Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  remulinvcom Structured version   Visualization version   GIF version

Theorem remulinvcom 40804
Description: A left multiplicative inverse is a right multiplicative inverse. Proven without ax-mulcom 11074. (Contributed by SN, 5-Feb-2024.)
Hypotheses
Ref Expression
remulinvcom.1 (𝜑𝐴 ∈ ℝ)
remulinvcom.2 (𝜑𝐵 ∈ ℝ)
remulinvcom.3 (𝜑 → (𝐴 · 𝐵) = 1)
Assertion
Ref Expression
remulinvcom (𝜑 → (𝐵 · 𝐴) = 1)

Proof of Theorem remulinvcom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remulinvcom.2 . . 3 (𝜑𝐵 ∈ ℝ)
2 remulinvcom.3 . . . . 5 (𝜑 → (𝐴 · 𝐵) = 1)
3 ax-1ne0 11079 . . . . . 6 1 ≠ 0
43a1i 11 . . . . 5 (𝜑 → 1 ≠ 0)
52, 4eqnetrd 3010 . . . 4 (𝜑 → (𝐴 · 𝐵) ≠ 0)
6 simpr 486 . . . . . 6 ((𝜑𝐵 = 0) → 𝐵 = 0)
76oveq2d 7368 . . . . 5 ((𝜑𝐵 = 0) → (𝐴 · 𝐵) = (𝐴 · 0))
8 remulinvcom.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
98adantr 482 . . . . . 6 ((𝜑𝐵 = 0) → 𝐴 ∈ ℝ)
10 remul01 40779 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 · 0) = 0)
119, 10syl 17 . . . . 5 ((𝜑𝐵 = 0) → (𝐴 · 0) = 0)
127, 11eqtrd 2778 . . . 4 ((𝜑𝐵 = 0) → (𝐴 · 𝐵) = 0)
135, 12mteqand 3047 . . 3 (𝜑𝐵 ≠ 0)
14 ax-rrecex 11082 . . 3 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 1)
151, 13, 14syl2anc 585 . 2 (𝜑 → ∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 1)
16 simprl 770 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) → 𝑥 ∈ ℝ)
17 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) → (𝐵 · 𝑥) = 1)
183a1i 11 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) → 1 ≠ 0)
1917, 18eqnetrd 3010 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) → (𝐵 · 𝑥) ≠ 0)
20 simpr 486 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ 𝑥 = 0) → 𝑥 = 0)
2120oveq2d 7368 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ 𝑥 = 0) → (𝐵 · 𝑥) = (𝐵 · 0))
221ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ 𝑥 = 0) → 𝐵 ∈ ℝ)
23 remul01 40779 . . . . . . 7 (𝐵 ∈ ℝ → (𝐵 · 0) = 0)
2422, 23syl 17 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ 𝑥 = 0) → (𝐵 · 0) = 0)
2521, 24eqtrd 2778 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ 𝑥 = 0) → (𝐵 · 𝑥) = 0)
2619, 25mteqand 3047 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) → 𝑥 ≠ 0)
27 ax-rrecex 11082 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) → ∃𝑦 ∈ ℝ (𝑥 · 𝑦) = 1)
2816, 26, 27syl2anc 585 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) → ∃𝑦 ∈ ℝ (𝑥 · 𝑦) = 1)
29 simplrr 777 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝐵 · 𝑥) = 1)
3029oveq2d 7368 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝐴 · (𝐵 · 𝑥)) = (𝐴 · 1))
3130oveq1d 7367 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → ((𝐴 · (𝐵 · 𝑥)) · 𝑦) = ((𝐴 · 1) · 𝑦))
328ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 𝐴 ∈ ℝ)
331ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 𝐵 ∈ ℝ)
3432, 33remulcld 11144 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝐴 · 𝐵) ∈ ℝ)
3534recnd 11142 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝐴 · 𝐵) ∈ ℂ)
36 simplrl 776 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 𝑥 ∈ ℝ)
3736recnd 11142 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 𝑥 ∈ ℂ)
38 simprl 770 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 𝑦 ∈ ℝ)
3938recnd 11142 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 𝑦 ∈ ℂ)
4035, 37, 39mulassd 11137 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (((𝐴 · 𝐵) · 𝑥) · 𝑦) = ((𝐴 · 𝐵) · (𝑥 · 𝑦)))
4132recnd 11142 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 𝐴 ∈ ℂ)
4233recnd 11142 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 𝐵 ∈ ℂ)
4341, 42, 37mulassd 11137 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → ((𝐴 · 𝐵) · 𝑥) = (𝐴 · (𝐵 · 𝑥)))
4443oveq1d 7367 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (((𝐴 · 𝐵) · 𝑥) · 𝑦) = ((𝐴 · (𝐵 · 𝑥)) · 𝑦))
452ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝐴 · 𝐵) = 1)
46 simprr 772 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝑥 · 𝑦) = 1)
4745, 46oveq12d 7370 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → ((𝐴 · 𝐵) · (𝑥 · 𝑦)) = (1 · 1))
48 1t1e1ALT 40681 . . . . . . . . 9 (1 · 1) = 1
4947, 48eqtrdi 2794 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → ((𝐴 · 𝐵) · (𝑥 · 𝑦)) = 1)
5040, 44, 493eqtr3d 2786 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → ((𝐴 · (𝐵 · 𝑥)) · 𝑦) = 1)
51 ax-1rid 11080 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
5232, 51syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝐴 · 1) = 𝐴)
5352oveq1d 7367 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → ((𝐴 · 1) · 𝑦) = (𝐴 · 𝑦))
5431, 50, 533eqtr3rd 2787 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝐴 · 𝑦) = 1)
5554, 46eqtr4d 2781 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝐴 · 𝑦) = (𝑥 · 𝑦))
563a1i 11 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 1 ≠ 0)
5746, 56eqnetrd 3010 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝑥 · 𝑦) ≠ 0)
58 simpr 486 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) ∧ 𝑦 = 0) → 𝑦 = 0)
5958oveq2d 7368 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) ∧ 𝑦 = 0) → (𝑥 · 𝑦) = (𝑥 · 0))
6036adantr 482 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) ∧ 𝑦 = 0) → 𝑥 ∈ ℝ)
61 remul01 40779 . . . . . . . . 9 (𝑥 ∈ ℝ → (𝑥 · 0) = 0)
6260, 61syl 17 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) ∧ 𝑦 = 0) → (𝑥 · 0) = 0)
6359, 62eqtrd 2778 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) ∧ 𝑦 = 0) → (𝑥 · 𝑦) = 0)
6457, 63mteqand 3047 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 𝑦 ≠ 0)
6532, 36, 38, 64remulcan2d 40682 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → ((𝐴 · 𝑦) = (𝑥 · 𝑦) ↔ 𝐴 = 𝑥))
6655, 65mpbid 231 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 𝐴 = 𝑥)
67 simpr 486 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) ∧ 𝐴 = 𝑥) → 𝐴 = 𝑥)
6867oveq2d 7368 . . . . 5 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) ∧ 𝐴 = 𝑥) → (𝐵 · 𝐴) = (𝐵 · 𝑥))
6917ad2antrr 725 . . . . 5 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) ∧ 𝐴 = 𝑥) → (𝐵 · 𝑥) = 1)
7068, 69eqtrd 2778 . . . 4 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) ∧ 𝐴 = 𝑥) → (𝐵 · 𝐴) = 1)
7166, 70mpdan 686 . . 3 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝐵 · 𝐴) = 1)
7228, 71rexlimddv 3157 . 2 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) → (𝐵 · 𝐴) = 1)
7315, 72rexlimddv 3157 1 (𝜑 → (𝐵 · 𝐴) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2942  wrex 3072  (class class class)co 7352  cr 11009  0cc0 11010  1c1 11011   · cmul 11015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7665  ax-resscn 11067  ax-1cn 11068  ax-icn 11069  ax-addcl 11070  ax-addrcl 11071  ax-mulcl 11072  ax-mulrcl 11073  ax-addass 11075  ax-mulass 11076  ax-distr 11077  ax-i2m1 11078  ax-1ne0 11079  ax-1rid 11080  ax-rnegex 11081  ax-rrecex 11082  ax-cnre 11083  ax-pre-lttri 11084  ax-pre-lttrn 11085  ax-pre-ltadd 11086
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-br 5105  df-opab 5167  df-mpt 5188  df-id 5530  df-po 5544  df-so 5545  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-riota 7308  df-ov 7355  df-oprab 7356  df-mpo 7357  df-er 8607  df-en 8843  df-dom 8844  df-sdom 8845  df-pnf 11150  df-mnf 11151  df-ltxr 11153  df-2 12175  df-3 12176  df-resub 40738
This theorem is referenced by:  remulid2  40805  remulcand  40810  retire  40839
  Copyright terms: Public domain W3C validator