Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspner1 Structured version   Visualization version   GIF version

Theorem prjspner1 42599
Description: Two vectors whose zeroth coordinate is nonzero are equivalent if and only if they have the same representative in the (n-1)-dimensional affine subspace { x0 = 1 } . For example, vectors in 3D space whose 𝑥 coordinate is nonzero are equivalent iff they intersect at the plane 𝑥 = 1 at the same point (also see section header). (Contributed by SN, 13-Aug-2023.)
Hypotheses
Ref Expression
prjspner01.e = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝑆 𝑥 = (𝑙 · 𝑦))}
prjspner01.f 𝐹 = (𝑏𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)))
prjspner01.b 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
prjspner01.w 𝑊 = (𝐾 freeLMod (0...𝑁))
prjspner01.t · = ( ·𝑠𝑊)
prjspner01.s 𝑆 = (Base‘𝐾)
prjspner01.0 0 = (0g𝐾)
prjspner01.i 𝐼 = (invr𝐾)
prjspner01.k (𝜑𝐾 ∈ DivRing)
prjspner01.n (𝜑𝑁 ∈ ℕ0)
prjspner01.x (𝜑𝑋𝐵)
prjspner1.y (𝜑𝑌𝐵)
prjspner1.1 (𝜑 → (𝑋‘0) ≠ 0 )
prjspner1.2 (𝜑 → (𝑌‘0) ≠ 0 )
Assertion
Ref Expression
prjspner1 (𝜑 → (𝑋 𝑌 ↔ (𝐹𝑋) = (𝐹𝑌)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑋,𝑙,𝑥,𝑦   𝑊,𝑙,𝑥,𝑦   · ,𝑙,𝑥,𝑦   𝑆,𝑙   𝐼,𝑙,𝑥,𝑦   𝑥,𝐾,𝑦   𝑥, 0 ,𝑦   𝐵,𝑏   𝑋,𝑏   0 ,𝑏   · ,𝑏   𝐼,𝑏   𝜑,𝑏   𝑌,𝑙,𝑥,𝑦   𝑌,𝑏   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑙)   𝐵(𝑙)   (𝑥,𝑦,𝑏,𝑙)   𝑆(𝑏)   𝐹(𝑥,𝑦,𝑏,𝑙)   𝐾(𝑏,𝑙)   𝑁(𝑥,𝑦,𝑏,𝑙)   𝑊(𝑏)   0 (𝑙)

Proof of Theorem prjspner1
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 prjspner01.e . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝑆 𝑥 = (𝑙 · 𝑦))}
21prjsprel 42577 . . 3 (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌)))
3 prjspner1.1 . . . . . . . . . . . . . 14 (𝜑 → (𝑋‘0) ≠ 0 )
4 fveq1 6825 . . . . . . . . . . . . . . 15 (𝑋 = (0g𝑊) → (𝑋‘0) = ((0g𝑊)‘0))
5 prjspner01.w . . . . . . . . . . . . . . . 16 𝑊 = (𝐾 freeLMod (0...𝑁))
6 prjspner01.0 . . . . . . . . . . . . . . . 16 0 = (0g𝐾)
7 prjspner01.k . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ DivRing)
87drngringd 20640 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ Ring)
9 ovexd 7388 . . . . . . . . . . . . . . . 16 (𝜑 → (0...𝑁) ∈ V)
10 prjspner01.n . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ0)
11 0elfz 13545 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
1210, 11syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ∈ (0...𝑁))
135, 6, 8, 9, 12frlm0vald 42512 . . . . . . . . . . . . . . 15 (𝜑 → ((0g𝑊)‘0) = 0 )
144, 13sylan9eqr 2786 . . . . . . . . . . . . . 14 ((𝜑𝑋 = (0g𝑊)) → (𝑋‘0) = 0 )
153, 14mteqand 3016 . . . . . . . . . . . . 13 (𝜑𝑋 ≠ (0g𝑊))
165frlmsca 21678 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ DivRing ∧ (0...𝑁) ∈ V) → 𝐾 = (Scalar‘𝑊))
177, 9, 16syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 = (Scalar‘𝑊))
1817fveq2d 6830 . . . . . . . . . . . . . . . 16 (𝜑 → (0g𝐾) = (0g‘(Scalar‘𝑊)))
196, 18eqtrid 2776 . . . . . . . . . . . . . . 15 (𝜑0 = (0g‘(Scalar‘𝑊)))
2019oveq1d 7368 . . . . . . . . . . . . . 14 (𝜑 → ( 0 · 𝑌) = ((0g‘(Scalar‘𝑊)) · 𝑌))
215frlmlvec 21686 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ DivRing ∧ (0...𝑁) ∈ V) → 𝑊 ∈ LVec)
