‘𝑅) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥))
6711, 59, 46oveq123d 6996 . . . . . . . . 9 (𝜑 → ( 1 · 𝑥) = ((1r𝑅)(.r𝑅)𝑥))
6867eqeq1d 2775 . . . . . . . 8 (𝜑 → (( 1 · 𝑥) = 𝑥 ↔ ((1r𝑅)(.r𝑅)𝑥) = 𝑥))
6966, 25, 683imtr4d 286 . . . . . . 7 (𝜑 → (𝑥𝐵 → ( 1 · 𝑥) = 𝑥))
7069imp 398 . . . . . 6 ((𝜑𝑥𝐵) → ( 1 · 𝑥) = 𝑥)
7170adantrr 705 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → ( 1 · 𝑥) = 𝑥)
7220, 71sylan2b 585 . . . 4 ((𝜑𝑥 ∈ (𝐵 ∖ { 0 })) → ( 1 · 𝑥) = 𝑥)
73 isdrngd.i . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼𝐵)
74 isdrngd.j . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼0 )
75 eldifsn 4590 . . . . . 6 (𝐼 ∈ (𝐵 ∖ { 0 }) ↔ (𝐼𝐵𝐼0 ))
7673, 74, 75sylanbrc 575 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼 ∈ (𝐵 ∖ { 0 }))
7720, 76sylan2b 585 . . . 4 ((𝜑𝑥 ∈ (𝐵 ∖ { 0 })) → 𝐼 ∈ (𝐵 ∖ { 0 }))
78 isdrngd.k . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝐼 · 𝑥) = 1 )
7920, 78sylan2b 585 . . . 4 ((𝜑𝑥 ∈ (𝐵 ∖ { 0 })) → (𝐼 · 𝑥) = 1 )
8010, 19, 38, 55, 63, 72, 77, 79isgrpd 17926 . . 3 (𝜑 → ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ∈ Grp)
81 isdrngd.z . . . . . . . 8 (𝜑0 = (0g𝑅))
8281sneqd 4448 . . . . . . 7 (𝜑 → { 0 } = {(0g𝑅)})
833, 82difeq12d 3985 . . . . . 6 (𝜑 → (𝐵 ∖ { 0 }) = ((Base‘𝑅) ∖ {(0g𝑅)}))
8483oveq2d 6991 . . . . 5 (𝜑 → ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) = ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})))
8584eleq1d 2845 . . . 4 (𝜑 → (((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ∈ Grp ↔ ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp))
8685anbi2d 620 . . 3 (𝜑 → ((𝑅 ∈ Ring ∧ ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ∈ Grp) ↔ (𝑅 ∈ Ring ∧ ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp)))
871, 80, 86mpbi2and 700 . 2 (𝜑 → (𝑅 ∈ Ring ∧ ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp))
88 eqid 2773 . . 3 (0g𝑅) = (0g𝑅)
89 eqid 2773 . . 3 ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) = ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))
907, 88, 89isdrng2 19248 . 2 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp))
9187, 90sylibr 226 1 (𝜑𝑅 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1069   = wceq 1508  wcel 2051  wne 2962  Vcvv 3410  cdif 3821  wss 3824  {csn 4436  cfv 6186  (class class class)co 6975  Basecbs 16338  s cress 16339  +gcplusg 16420  .rcmulr 16421  0gc0g 16568  Grpcgrp 17904  mulGrpcmgp 18975  1rcur 18987  Ringcrg 19033  DivRingcdr 19238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-rep 5046  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-om 7396  df-1st 7500  df-2nd 7501  df-tpos 7694  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-er 8088  df-en 8306  df-dom 8307  df-sdom 8308  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-nn 11439  df-2 11502  df-3 11503  df-ndx 16341  df-slot 16342  df-base 16344  df-sets 16345  df-ress 16346  df-plusg 16433  df-mulr 16434  df-0g 16570  df-mgm 17723  df-sgrp 17765  df-mnd 17776  df-grp 17907  df-minusg 17908  df-mgp 18976  df-ur 18988  df-ring 19035  df-oppr 19109  df-dvdsr 19127  df-unit 19128  df-invr 19158  df-dvr 19169  df-drng 19240
This theorem is referenced by:  isdrngrd  19264  cndrng  20292  erngdvlem4  37605
  Copyright terms: Public domain W3C validator