Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  remulinvcom Structured version   Visualization version   GIF version

Theorem remulinvcom 40414
Description: A left multiplicative inverse is a right multiplicative inverse. Proven without ax-mulcom 10935. (Contributed by SN, 5-Feb-2024.)
Hypotheses
Ref Expression
remulinvcom.1 (𝜑𝐴 ∈ ℝ)
remulinvcom.2 (𝜑𝐵 ∈ ℝ)
remulinvcom.3 (𝜑 → (𝐴 · 𝐵) = 1)
Assertion
Ref Expression
remulinvcom (𝜑 → (𝐵 · 𝐴) = 1)

Proof of Theorem remulinvcom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remulinvcom.2 . . 3 (𝜑𝐵 ∈ ℝ)
2 remulinvcom.3 . . . . 5 (𝜑 → (𝐴 · 𝐵) = 1)
3 ax-1ne0 10940 . . . . . 6 1 ≠ 0
43a1i 11 . . . . 5 (𝜑 → 1 ≠ 0)
52, 4eqnetrd 3011 . . . 4 (𝜑 → (𝐴 · 𝐵) ≠ 0)
6 simpr 485 . . . . . 6 ((𝜑𝐵 = 0) → 𝐵 = 0)
76oveq2d 7291 . . . . 5 ((𝜑𝐵 = 0) → (𝐴 · 𝐵) = (𝐴 · 0))
8 remulinvcom.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
98adantr 481 . . . . . 6 ((𝜑𝐵 = 0) → 𝐴 ∈ ℝ)
10 remul01 40390 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 · 0) = 0)
119, 10syl 17 . . . . 5 ((𝜑𝐵 = 0) → (𝐴 · 0) = 0)
127, 11eqtrd 2778 . . . 4 ((𝜑𝐵 = 0) → (𝐴 · 𝐵) = 0)
135, 12mteqand 3048 . . 3 (𝜑𝐵 ≠ 0)
14 ax-rrecex 10943 . . 3 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 1)
151, 13, 14syl2anc 584 . 2 (𝜑 → ∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 1)
16 simprl 768 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) → 𝑥 ∈ ℝ)
17 simprr 770 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) → (𝐵 · 𝑥) = 1)
183a1i 11 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) → 1 ≠ 0)
1917, 18eqnetrd 3011 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) → (𝐵 · 𝑥) ≠ 0)
20 simpr 485 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ 𝑥 = 0) → 𝑥 = 0)
2120oveq2d 7291 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ 𝑥 = 0) → (𝐵 · 𝑥) = (𝐵 · 0))
221ad2antrr 723 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ 𝑥 = 0) → 𝐵 ∈ ℝ)
23 remul01 40390 . . . . . . 7 (𝐵 ∈ ℝ → (𝐵 · 0) = 0)
2422, 23syl 17 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ 𝑥 = 0) → (𝐵 · 0) = 0)
2521, 24eqtrd 2778 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ 𝑥 = 0) → (𝐵 · 𝑥) = 0)
2619, 25mteqand 3048 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) → 𝑥 ≠ 0)
27 ax-rrecex 10943 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) → ∃𝑦 ∈ ℝ (𝑥 · 𝑦) = 1)
2816, 26, 27syl2anc 584 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) → ∃𝑦 ∈ ℝ (𝑥 · 𝑦) = 1)
29 simplrr 775 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝐵 · 𝑥) = 1)
3029oveq2d 7291 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝐴 · (𝐵 · 𝑥)) = (𝐴 · 1))
3130oveq1d 7290 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → ((𝐴 · (𝐵 · 𝑥)) · 𝑦) = ((𝐴 · 1) · 𝑦))
328ad2antrr 723 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 𝐴 ∈ ℝ)
331ad2antrr 723 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 𝐵 ∈ ℝ)
3432, 33remulcld 11005 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝐴 · 𝐵) ∈ ℝ)
3534recnd 11003 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝐴 · 𝐵) ∈ ℂ)
36 simplrl 774 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 𝑥 ∈ ℝ)
3736recnd 11003 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 𝑥 ∈ ℂ)
38 simprl 768 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 𝑦 ∈ ℝ)
3938recnd 11003 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 𝑦 ∈ ℂ)
4035, 37, 39mulassd 10998 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (((𝐴 · 𝐵) · 𝑥) · 𝑦) = ((𝐴 · 𝐵) · (𝑥 · 𝑦)))
4132recnd 11003 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 𝐴 ∈ ℂ)
4233recnd 11003 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 𝐵 ∈ ℂ)
4341, 42, 37mulassd 10998 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → ((𝐴 · 𝐵) · 𝑥) = (𝐴 · (𝐵 · 𝑥)))
4443oveq1d 7290 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (((𝐴 · 𝐵) · 𝑥) · 𝑦) = ((𝐴 · (𝐵 · 𝑥)) · 𝑦))
452ad2antrr 723 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝐴 · 𝐵) = 1)
46 simprr 770 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝑥 · 𝑦) = 1)
4745, 46oveq12d 7293 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → ((𝐴 · 𝐵) · (𝑥 · 𝑦)) = (1 · 1))
48 1t1e1ALT 40292 . . . . . . . . 9 (1 · 1) = 1
4947, 48eqtrdi 2794 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → ((𝐴 · 𝐵) · (𝑥 · 𝑦)) = 1)
5040, 44, 493eqtr3d 2786 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → ((𝐴 · (𝐵 · 𝑥)) · 𝑦) = 1)
51 ax-1rid 10941 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
5232, 51syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝐴 · 1) = 𝐴)
5352oveq1d 7290 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → ((𝐴 · 1) · 𝑦) = (𝐴 · 𝑦))
5431, 50, 533eqtr3rd 2787 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝐴 · 𝑦) = 1)
5554, 46eqtr4d 2781 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝐴 · 𝑦) = (𝑥 · 𝑦))
563a1i 11 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 1 ≠ 0)
5746, 56eqnetrd 3011 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝑥 · 𝑦) ≠ 0)
58 simpr 485 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) ∧ 𝑦 = 0) → 𝑦 = 0)
5958oveq2d 7291 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) ∧ 𝑦 = 0) → (𝑥 · 𝑦) = (𝑥 · 0))
6036adantr 481 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) ∧ 𝑦 = 0) → 𝑥 ∈ ℝ)
61 remul01 40390 . . . . . . . . 9 (𝑥 ∈ ℝ → (𝑥 · 0) = 0)
6260, 61syl 17 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) ∧ 𝑦 = 0) → (𝑥 · 0) = 0)
6359, 62eqtrd 2778 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) ∧ 𝑦 = 0) → (𝑥 · 𝑦) = 0)
6457, 63mteqand 3048 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 𝑦 ≠ 0)
6532, 36, 38, 64remulcan2d 40293 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → ((𝐴 · 𝑦) = (𝑥 · 𝑦) ↔ 𝐴 = 𝑥))
6655, 65mpbid 231 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → 𝐴 = 𝑥)
67 simpr 485 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) ∧ 𝐴 = 𝑥) → 𝐴 = 𝑥)
6867oveq2d 7291 . . . . 5 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) ∧ 𝐴 = 𝑥) → (𝐵 · 𝐴) = (𝐵 · 𝑥))
6917ad2antrr 723 . . . . 5 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) ∧ 𝐴 = 𝑥) → (𝐵 · 𝑥) = 1)
7068, 69eqtrd 2778 . . . 4 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) ∧ 𝐴 = 𝑥) → (𝐵 · 𝐴) = 1)
7166, 70mpdan 684 . . 3 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) ∧ (𝑦 ∈ ℝ ∧ (𝑥 · 𝑦) = 1)) → (𝐵 · 𝐴) = 1)
7228, 71rexlimddv 3220 . 2 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐵 · 𝑥) = 1)) → (𝐵 · 𝐴) = 1)
7315, 72rexlimddv 3220 1 (𝜑 → (𝐵 · 𝐴) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wrex 3065  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   · cmul 10876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-2 12036  df-3 12037  df-resub 40349
This theorem is referenced by:  remulid2  40415  remulcand  40420  retire  40437
  Copyright terms: Public domain W3C validator