227, 9, 21syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑𝑊 ∈ LVec)
2322lveclmodd 21029 . . . . . . . . . . . . . . 15 (𝜑𝑊 ∈ LMod)
24 prjspner1.y . . . . . . . . . . . . . . . . 17 (𝜑𝑌𝐵)
25 prjspner01.b . . . . . . . . . . . . . . . . 17 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
2624, 25eleqtrdi 2838 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ ((Base‘𝑊) ∖ {(0g𝑊)}))
2726eldifad 3917 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ (Base‘𝑊))
28 eqid 2729 . . . . . . . . . . . . . . . 16 (Base‘𝑊) = (Base‘𝑊)
29 eqid 2729 . . . . . . . . . . . . . . . 16 (Scalar‘𝑊) = (Scalar‘𝑊)
30 prjspner01.t . . . . . . . . . . . . . . . 16 · = ( ·𝑠𝑊)
31 eqid 2729 . . . . . . . . . . . . . . . 16 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
32 eqid 2729 . . . . . . . . . . . . . . . 16 (0g𝑊) = (0g𝑊)
3328, 29, 30, 31, 32lmod0vs 20816 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝑌 ∈ (Base‘𝑊)) → ((0g‘(Scalar‘𝑊)) · 𝑌) = (0g𝑊))
3423, 27, 33syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ((0g‘(Scalar‘𝑊)) · 𝑌) = (0g𝑊))
3520, 34eqtrd 2764 . . . . . . . . . . . . 13 (𝜑 → ( 0 · 𝑌) = (0g𝑊))
3615, 35neeqtrrd 2999 . . . . . . . . . . . 12 (𝜑𝑋 ≠ ( 0 · 𝑌))
3736ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) → 𝑋 ≠ ( 0 · 𝑌))
38 oveq1 7360 . . . . . . . . . . . 12 (𝑚 = 0 → (𝑚 · 𝑌) = ( 0 · 𝑌))
3938neeq2d 2985 . . . . . . . . . . 11 (𝑚 = 0 → (𝑋 ≠ (𝑚 · 𝑌) ↔ 𝑋 ≠ ( 0 · 𝑌)))
4037, 39syl5ibrcom 247 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) → (𝑚 = 0𝑋 ≠ (𝑚 · 𝑌)))
4140necon2d 2948 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) → (𝑋 = (𝑚 · 𝑌) → 𝑚0 ))
4241ancrd 551 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) → (𝑋 = (𝑚 · 𝑌) → (𝑚0𝑋 = (𝑚 · 𝑌))))
43 prjspner01.s . . . . . . . . . . . . . . 15 𝑆 = (Base‘𝐾)
44 ovexd 7388 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (0...𝑁) ∈ V)
45 simplr 768 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝑚𝑆)
4627ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝑌 ∈ (Base‘𝑊))
4712ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 0 ∈ (0...𝑁))
48 eqid 2729 . . . . . . . . . . . . . . 15 (.r𝐾) = (.r𝐾)
495, 28, 43, 44, 45, 46, 47, 30, 48frlmvscaval 21693 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝑚 · 𝑌)‘0) = (𝑚(.r𝐾)(𝑌‘0)))
5049fveq2d 6830 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝐼‘((𝑚 · 𝑌)‘0)) = (𝐼‘(𝑚(.r𝐾)(𝑌‘0))))
51 prjspner01.i . . . . . . . . . . . . . 14 𝐼 = (invr𝐾)
527ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝐾 ∈ DivRing)
535, 43, 28frlmbasf 21685 . . . . . . . . . . . . . . . . 17 (((0...𝑁) ∈ V ∧ 𝑌 ∈ (Base‘𝑊)) → 𝑌:(0...𝑁)⟶𝑆)
549, 27, 53syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑𝑌:(0...𝑁)⟶𝑆)
5554, 12ffvelcdmd 7023 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌‘0) ∈ 𝑆)
5655ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝑌‘0) ∈ 𝑆)
57 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝑚0 )
58 prjspner1.2 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌‘0) ≠ 0 )
5958ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝑌‘0) ≠ 0 )
6043, 6, 48, 51, 52, 45, 56, 57, 59drnginvmuld 42500 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝐼‘(𝑚(.r𝐾)(𝑌‘0))) = ((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)))
6150, 60eqtrd 2764 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝐼‘((𝑚 · 𝑌)‘0)) = ((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)))
6261oveq1d 7368 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘((𝑚 · 𝑌)‘0)) · (𝑚 · 𝑌)) = (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)) · (𝑚 · 𝑌)))
6323ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝑊 ∈ LMod)
648ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝐾 ∈ Ring)
6543, 6, 51, 52, 56, 59drnginvrcld 20658 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝐼‘(𝑌‘0)) ∈ 𝑆)
6643, 6, 51, 52, 45, 57drnginvrcld 20658 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝐼𝑚) ∈ 𝑆)
6743, 48, 64, 65, 66ringcld 20163 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)) ∈ 𝑆)
6817fveq2d 6830 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘𝐾) = (Base‘(Scalar‘𝑊)))
6943, 68eqtrid 2776 . . . . . . . . . . . . . 14 (𝜑𝑆 = (Base‘(Scalar‘𝑊)))
7069ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝑆 = (Base‘(Scalar‘𝑊)))
7167, 70eleqtrd 2830 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)) ∈ (Base‘(Scalar‘𝑊)))
7245, 70eleqtrd 2830 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝑚 ∈ (Base‘(Scalar‘𝑊)))
73 eqid 2729 . . . . . . . . . . . . 13 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
74 eqid 2729 . . . . . . . . . . . . 13 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
7528, 29, 30, 73, 74lmodvsass 20808 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑚 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌 ∈ (Base‘𝑊))) → ((((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r‘(Scalar‘𝑊))𝑚) · 𝑌) = (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)) · (𝑚 · 𝑌)))
7663, 71, 72, 46, 75syl13anc 1374 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r‘(Scalar‘𝑊))𝑚) · 𝑌) = (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)) · (𝑚 · 𝑌)))
7743, 48, 64, 65, 66, 45ringassd 20160 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r𝐾)𝑚) = ((𝐼‘(𝑌‘0))(.r𝐾)((𝐼𝑚)(.r𝐾)𝑚)))
7852, 44, 16syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝐾 = (Scalar‘𝑊))
7978fveq2d 6830 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (.r𝐾) = (.r‘(Scalar‘𝑊)))
8079oveqd 7370 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r𝐾)𝑚) = (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r‘(Scalar‘𝑊))𝑚))
81 eqid 2729 . . . . . . . . . . . . . . . 16 (1r𝐾) = (1r𝐾)
8243, 6, 48, 81, 51, 52, 45, 57drnginvrld 20661 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼𝑚)(.r𝐾)𝑚) = (1r𝐾))
8382oveq2d 7369 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘(𝑌‘0))(.r𝐾)((𝐼𝑚)(.r𝐾)𝑚)) = ((𝐼‘(𝑌‘0))(.r𝐾)(1r𝐾)))
8443, 48, 81, 64, 65ringridmd 20176 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘(𝑌‘0))(.r𝐾)(1r𝐾)) = (𝐼‘(𝑌‘0)))
8583, 84eqtrd 2764 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘(𝑌‘0))(.r𝐾)((𝐼𝑚)(.r𝐾)𝑚)) = (𝐼‘(𝑌‘0)))
8677, 80, 853eqtr3d 2772 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r‘(Scalar‘𝑊))𝑚) = (𝐼‘(𝑌‘0)))
8786oveq1d 7368 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r‘(Scalar‘𝑊))𝑚) · 𝑌) = ((𝐼‘(𝑌‘0)) · 𝑌))
8862, 76, 873eqtr2d 2770 . . . . . . . . . 10 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘((𝑚 · 𝑌)‘0)) · (𝑚 · 𝑌)) = ((𝐼‘(𝑌‘0)) · 𝑌))
89 fveq1 6825 . . . . . . . . . . . . 13 (𝑋 = (𝑚 · 𝑌) → (𝑋‘0) = ((𝑚 · 𝑌)‘0))
9089fveq2d 6830 . . . . . . . . . . . 12 (𝑋 = (𝑚 · 𝑌) → (𝐼‘(𝑋‘0)) = (𝐼‘((𝑚 · 𝑌)‘0)))
91 id 22 . . . . . . . . . . . 12 (𝑋 = (𝑚 · 𝑌) → 𝑋 = (𝑚 · 𝑌))
9290, 91oveq12d 7371 . . . . . . . . . . 11 (𝑋 = (𝑚 · 𝑌) → ((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘((𝑚 · 𝑌)‘0)) · (𝑚 · 𝑌)))
9392eqeq1d 2731 . . . . . . . . . 10 (𝑋 = (𝑚 · 𝑌) → (((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘(𝑌‘0)) · 𝑌) ↔ ((𝐼‘((𝑚 · 𝑌)‘0)) · (𝑚 · 𝑌)) = ((𝐼‘(𝑌‘0)) · 𝑌)))
9488, 93syl5ibrcom 247 . . . . . . . . 9 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝑋 = (𝑚 · 𝑌) → ((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘(𝑌‘0)) · 𝑌)))
9594expimpd 453 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) → ((𝑚0𝑋 = (𝑚 · 𝑌)) → ((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘(𝑌‘0)) · 𝑌)))
9642, 95syld 47 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) → (𝑋 = (𝑚 · 𝑌) → ((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘(𝑌‘0)) · 𝑌)))
9796rexlimdva 3130 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (∃𝑚𝑆 𝑋 = (𝑚 · 𝑌) → ((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘(𝑌‘0)) · 𝑌)))
9897impr 454 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → ((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘(𝑌‘0)) · 𝑌))
993neneqd 2930 . . . . . . 7 (𝜑 → ¬ (𝑋‘0) = 0 )
10099iffalsed 4489 . . . . . 6 (𝜑 → if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)) = ((𝐼‘(𝑋‘0)) · 𝑋))
101100adantr 480 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)) = ((𝐼‘(𝑋‘0)) · 𝑋))
10258neneqd 2930 . . . . . . 7 (𝜑 → ¬ (𝑌‘0) = 0 )
103102iffalsed 4489 . . . . . 6 (𝜑 → if((𝑌‘0) = 0 , 𝑌, ((𝐼‘(𝑌‘0)) · 𝑌)) = ((𝐼‘(𝑌‘0)) · 𝑌))
104103adantr 480 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → if((𝑌‘0) = 0 , 𝑌, ((𝐼‘(𝑌‘0)) · 𝑌)) = ((𝐼‘(𝑌‘0)) · 𝑌))
10598, 101, 1043eqtr4d 2774 . . . 4 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)) = if((𝑌‘0) = 0 , 𝑌, ((𝐼‘(𝑌‘0)) · 𝑌)))
106 prjspner01.f . . . . 5 𝐹 = (𝑏𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)))
107 fveq1 6825 . . . . . . 7 (𝑏 = 𝑋 → (𝑏‘0) = (𝑋‘0))
108107eqeq1d 2731 . . . . . 6 (𝑏 = 𝑋 → ((𝑏‘0) = 0 ↔ (𝑋‘0) = 0 ))
109 id 22 . . . . . 6 (𝑏 = 𝑋𝑏 = 𝑋)
110107fveq2d 6830 . . . . . . 7 (𝑏 = 𝑋 → (𝐼‘(𝑏‘0)) = (𝐼‘(𝑋‘0)))
111110, 109oveq12d 7371 . . . . . 6 (𝑏 = 𝑋 → ((𝐼‘(𝑏‘0)) · 𝑏) = ((𝐼‘(𝑋‘0)) · 𝑋))
112108, 109, 111ifbieq12d 4507 . . . . 5 (𝑏 = 𝑋 → if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)) = if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)))
113 simprll 778 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → 𝑋𝐵)
114 ovexd 7388 . . . . . 6 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → ((𝐼‘(𝑋‘0)) · 𝑋) ∈ V)
115113, 114ifexd 4527 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)) ∈ V)
116106, 112, 113, 115fvmptd3 6957 . . . 4 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → (𝐹𝑋) = if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)))
117 fveq1 6825 . . . . . . 7 (𝑏 = 𝑌 → (𝑏‘0) = (𝑌‘0))
118117eqeq1d 2731 . . . . . 6 (𝑏 = 𝑌 → ((𝑏‘0) = 0 ↔ (𝑌‘0) = 0 ))
119 id 22 . . . . . 6 (𝑏 = 𝑌𝑏 = 𝑌)
120117fveq2d 6830 . . . . . . 7 (𝑏 = 𝑌 → (𝐼‘(𝑏‘0)) = (𝐼‘(𝑌‘0)))
121120, 119oveq12d 7371 . . . . . 6 (𝑏 = 𝑌 → ((𝐼‘(𝑏‘0)) · 𝑏) = ((𝐼‘(𝑌‘0)) · 𝑌))
122118, 119, 121ifbieq12d 4507 . . . . 5 (𝑏 = 𝑌 → if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)) = if((𝑌‘0) = 0 , 𝑌, ((𝐼‘(𝑌‘0)) · 𝑌)))
123 simprlr 779 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → 𝑌𝐵)
124 ovexd 7388 . . . . . 6 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → ((𝐼‘(𝑌‘0)) · 𝑌) ∈ V)
125123, 124ifexd 4527 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → if((𝑌‘0) = 0 , 𝑌, ((𝐼‘(𝑌‘0)) · 𝑌)) ∈ V)
126106, 122, 123, 125fvmptd3 6957 . . . 4 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → (𝐹𝑌) = if((𝑌‘0) = 0 , 𝑌, ((𝐼‘(𝑌‘0)) · 𝑌)))
127105, 116, 1263eqtr4d 2774 . . 3 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → (𝐹𝑋) = (𝐹𝑌))
1282, 127sylan2b 594 . 2 ((𝜑𝑋 𝑌) → (𝐹𝑋) = (𝐹𝑌))
1291, 5, 25, 43, 30, 7prjspner 42592 . . . 4 (𝜑 Er 𝐵)
130129adantr 480 . . 3 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → Er 𝐵)
131 prjspner01.x . . . . 5 (𝜑𝑋𝐵)
1321, 106, 25, 5, 30, 43, 6, 51, 7, 10, 131prjspner01 42598 . . . 4 (𝜑𝑋 (𝐹𝑋))
133132adantr 480 . . 3 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → 𝑋 (𝐹𝑋))
134129, 132ercl2 8645 . . . . . . 7 (𝜑 → (𝐹𝑋) ∈ 𝐵)
135134adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → (𝐹𝑋) ∈ 𝐵)
136130, 135erref 8652 . . . . 5 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → (𝐹𝑋) (𝐹𝑋))
137 breq2 5099 . . . . . 6 ((𝐹𝑋) = (𝐹𝑌) → ((𝐹𝑋) (𝐹𝑋) ↔ (𝐹𝑋) (𝐹𝑌)))
138137adantl 481 . . . . 5 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → ((𝐹𝑋) (𝐹𝑋) ↔ (𝐹𝑋) (𝐹𝑌)))
139136, 138mpbid 232 . . . 4 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → (𝐹𝑋) (𝐹𝑌))
1401, 106, 25, 5, 30, 43, 6, 51, 7, 10, 24prjspner01 42598 . . . . 5 (𝜑𝑌 (𝐹𝑌))
141140adantr 480 . . . 4 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → 𝑌 (𝐹𝑌))
142130, 139, 141ertr4d 8651 . . 3 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → (𝐹𝑋) 𝑌)
143130, 133, 142ertrd 8648 . 2 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → 𝑋 𝑌)
144128, 143impbida 800 1 (𝜑 → (𝑋 𝑌 ↔ (𝐹𝑋) = (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  Vcvv 3438  cdif 3902  ifcif 4478  {csn 4579   class class class wbr 5095  {copab 5157  cmpt 5176  wf 6482  cfv 6486  (class class class)co 7353   Er wer 8629  0cc0 11028  0cn0 12402  ...cfz 13428  Basecbs 17138  .rcmulr 17180  Scalarcsca 17182   ·𝑠 cvsca 17183  0gc0g 17361  1rcur 20084  Ringcrg 20136  invrcinvr 20290  DivRingcdr 20632  LModclmod 20781  LVecclvec 21024   freeLMod cfrlm 21671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-prds 17369  df-pws 17371  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-nzr 20416  df-subrg 20473  df-rlreg 20597  df-domn 20598  df-drng 20634  df-lmod 20783  df-lss 20853  df-lvec 21025  df-sra 21095  df-rgmod 21096  df-dsmm 21657  df-frlm 21672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator