Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  remulinvcom Structured version   Visualization version   GIF version

Theorem remulinvcom 40887
Description: A left multiplicative inverse is a right multiplicative inverse. Proven without ax-mulcom 11115. (Contributed by SN, 5-Feb-2024.)
Hypotheses
Ref Expression
remulinvcom.1 (𝜑𝐴 ∈ ℝ)
remulinvcom.2 (𝜑𝐵 ∈ ℝ)
remulinvcom.3 (𝜑 → (𝐴 · 𝐵) = 1)
Assertion
Ref Expression
remulinvcom (𝜑 → (𝐵 · 𝐴) = 1)

Proof of Theorem remulinvcom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remulinvcom.2 . . 3 (𝜑𝐵 ∈ ℝ)
2 remulinvcom.3 . . . . 5 (𝜑 → (𝐴 · 𝐵) = 1)
3 ax-1ne0 11120 . . . . . 6 1 ≠ 0
43a1i 11 . . . . 5 (𝜑 → 1 ≠ 0)
52, 4eqnetrd 3011 . . . 4 (𝜑 → (𝐴 · 𝐵) ≠ 0)
6 simpr 485 . . . . . 6 ((𝜑𝐵 = 0) → 𝐵 = 0)
76oveq2d 7373 . . . . 5 ((𝜑𝐵 = 0) → (𝐴 · 𝐵) = (𝐴 · 0))
8 remulinvcom.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
98adantr 481 . . . . . 6 ((𝜑𝐵 = 0) → 𝐴 ∈ ℝ)
10 remul01 40862 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 · 0) = 0)
119, 10syl 17 . . . . 5 ((𝜑𝐵 = 0) → (𝐴 · 0) = 0)
127, 11eqtrd 2776 . . . 4 ((𝜑𝐵 = 0) → (𝐴 · 𝐵) = 0)
135, 12mteqand 3048 . . 3 (𝜑𝐵 ≠ 0)
14 ax-rrecex 11123 . . 3 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 1)
151, 13, 14syl2anc 584 . 2 (𝜑 → ∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 1)
16 simprl 769 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) → 𝑥 ∈ ℝ)
17 simprr 771 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) → (𝐵 · 𝑥) = 1)
183a1i 11 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) → 1 ≠ 0)
1917, 18eqnetrd 3011 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) → (𝐵 · 𝑥) ≠ 0)
20 simpr 485 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ 𝑥 = 0) → 𝑥 = 0)
2120oveq2d 7373 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ 𝑥 = 0) → (𝐵 · 𝑥) = (𝐵 · 0))
221ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ 𝑥 = 0) → 𝐵 ∈ ℝ)
23 remul01 40862 . . . . . . 7 (𝐵 ∈ ℝ → (𝐵 · 0) = 0)
2422, 23syl 17 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ 𝑥 = 0) → (𝐵 · 0) = 0)
2521, 24eqtrd 2776 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ 𝑥 = 0) → (𝐵 · 𝑥) = 0)
2619, 25mteqand 3048 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) → 𝑥 ≠ 0)
27 ax-rrecex 11123 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) → ∃𝑦 ∈ ℝ (𝑥 · 𝑦) = 1)
2816, 26, 27syl2anc 584 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) → ∃𝑦 ∈ ℝ (𝑥 · 𝑦) = 1)
29 simplrr 776 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝐵 · 𝑥) = 1)
3029oveq2d 7373 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝐴 · (𝐵 · 𝑥)) = (𝐴 · 1))
3130oveq1d 7372 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → ((𝐴 · (𝐵 · 𝑥)) · 𝑦) = ((𝐴 · 1) · 𝑦))
328ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 𝐴 ∈ ℝ)
331ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 𝐵 ∈ ℝ)
3432, 33remulcld 11185 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝐴 · 𝐵) ∈ ℝ)
3534recnd 11183 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝐴 · 𝐵) ∈ ℂ)
36 simplrl 775 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 𝑥 ∈ ℝ)
3736recnd 11183 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 𝑥 ∈ ℂ)
38 simprl 769 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 𝑦 ∈ ℝ)
3938recnd 11183 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 𝑦 ∈ ℂ)
