Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspner1 Structured version   Visualization version   GIF version

Theorem prjspner1 40063
Description: Two vectors whose zeroth coordinate is nonzero are equivalent if and only if they have the same representative in the (n-1)-dimensional affine subspace { x0 = 1 } . For example, vectors in 3D space whose 𝑥 coordinate is nonzero are equivalent iff they intersect at the plane 𝑥 = 1 at the same point (also see section header). (Contributed by SN, 13-Aug-2023.)
Hypotheses
Ref Expression
prjspner01.e = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝑆 𝑥 = (𝑙 · 𝑦))}
prjspner01.f 𝐹 = (𝑏𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)))
prjspner01.b 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
prjspner01.w 𝑊 = (𝐾 freeLMod (0...𝑁))
prjspner01.t · = ( ·𝑠𝑊)
prjspner01.s 𝑆 = (Base‘𝐾)
prjspner01.0 0 = (0g𝐾)
prjspner01.i 𝐼 = (invr𝐾)
prjspner01.k (𝜑𝐾 ∈ DivRing)
prjspner01.n (𝜑𝑁 ∈ ℕ0)
prjspner01.x (𝜑𝑋𝐵)
prjspner1.y (𝜑𝑌𝐵)
prjspner1.1 (𝜑 → (𝑋‘0) ≠ 0 )
prjspner1.2 (𝜑 → (𝑌‘0) ≠ 0 )
Assertion
Ref Expression
prjspner1 (𝜑 → (𝑋 𝑌 ↔ (𝐹𝑋) = (𝐹𝑌)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑋,𝑙,𝑥,𝑦   𝑊,𝑙,𝑥,𝑦   · ,𝑙,𝑥,𝑦   𝑆,𝑙   𝐼,𝑙,𝑥,𝑦   𝑥,𝐾,𝑦   𝑥, 0 ,𝑦   𝐵,𝑏   𝑋,𝑏   0 ,𝑏   · ,𝑏   𝐼,𝑏   𝜑,𝑏   𝑌,𝑙,𝑥,𝑦   𝑌,𝑏   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑙)   𝐵(𝑙)   (𝑥,𝑦,𝑏,𝑙)   𝑆(𝑏)   𝐹(𝑥,𝑦,𝑏,𝑙)   𝐾(𝑏,𝑙)   𝑁(𝑥,𝑦,𝑏,𝑙)   𝑊(𝑏)   0 (𝑙)

Proof of Theorem prjspner1
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 prjspner01.e . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝑆 𝑥 = (𝑙 · 𝑦))}
21prjsprel 40043 . . 3 (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌)))
3 prjspner1.1 . . . . . . . . . . . . . 14 (𝜑 → (𝑋‘0) ≠ 0 )
4 fveq1 6676 . . . . . . . . . . . . . . 15 (𝑋 = (0g𝑊) → (𝑋‘0) = ((0g𝑊)‘0))
5 prjspner01.w . . . . . . . . . . . . . . . 16 𝑊 = (𝐾 freeLMod (0...𝑁))
6 prjspner01.0 . . . . . . . . . . . . . . . 16 0 = (0g𝐾)
7 prjspner01.k . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ DivRing)
87drngringd 39851 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ Ring)
9 ovexd 7208 . . . . . . . . . . . . . . . 16 (𝜑 → (0...𝑁) ∈ V)
10 prjspner01.n . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ0)
11 0elfz 13098 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
1210, 11syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ∈ (0...𝑁))
135, 6, 8, 9, 12frlm0vald 39866 . . . . . . . . . . . . . . 15 (𝜑 → ((0g𝑊)‘0) = 0 )
144, 13sylan9eqr 2796 . . . . . . . . . . . . . 14 ((𝜑𝑋 = (0g𝑊)) → (𝑋‘0) = 0 )
153, 14mteqand 3038 . . . . . . . . . . . . 13 (𝜑𝑋 ≠ (0g𝑊))
165frlmsca 20572 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ DivRing ∧ (0...𝑁) ∈ V) → 𝐾 = (Scalar‘𝑊))
177, 9, 16syl2anc 587 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 = (Scalar‘𝑊))