4035, 37, 39mulassd 11178 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (((𝐴 · 𝐵) · 𝑥) · 𝑦) = ((𝐴 · 𝐵) · (𝑥 · 𝑦)))
4132recnd 11183 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 𝐴 ∈ ℂ)
4233recnd 11183 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 𝐵 ∈ ℂ)
4341, 42, 37mulassd 11178 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → ((𝐴 · 𝐵) · 𝑥) = (𝐴 · (𝐵 · 𝑥)))
4443oveq1d 7372 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (((𝐴 · 𝐵) · 𝑥) · 𝑦) = ((𝐴 · (𝐵 · 𝑥)) · 𝑦))
452ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝐴 · 𝐵) = 1)
46 simprr 771 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝑥 · 𝑦) = 1)
4745, 46oveq12d 7375 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → ((𝐴 · 𝐵) · (𝑥 · 𝑦)) = (1 · 1))
48 1t1e1ALT 40764 . . . . . . . . 9 (1 · 1) = 1
4947, 48eqtrdi 2792 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → ((𝐴 · 𝐵) · (𝑥 · 𝑦)) = 1)
5040, 44, 493eqtr3d 2784 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → ((𝐴 · (𝐵 · 𝑥)) · 𝑦) = 1)
51 ax-1rid 11121 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
5232, 51syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝐴 · 1) = 𝐴)
5352oveq1d 7372 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → ((𝐴 · 1) · 𝑦) = (𝐴 · 𝑦))
5431, 50, 533eqtr3rd 2785 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝐴 · 𝑦) = 1)
5554, 46eqtr4d 2779 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝐴 · 𝑦) = (𝑥 · 𝑦))
563a1i 11 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 1 ≠ 0)
5746, 56eqnetrd 3011 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝑥 · 𝑦) ≠ 0)
58 simpr 485 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) ∧ 𝑦 = 0) → 𝑦 = 0)
5958oveq2d 7373 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) ∧ 𝑦 = 0) → (𝑥 · 𝑦) = (𝑥 · 0))
6036adantr 481 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) ∧ 𝑦 = 0) → 𝑥 ∈ ℝ)
61 remul01 40862 . . . . . . . . 9 (𝑥 ∈ ℝ → (𝑥 · 0) = 0)
6260, 61syl 17 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) ∧ 𝑦 = 0) → (𝑥 · 0) = 0)
6359, 62eqtrd 2776 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) ∧ 𝑦 = 0) → (𝑥 · 𝑦) = 0)
6457, 63mteqand 3048 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 𝑦 ≠ 0)
6532, 36, 38, 64remulcan2d 40765 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → ((𝐴 · 𝑦) = (𝑥 · 𝑦) ↔ 𝐴 = 𝑥))
6655, 65mpbid 231 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 𝐴 = 𝑥)
67 simpr 485 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) ∧ 𝐴 = 𝑥) → 𝐴 = 𝑥)
6867oveq2d 7373 . . . . 5 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) ∧ 𝐴 = 𝑥) → (𝐵 · 𝐴) = (𝐵 · 𝑥))
6917ad2antrr 724 . . . . 5 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) ∧ 𝐴 = 𝑥) → (𝐵 · 𝑥) = 1)
7068, 69eqtrd 2776 . . . 4 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) ∧ 𝐴 = 𝑥) → (𝐵 · 𝐴) = 1)
7166, 70mpdan 685 . . 3 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝐵 · 𝐴) = 1)
7228, 71rexlimddv 3158 . 2 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) → (𝐵 · 𝐴) = 1)
7315, 72rexlimddv 3158 1 (𝜑 → (𝐵 · 𝐴) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2943  wrex 3073  (class class class)co 7357  cr 11050  0cc0 11051  1c1 11052   · cmul 11056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-ltxr 11194  df-2 12216  df-3 12217  df-resub 40821
This theorem is referenced by:  remulid2  40888  remulcand  40893  retire  40922
  Copyright terms: Public domain W3C validator