1817fveq2d 6681 . . . . . . . . . . . . . . . 16 (𝜑 → (0g𝐾) = (0g‘(Scalar‘𝑊)))
196, 18syl5eq 2786 . . . . . . . . . . . . . . 15 (𝜑0 = (0g‘(Scalar‘𝑊)))
2019oveq1d 7188 . . . . . . . . . . . . . 14 (𝜑 → ( 0 · 𝑌) = ((0g‘(Scalar‘𝑊)) · 𝑌))
215frlmlvec 20580 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ DivRing ∧ (0...𝑁) ∈ V) → 𝑊 ∈ LVec)
227, 9, 21syl2anc 587 . . . . . . . . . . . . . . . 16 (𝜑𝑊 ∈ LVec)
2322lveclmodd 39862 . . . . . . . . . . . . . . 15 (𝜑𝑊 ∈ LMod)
24 prjspner1.y . . . . . . . . . . . . . . . . 17 (𝜑𝑌𝐵)
25 prjspner01.b . . . . . . . . . . . . . . . . 17 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
2624, 25eleqtrdi 2844 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ ((Base‘𝑊) ∖ {(0g𝑊)}))
2726eldifad 3856 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ (Base‘𝑊))
28 eqid 2739 . . . . . . . . . . . . . . . 16 (Base‘𝑊) = (Base‘𝑊)
29 eqid 2739 . . . . . . . . . . . . . . . 16 (Scalar‘𝑊) = (Scalar‘𝑊)
30 prjspner01.t . . . . . . . . . . . . . . . 16 · = ( ·𝑠𝑊)
31 eqid 2739 . . . . . . . . . . . . . . . 16 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
32 eqid 2739 . . . . . . . . . . . . . . . 16 (0g𝑊) = (0g𝑊)
3328, 29, 30, 31, 32lmod0vs 19789 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝑌 ∈ (Base‘𝑊)) → ((0g‘(Scalar‘𝑊)) · 𝑌) = (0g𝑊))
3423, 27, 33syl2anc 587 . . . . . . . . . . . . . 14 (𝜑 → ((0g‘(Scalar‘𝑊)) · 𝑌) = (0g𝑊))
3520, 34eqtrd 2774 . . . . . . . . . . . . 13 (𝜑 → ( 0 · 𝑌) = (0g𝑊))
3615, 35neeqtrrd 3009 . . . . . . . . . . . 12 (𝜑𝑋 ≠ ( 0 · 𝑌))
3736ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) → 𝑋 ≠ ( 0 · 𝑌))
38 oveq1 7180 . . . . . . . . . . . 12 (𝑚 = 0 → (𝑚 · 𝑌) = ( 0 · 𝑌))
3938neeq2d 2995 . . . . . . . . . . 11 (𝑚 = 0 → (𝑋 ≠ (𝑚 · 𝑌) ↔ 𝑋 ≠ ( 0 · 𝑌)))
4037, 39syl5ibrcom 250 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) → (𝑚 = 0𝑋 ≠ (𝑚 · 𝑌)))
4140necon2d 2958 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) → (𝑋 = (𝑚 · 𝑌) → 𝑚0 ))
4241ancrd 555 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) → (𝑋 = (𝑚 · 𝑌) → (𝑚0𝑋 = (𝑚 · 𝑌))))
43 prjspner01.s . . . . . . . . . . . . . . 15 𝑆 = (Base‘𝐾)
44 ovexd 7208 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (0...𝑁) ∈ V)
45 simplr 769 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝑚𝑆)
4627ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝑌 ∈ (Base‘𝑊))
4712ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 0 ∈ (0...𝑁))
48 eqid 2739 . . . . . . . . . . . . . . 15 (.r𝐾) = (.r𝐾)
495, 28, 43, 44, 45, 46, 47, 30, 48frlmvscaval 20587 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝑚 · 𝑌)‘0) = (𝑚(.r𝐾)(𝑌‘0)))
5049fveq2d 6681 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝐼‘((𝑚 · 𝑌)‘0)) = (𝐼‘(𝑚(.r𝐾)(𝑌‘0))))
51 prjspner01.i . . . . . . . . . . . . . 14 𝐼 = (invr𝐾)
527ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝐾 ∈ DivRing)
535, 43, 28frlmbasf 20579 . . . . . . . . . . . . . . . . 17 (((0...𝑁) ∈ V ∧ 𝑌 ∈ (Base‘𝑊)) → 𝑌:(0...𝑁)⟶𝑆)
549, 27, 53syl2anc 587 . . . . . . . . . . . . . . . 16 (𝜑𝑌:(0...𝑁)⟶𝑆)
5554, 12ffvelrnd 6865 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌‘0) ∈ 𝑆)
5655ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝑌‘0) ∈ 𝑆)
57 simpr 488 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝑚0 )
58 prjspner1.2 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌‘0) ≠ 0 )
5958ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝑌‘0) ≠ 0 )
6043, 6, 48, 51, 52, 45, 56, 57, 59drnginvmuld 39859 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝐼‘(𝑚(.r𝐾)(𝑌‘0))) = ((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)))
6150, 60eqtrd 2774 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝐼‘((𝑚 · 𝑌)‘0)) = ((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)))
6261oveq1d 7188 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘((𝑚 · 𝑌)‘0)) · (𝑚 · 𝑌)) = (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)) · (𝑚 · 𝑌)))
6323ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝑊 ∈ LMod)
648ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝐾 ∈ Ring)
6543, 6, 51, 52, 56, 59drnginvrcld 39853 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝐼‘(𝑌‘0)) ∈ 𝑆)
6643, 6, 51, 52, 45, 57drnginvrcld 39853 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝐼𝑚) ∈ 𝑆)
6743, 48, 64, 65, 66ringcld 39845 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)) ∈ 𝑆)
6817fveq2d 6681 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘𝐾) = (Base‘(Scalar‘𝑊)))
6943, 68syl5eq 2786 . . . . . . . . . . . . . 14 (𝜑𝑆 = (Base‘(Scalar‘𝑊)))
7069ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝑆 = (Base‘(Scalar‘𝑊)))
7167, 70eleqtrd 2836 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)) ∈ (Base‘(Scalar‘𝑊)))
7245, 70eleqtrd 2836 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝑚 ∈ (Base‘(Scalar‘𝑊)))
73 eqid 2739 . . . . . . . . . . . . 13 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
74 eqid 2739 . . . . . . . . . . . . 13 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
7528, 29, 30, 73, 74lmodvsass 19781 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑚 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌 ∈ (Base‘𝑊))) → ((((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r‘(Scalar‘𝑊))𝑚) · 𝑌) = (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)) · (𝑚 · 𝑌)))
7663, 71, 72, 46, 75syl13anc 1373 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r‘(Scalar‘𝑊))𝑚) · 𝑌) = (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)) · (𝑚 · 𝑌)))
7743, 48, 64, 65, 66, 45ringassd 39846 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r𝐾)𝑚) = ((𝐼‘(𝑌‘0))(.r𝐾)((𝐼𝑚)(.r𝐾)𝑚)))
7852, 44, 16syl2anc 587 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝐾 = (Scalar‘𝑊))
7978fveq2d 6681 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (.r𝐾) = (.r‘(Scalar‘𝑊)))
8079oveqd 7190 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r𝐾)𝑚) = (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r‘(Scalar‘𝑊))𝑚))
81 eqid 2739 . . . . . . . . . . . . . . . 16 (1r𝐾) = (1r𝐾)
8243, 6, 48, 81, 51, 52, 45, 57drnginvrld 39855 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼𝑚)(.r𝐾)𝑚) = (1r𝐾))
8382oveq2d 7189 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘(𝑌‘0))(.r𝐾)((𝐼𝑚)(.r𝐾)𝑚)) = ((𝐼‘(𝑌‘0))(.r𝐾)(1r𝐾)))
8443, 48, 81, 64, 65ringridmd 39848 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘(𝑌‘0))(.r𝐾)(1r𝐾)) = (𝐼‘(𝑌‘0)))
8583, 84eqtrd 2774 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘(𝑌‘0))(.r𝐾)((𝐼𝑚)(.r𝐾)𝑚)) = (𝐼‘(𝑌‘0)))
8677, 80, 853eqtr3d 2782 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r‘(Scalar‘𝑊))𝑚) = (𝐼‘(𝑌‘0)))
8786oveq1d 7188 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r‘(Scalar‘𝑊))𝑚) · 𝑌) = ((𝐼‘(𝑌‘0)) · 𝑌))
8862, 76, 873eqtr2d 2780 . . . . . . . . . 10 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘((𝑚 · 𝑌)‘0)) · (𝑚 · 𝑌)) = ((𝐼‘(𝑌‘0)) · 𝑌))
89 fveq1 6676 . . . . . . . . . . . . 13 (𝑋 = (𝑚 · 𝑌) → (𝑋‘0) = ((𝑚 · 𝑌)‘0))
9089fveq2d 6681 . . . . . . . . . . . 12 (𝑋 = (𝑚 · 𝑌) → (𝐼‘(𝑋‘0)) = (𝐼‘((𝑚 · 𝑌)‘0)))
91 id 22 . . . . . . . . . . . 12 (𝑋 = (𝑚 · 𝑌) → 𝑋 = (𝑚 · 𝑌))
9290, 91oveq12d 7191 . . . . . . . . . . 11 (𝑋 = (𝑚 · 𝑌) → ((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘((𝑚 · 𝑌)‘0)) · (𝑚 · 𝑌)))
9392eqeq1d 2741 . . . . . . . . . 10 (𝑋 = (𝑚 · 𝑌) → (((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘(𝑌‘0)) · 𝑌) ↔ ((𝐼‘((𝑚 · 𝑌)‘0)) · (𝑚 · 𝑌)) = ((𝐼‘(𝑌‘0)) · 𝑌)))
9488, 93syl5ibrcom 250 . . . . . . . . 9 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝑋 = (𝑚 · 𝑌) → ((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘(𝑌‘0)) · 𝑌)))
9594expimpd 457 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) → ((𝑚0𝑋 = (𝑚 · 𝑌)) → ((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘(𝑌‘0)) · 𝑌)))
9642, 95syld 47 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) → (𝑋 = (𝑚 · 𝑌) → ((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘(𝑌‘0)) · 𝑌)))
9796rexlimdva 3195 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (∃𝑚𝑆 𝑋 = (𝑚 · 𝑌) → ((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘(𝑌‘0)) · 𝑌)))
9897impr 458 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → ((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘(𝑌‘0)) · 𝑌))
993neneqd 2940 . . . . . . 7 (𝜑 → ¬ (𝑋‘0) = 0 )
10099iffalsed 4426 . . . . . 6 (𝜑 → if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)) = ((𝐼‘(𝑋‘0)) · 𝑋))
101100adantr 484 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)) = ((𝐼‘(𝑋‘0)) · 𝑋))
10258neneqd 2940 . . . . . . 7 (𝜑 → ¬ (𝑌‘0) = 0 )
103102iffalsed 4426 . . . . . 6 (𝜑 → if((𝑌‘0) = 0 , 𝑌, ((𝐼‘(𝑌‘0)) · 𝑌)) = ((𝐼‘(𝑌‘0)) · 𝑌))
104103adantr 484 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → if((𝑌‘0) = 0 , 𝑌, ((𝐼‘(𝑌‘0)) · 𝑌)) = ((𝐼‘(𝑌‘0)) · 𝑌))
10598, 101, 1043eqtr4d 2784 . . . 4 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)) = if((𝑌‘0) = 0 , 𝑌, ((𝐼‘(𝑌‘0)) · 𝑌)))
106 prjspner01.f . . . . 5 𝐹 = (𝑏𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)))
107 fveq1 6676 . . . . . . 7 (𝑏 = 𝑋 → (𝑏‘0) = (𝑋‘0))
108107eqeq1d 2741 . . . . . 6 (𝑏 = 𝑋 → ((𝑏‘0) = 0 ↔ (𝑋‘0) = 0 ))
109 id 22 . . . . . 6 (𝑏 = 𝑋𝑏 = 𝑋)
110107fveq2d 6681 . . . . . . 7 (𝑏 = 𝑋 → (𝐼‘(𝑏‘0)) = (𝐼‘(𝑋‘0)))
111110, 109oveq12d 7191 . . . . . 6 (𝑏 = 𝑋 → ((𝐼‘(𝑏‘0)) · 𝑏) = ((𝐼‘(𝑋‘0)) · 𝑋))
112108, 109, 111ifbieq12d 4443 . . . . 5 (𝑏 = 𝑋 → if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)) = if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)))
113 simprll 779 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → 𝑋𝐵)
114 ovexd 7208 . . . . . 6 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → ((𝐼‘(𝑋‘0)) · 𝑋) ∈ V)
115113, 114ifexd 4463 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)) ∈ V)
116106, 112, 113, 115fvmptd3 6801 . . . 4 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → (𝐹𝑋) = if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)))
117 fveq1 6676 . . . . . . 7 (𝑏 = 𝑌 → (𝑏‘0) = (𝑌‘0))
118117eqeq1d 2741 . . . . . 6 (𝑏 = 𝑌 → ((𝑏‘0) = 0 ↔ (𝑌‘0) = 0 ))
119 id 22 . . . . . 6 (𝑏 = 𝑌𝑏 = 𝑌)
120117fveq2d 6681 . . . . . . 7 (𝑏 = 𝑌 → (𝐼‘(𝑏‘0)) = (𝐼‘(𝑌‘0)))
121120, 119oveq12d 7191 . . . . . 6 (𝑏 = 𝑌 → ((𝐼‘(𝑏‘0)) · 𝑏) = ((𝐼‘(𝑌‘0)) · 𝑌))
122118, 119, 121ifbieq12d 4443 . . . . 5 (𝑏 = 𝑌 → if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)) = if((𝑌‘0) = 0 , 𝑌, ((𝐼‘(𝑌‘0)) · 𝑌)))
123 simprlr 780 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → 𝑌𝐵)
124 ovexd 7208 . . . . . 6 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → ((𝐼‘(𝑌‘0)) · 𝑌) ∈ V)
125123, 124ifexd 4463 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → if((𝑌‘0) = 0 , 𝑌, ((𝐼‘(𝑌‘0)) · 𝑌)) ∈ V)
126106, 122, 123, 125fvmptd3 6801 . . . 4 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → (𝐹𝑌) = if((𝑌‘0) = 0 , 𝑌, ((𝐼‘(𝑌‘0)) · 𝑌)))
127105, 116, 1263eqtr4d 2784 . . 3 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → (𝐹𝑋) = (𝐹𝑌))
1282, 127sylan2b 597 . 2 ((𝜑𝑋 𝑌) → (𝐹𝑋) = (𝐹𝑌))
1291, 5, 25, 43, 30, 7prjspner 40058 . . . 4 (𝜑 Er 𝐵)
130129adantr 484 . . 3 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → Er 𝐵)
131 prjspner01.x . . . . 5 (𝜑𝑋𝐵)
1321, 106, 25, 5, 30, 43, 6, 51, 7, 10, 131prjspner01 40062 . . . 4 (𝜑𝑋 (𝐹𝑋))
133132adantr 484 . . 3 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → 𝑋 (𝐹𝑋))
134129, 132ercl2 8336 . . . . . . 7 (𝜑 → (𝐹𝑋) ∈ 𝐵)
135134adantr 484 . . . . . 6 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → (𝐹𝑋) ∈ 𝐵)
136130, 135erref 8343 . . . . 5 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → (𝐹𝑋) (𝐹𝑋))
137 breq2 5035 . . . . . 6 ((𝐹𝑋) = (𝐹𝑌) → ((𝐹𝑋) (𝐹𝑋) ↔ (𝐹𝑋) (𝐹𝑌)))
138137adantl 485 . . . . 5 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → ((𝐹𝑋) (𝐹𝑋) ↔ (𝐹𝑋) (𝐹𝑌)))
139136, 138mpbid 235 . . . 4 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → (𝐹𝑋) (𝐹𝑌))
1401, 106, 25, 5, 30, 43, 6, 51, 7, 10, 24prjspner01 40062 . . . . 5 (𝜑𝑌 (𝐹𝑌))
141140adantr 484 . . . 4 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → 𝑌 (𝐹𝑌))
142130, 139, 141ertr4d 8342 . . 3 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → (𝐹𝑋) 𝑌)
143130, 133, 142ertrd 8339 . 2 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → 𝑋 𝑌)
144128, 143impbida 801 1 (𝜑 → (𝑋 𝑌 ↔ (𝐹𝑋) = (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wne 2935  wrex 3055  Vcvv 3399  cdif 3841  ifcif 4415  {csn 4517   class class class wbr 5031  {copab 5093  cmpt 5111  wf 6336  cfv 6340  (class class class)co 7173   Er wer 8320  0cc0 10618  0cn0 11979  ...cfz 12984  Basecbs 16589  .rcmulr 16672  Scalarcsca 16674   ·𝑠 cvsca 16675  0gc0g 16819  1rcur 19373  Ringcrg 19419  invrcinvr 19546  DivRingcdr 19624  LModclmod 19756  LVecclvec 19996   freeLMod cfrlm 20565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-cnex 10674  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694  ax-pre-mulgt0 10695
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-ifp 1063  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-of 7428  df-om 7603  df-1st 7717  df-2nd 7718  df-supp 7860  df-tpos 7924  df-wrecs 7979  df-recs 8040  df-rdg 8078  df-1o 8134  df-er 8323  df-map 8442  df-ixp 8511  df-en 8559  df-dom 8560  df-sdom 8561  df-fin 8562  df-fsupp 8910  df-sup 8982  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-sub 10953  df-neg 10954  df-nn 11720  df-2 11782  df-3 11783  df-4 11784  df-5 11785  df-6 11786  df-7 11787  df-8 11788  df-9 11789  df-n0 11980  df-z 12066  df-dec 12183  df-uz 12328  df-fz 12985  df-struct 16591  df-ndx 16592  df-slot 16593  df-base 16595  df-sets 16596  df-ress 16597  df-plusg 16684  df-mulr 16685  df-sca 16687  df-vsca 16688  df-ip 16689  df-tset 16690  df-ple 16691  df-ds 16693  df-hom 16695  df-cco 16696  df-0g 16821  df-prds 16827  df-pws 16829  df-mgm 17971  df-sgrp 18020  df-mnd 18031  df-grp 18225  df-minusg 18226  df-sbg 18227  df-subg 18397  df-mgp 19362  df-ur 19374  df-ring 19421  df-oppr 19498  df-dvdsr 19516  df-unit 19517  df-invr 19547  df-drng 19626  df-subrg 19655  df-lmod 19758  df-lss 19826  df-lvec 19997  df-sra 20066  df-rgmod 20067  df-dsmm 20551  df-frlm 20566
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator