Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspner1 Structured version   Visualization version   GIF version

Theorem prjspner1 42614
Description: Two vectors whose zeroth coordinate is nonzero are equivalent if and only if they have the same representative in the (n-1)-dimensional affine subspace { x0 = 1 } . For example, vectors in 3D space whose 𝑥 coordinate is nonzero are equivalent iff they intersect at the plane 𝑥 = 1 at the same point (also see section header). (Contributed by SN, 13-Aug-2023.)
Hypotheses
Ref Expression
prjspner01.e = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝑆 𝑥 = (𝑙 · 𝑦))}
prjspner01.f 𝐹 = (𝑏𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)))
prjspner01.b 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
prjspner01.w 𝑊 = (𝐾 freeLMod (0...𝑁))
prjspner01.t · = ( ·𝑠𝑊)
prjspner01.s 𝑆 = (Base‘𝐾)
prjspner01.0 0 = (0g𝐾)
prjspner01.i 𝐼 = (invr𝐾)
prjspner01.k (𝜑𝐾 ∈ DivRing)
prjspner01.n (𝜑𝑁 ∈ ℕ0)
prjspner01.x (𝜑𝑋𝐵)
prjspner1.y (𝜑𝑌𝐵)
prjspner1.1 (𝜑 → (𝑋‘0) ≠ 0 )
prjspner1.2 (𝜑 → (𝑌‘0) ≠ 0 )
Assertion
Ref Expression
prjspner1 (𝜑 → (𝑋 𝑌 ↔ (𝐹𝑋) = (𝐹𝑌)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑋,𝑙,𝑥,𝑦   𝑊,𝑙,𝑥,𝑦   · ,𝑙,𝑥,𝑦   𝑆,𝑙   𝐼,𝑙,𝑥,𝑦   𝑥,𝐾,𝑦   𝑥, 0 ,𝑦   𝐵,𝑏   𝑋,𝑏   0 ,𝑏   · ,𝑏   𝐼,𝑏   𝜑,𝑏   𝑌,𝑙,𝑥,𝑦   𝑌,𝑏   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑙)   𝐵(𝑙)   (𝑥,𝑦,𝑏,𝑙)   𝑆(𝑏)   𝐹(𝑥,𝑦,𝑏,𝑙)   𝐾(𝑏,𝑙)   𝑁(𝑥,𝑦,𝑏,𝑙)   𝑊(𝑏)   0 (𝑙)

Proof of Theorem prjspner1
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 prjspner01.e . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝑆 𝑥 = (𝑙 · 𝑦))}
21prjsprel 42592 . . 3 (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌)))
3 prjspner1.1 . . . . . . . . . . . . . 14 (𝜑 → (𝑋‘0) ≠ 0 )
4 fveq1 6857 . . . . . . . . . . . . . . 15 (𝑋 = (0g𝑊) → (𝑋‘0) = ((0g𝑊)‘0))
5 prjspner01.w . . . . . . . . . . . . . . . 16 𝑊 = (𝐾 freeLMod (0...𝑁))
6 prjspner01.0 . . . . . . . . . . . . . . . 16 0 = (0g𝐾)
7 prjspner01.k . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ DivRing)
87drngringd 20646 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ Ring)
9 ovexd 7422 . . . . . . . . . . . . . . . 16 (𝜑 → (0...𝑁) ∈ V)
10 prjspner01.n . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ0)
11 0elfz 13585 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
1210, 11syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ∈ (0...𝑁))
135, 6, 8, 9, 12frlm0vald 42527 . . . . . . . . . . . . . . 15 (𝜑 → ((0g𝑊)‘0) = 0 )
144, 13sylan9eqr 2786 . . . . . . . . . . . . . 14 ((𝜑𝑋 = (0g𝑊)) → (𝑋‘0) = 0 )
153, 14mteqand 3016 . . . . . . . . . . . . 13 (𝜑𝑋 ≠ (0g𝑊))
165frlmsca 21662 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ DivRing ∧ (0...𝑁) ∈ V) → 𝐾 = (Scalar‘𝑊))
177, 9, 16syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 = (Scalar‘𝑊))
1817fveq2d 6862 . . . . . . . . . . . . . . . 16 (𝜑 → (0g𝐾) = (0g‘(Scalar‘𝑊)))
196, 18eqtrid 2776 . . . . . . . . . . . . . . 15 (𝜑0 = (0g‘(Scalar‘𝑊)))
2019oveq1d 7402 . . . . . . . . . . . . . 14 (𝜑 → ( 0 · 𝑌) = ((0g‘(Scalar‘𝑊)) · 𝑌))
215frlmlvec 21670 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ DivRing ∧ (0...𝑁) ∈ V) → 𝑊 ∈ LVec)
227, 9, 21syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑𝑊 ∈ LVec)
2322lveclmodd 21014 . . . . . . . . . . . . . . 15 (𝜑𝑊 ∈ LMod)
24 prjspner1.y . . . . . . . . . . . . . . . . 17 (𝜑𝑌𝐵)
25 prjspner01.b . . . . . . . . . . . . . . . . 17 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
2624, 25eleqtrdi 2838 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ ((Base‘𝑊) ∖ {(0g𝑊)}))
2726eldifad 3926 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ (Base‘𝑊))
28 eqid 2729 . . . . . . . . . . . . . . . 16 (Base‘𝑊) = (Base‘𝑊)
29 eqid 2729 . . . . . . . . . . . . . . . 16 (Scalar‘𝑊) = (Scalar‘𝑊)
30 prjspner01.t . . . . . . . . . . . . . . . 16 · = ( ·𝑠𝑊)
31 eqid 2729 . . . . . . . . . . . . . . . 16 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
32 eqid 2729 . . . . . . . . . . . . . . . 16 (0g𝑊) = (0g𝑊)
3328, 29, 30, 31, 32lmod0vs 20801 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝑌 ∈ (Base‘𝑊)) → ((0g‘(Scalar‘𝑊)) · 𝑌) = (0g𝑊))
3423, 27, 33syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ((0g‘(Scalar‘𝑊)) · 𝑌) = (0g𝑊))
3520, 34eqtrd 2764 . . . . . . . . . . . . 13 (𝜑 → ( 0 · 𝑌) = (0g𝑊))
3615, 35neeqtrrd 2999 . . . . . . . . . . . 12 (𝜑𝑋 ≠ ( 0 · 𝑌))
3736ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) → 𝑋 ≠ ( 0 · 𝑌))
38 oveq1 7394 . . . . . . . . . . . 12 (𝑚 = 0 → (𝑚 · 𝑌) = ( 0 · 𝑌))
3938neeq2d 2985 . . . . . . . . . . 11 (𝑚 = 0 → (𝑋 ≠ (𝑚 · 𝑌) ↔ 𝑋 ≠ ( 0 · 𝑌)))
4037, 39syl5ibrcom 247 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) → (𝑚 = 0𝑋 ≠ (𝑚 · 𝑌)))
4140necon2d 2948 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) → (𝑋 = (𝑚 · 𝑌) → 𝑚0 ))
4241ancrd 551 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) → (𝑋 = (𝑚 · 𝑌) → (𝑚0𝑋 = (𝑚 · 𝑌))))
43 prjspner01.s . . . . . . . . . . . . . . 15 𝑆 = (Base‘𝐾)
44 ovexd 7422 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (0...𝑁) ∈ V)
45 simplr 768 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝑚𝑆)
4627ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝑌 ∈ (Base‘𝑊))
4712ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 0 ∈ (0...𝑁))
48 eqid 2729 . . . . . . . . . . . . . . 15 (.r𝐾) = (.r𝐾)
495, 28, 43, 44, 45, 46, 47, 30, 48frlmvscaval 21677 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝑚 · 𝑌)‘0) = (𝑚(.r𝐾)(𝑌‘0)))
5049fveq2d 6862 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝐼‘((𝑚 · 𝑌)‘0)) = (𝐼‘(𝑚(.r𝐾)(𝑌‘0))))
51 prjspner01.i . . . . . . . . . . . . . 14 𝐼 = (invr𝐾)
527ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝐾 ∈ DivRing)
535, 43, 28frlmbasf 21669 . . . . . . . . . . . . . . . . 17 (((0...𝑁) ∈ V ∧ 𝑌 ∈ (Base‘𝑊)) → 𝑌:(0...𝑁)⟶𝑆)
549, 27, 53syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑𝑌:(0...𝑁)⟶𝑆)
5554, 12ffvelcdmd 7057 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌‘0) ∈ 𝑆)
5655ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝑌‘0) ∈ 𝑆)
57 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝑚0 )
58 prjspner1.2 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌‘0) ≠ 0 )
5958ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝑌‘0) ≠ 0 )
6043, 6, 48, 51, 52, 45, 56, 57, 59drnginvmuld 42515 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝐼‘(𝑚(.r𝐾)(𝑌‘0))) = ((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)))
6150, 60eqtrd 2764 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝐼‘((𝑚 · 𝑌)‘0)) = ((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)))
6261oveq1d 7402 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘((𝑚 · 𝑌)‘0)) · (𝑚 · 𝑌)) = (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)) · (𝑚 · 𝑌)))
6323ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝑊 ∈ LMod)
648ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝐾 ∈ Ring)
6543, 6, 51, 52, 56, 59drnginvrcld 20664 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝐼‘(𝑌‘0)) ∈ 𝑆)
6643, 6, 51, 52, 45, 57drnginvrcld 20664 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝐼𝑚) ∈ 𝑆)
6743, 48, 64, 65, 66ringcld 20169 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)) ∈ 𝑆)
6817fveq2d 6862 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘𝐾) = (Base‘(Scalar‘𝑊)))
6943, 68eqtrid 2776 . . . . . . . . . . . . . 14 (𝜑𝑆 = (Base‘(Scalar‘𝑊)))
7069ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝑆 = (Base‘(Scalar‘𝑊)))
7167, 70eleqtrd 2830 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)) ∈ (Base‘(Scalar‘𝑊)))
7245, 70eleqtrd 2830 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝑚 ∈ (Base‘(Scalar‘𝑊)))
73 eqid 2729 . . . . . . . . . . . . 13 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
74 eqid 2729 . . . . . . . . . . . . 13 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
7528, 29, 30, 73, 74lmodvsass 20793 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑚 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌 ∈ (Base‘𝑊))) → ((((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r‘(Scalar‘𝑊))𝑚) · 𝑌) = (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)) · (𝑚 · 𝑌)))
7663, 71, 72, 46, 75syl13anc 1374 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r‘(Scalar‘𝑊))𝑚) · 𝑌) = (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)) · (𝑚 · 𝑌)))
7743, 48, 64, 65, 66, 45ringassd 20166 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r𝐾)𝑚) = ((𝐼‘(𝑌‘0))(.r𝐾)((𝐼𝑚)(.r𝐾)𝑚)))
7852, 44, 16syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝐾 = (Scalar‘𝑊))
7978fveq2d 6862 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (.r𝐾) = (.r‘(Scalar‘𝑊)))
8079oveqd 7404 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r𝐾)𝑚) = (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r‘(Scalar‘𝑊))𝑚))
81 eqid 2729 . . . . . . . . . . . . . . . 16 (1r𝐾) = (1r𝐾)
8243, 6, 48, 81, 51, 52, 45, 57drnginvrld 20667 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼𝑚)(.r𝐾)𝑚) = (1r𝐾))
8382oveq2d 7403 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘(𝑌‘0))(.r𝐾)((𝐼𝑚)(.r𝐾)𝑚)) = ((𝐼‘(𝑌‘0))(.r𝐾)(1r𝐾)))
8443, 48, 81, 64, 65ringridmd 20182 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘(𝑌‘0))(.r𝐾)(1r𝐾)) = (𝐼‘(𝑌‘0)))
8583, 84eqtrd 2764 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘(𝑌‘0))(.r𝐾)((𝐼𝑚)(.r𝐾)𝑚)) = (𝐼‘(𝑌‘0)))
8677, 80, 853eqtr3d 2772 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r‘(Scalar‘𝑊))𝑚) = (𝐼‘(𝑌‘0)))
8786oveq1d 7402 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r‘(Scalar‘𝑊))𝑚) · 𝑌) = ((𝐼‘(𝑌‘0)) · 𝑌))
8862, 76, 873eqtr2d 2770 . . . . . . . . . 10 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘((𝑚 · 𝑌)‘0)) · (𝑚 · 𝑌)) = ((𝐼‘(𝑌‘0)) · 𝑌))
89 fveq1 6857 . . . . . . . . . . . . 13 (𝑋 = (𝑚 · 𝑌) → (𝑋‘0) = ((𝑚 · 𝑌)‘0))
9089fveq2d 6862 . . . . . . . . . . . 12 (𝑋 = (𝑚 · 𝑌) → (𝐼‘(𝑋‘0)) = (𝐼‘((𝑚 · 𝑌)‘0)))
91 id 22 . . . . . . . . . . . 12 (𝑋 = (𝑚 · 𝑌) → 𝑋 = (𝑚 · 𝑌))
9290, 91oveq12d 7405 . . . . . . . . . . 11 (𝑋 = (𝑚 · 𝑌) → ((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘((𝑚 · 𝑌)‘0)) · (𝑚 · 𝑌)))
9392eqeq1d 2731 . . . . . . . . . 10 (𝑋 = (𝑚 · 𝑌) → (((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘(𝑌‘0)) · 𝑌) ↔ ((𝐼‘((𝑚 · 𝑌)‘0)) · (𝑚 · 𝑌)) = ((𝐼‘(𝑌‘0)) · 𝑌)))
9488, 93syl5ibrcom 247 . . . . . . . . 9 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝑋 = (𝑚 · 𝑌) → ((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘(𝑌‘0)) · 𝑌)))
9594expimpd 453 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) → ((𝑚0𝑋 = (𝑚 · 𝑌)) → ((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘(𝑌‘0)) · 𝑌)))
9642, 95syld 47 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) → (𝑋 = (𝑚 · 𝑌) → ((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘(𝑌‘0)) · 𝑌)))
9796rexlimdva 3134 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (∃𝑚𝑆 𝑋 = (𝑚 · 𝑌) → ((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘(𝑌‘0)) · 𝑌)))
9897impr 454 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → ((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘(𝑌‘0)) · 𝑌))
993neneqd 2930 . . . . . . 7 (𝜑 → ¬ (𝑋‘0) = 0 )
10099iffalsed 4499 . . . . . 6 (𝜑 → if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)) = ((𝐼‘(𝑋‘0)) · 𝑋))
101100adantr 480 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)) = ((𝐼‘(𝑋‘0)) · 𝑋))
10258neneqd 2930 . . . . . . 7 (𝜑 → ¬ (𝑌‘0) = 0 )
103102iffalsed 4499 . . . . . 6 (𝜑 → if((𝑌‘0) = 0 , 𝑌, ((𝐼‘(𝑌‘0)) · 𝑌)) = ((𝐼‘(𝑌‘0)) · 𝑌))
104103adantr 480 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → if((𝑌‘0) = 0 , 𝑌, ((𝐼‘(𝑌‘0)) · 𝑌)) = ((𝐼‘(𝑌‘0)) · 𝑌))
10598, 101, 1043eqtr4d 2774 . . . 4 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)) = if((𝑌‘0) = 0 , 𝑌, ((𝐼‘(𝑌‘0)) · 𝑌)))
106 prjspner01.f . . . . 5 𝐹 = (𝑏𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)))
107 fveq1 6857 . . . . . . 7 (𝑏 = 𝑋 → (𝑏‘0) = (𝑋‘0))
108107eqeq1d 2731 . . . . . 6 (𝑏 = 𝑋 → ((𝑏‘0) = 0 ↔ (𝑋‘0) = 0 ))
109 id 22 . . . . . 6 (𝑏 = 𝑋𝑏 = 𝑋)
110107fveq2d 6862 . . . . . . 7 (𝑏 = 𝑋 → (𝐼‘(𝑏‘0)) = (𝐼‘(𝑋‘0)))
111110, 109oveq12d 7405 . . . . . 6 (𝑏 = 𝑋 → ((𝐼‘(𝑏‘0)) · 𝑏) = ((𝐼‘(𝑋‘0)) · 𝑋))
112108, 109, 111ifbieq12d 4517 . . . . 5 (𝑏 = 𝑋 → if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)) = if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)))
113 simprll 778 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → 𝑋𝐵)
114 ovexd 7422 . . . . . 6 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → ((𝐼‘(𝑋‘0)) · 𝑋) ∈ V)
115113, 114ifexd 4537 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)) ∈ V)
116106, 112, 113, 115fvmptd3 6991 . . . 4 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → (𝐹𝑋) = if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)))
117 fveq1 6857 . . . . . . 7 (𝑏 = 𝑌 → (𝑏‘0) = (𝑌‘0))
118117eqeq1d 2731 . . . . . 6 (𝑏 = 𝑌 → ((𝑏‘0) = 0 ↔ (𝑌‘0) = 0 ))
119 id 22 . . . . . 6 (𝑏 = 𝑌𝑏 = 𝑌)
120117fveq2d 6862 . . . . . . 7 (𝑏 = 𝑌 → (𝐼‘(𝑏‘0)) = (𝐼‘(𝑌‘0)))
121120, 119oveq12d 7405 . . . . . 6 (𝑏 = 𝑌 → ((𝐼‘(𝑏‘0)) · 𝑏) = ((𝐼‘(𝑌‘0)) · 𝑌))
122118, 119, 121ifbieq12d 4517 . . . . 5 (𝑏 = 𝑌 → if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)) = if((𝑌‘0) = 0 , 𝑌, ((𝐼‘(𝑌‘0)) · 𝑌)))
123 simprlr 779 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → 𝑌𝐵)
124 ovexd 7422 . . . . . 6 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → ((𝐼‘(𝑌‘0)) · 𝑌) ∈ V)
125123, 124ifexd 4537 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → if((𝑌‘0) = 0 , 𝑌, ((𝐼‘(𝑌‘0)) · 𝑌)) ∈ V)
126106, 122, 123, 125fvmptd3 6991 . . . 4 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → (𝐹𝑌) = if((𝑌‘0) = 0 , 𝑌, ((𝐼‘(𝑌‘0)) · 𝑌)))
127105, 116, 1263eqtr4d 2774 . . 3 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → (𝐹𝑋) = (𝐹𝑌))
1282, 127sylan2b 594 . 2 ((𝜑𝑋 𝑌) → (𝐹𝑋) = (𝐹𝑌))
1291, 5, 25, 43, 30, 7prjspner 42607 . . . 4 (𝜑 Er 𝐵)
130129adantr 480 . . 3 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → Er 𝐵)
131 prjspner01.x . . . . 5 (𝜑𝑋𝐵)
1321, 106, 25, 5, 30, 43, 6, 51, 7, 10, 131prjspner01 42613 . . . 4 (𝜑𝑋 (𝐹𝑋))
133132adantr 480 . . 3 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → 𝑋 (𝐹𝑋))
134129, 132ercl2 8684 . . . . . . 7 (𝜑 → (𝐹𝑋) ∈ 𝐵)
135134adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → (𝐹𝑋) ∈ 𝐵)
136130, 135erref 8691 . . . . 5 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → (𝐹𝑋) (𝐹𝑋))
137 breq2 5111 . . . . . 6 ((𝐹𝑋) = (𝐹𝑌) → ((𝐹𝑋) (𝐹𝑋) ↔ (𝐹𝑋) (𝐹𝑌)))
138137adantl 481 . . . . 5 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → ((𝐹𝑋) (𝐹𝑋) ↔ (𝐹𝑋) (𝐹𝑌)))
139136, 138mpbid 232 . . . 4 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → (𝐹𝑋) (𝐹𝑌))
1401, 106, 25, 5, 30, 43, 6, 51, 7, 10, 24prjspner01 42613 . . . . 5 (𝜑𝑌 (𝐹𝑌))
141140adantr 480 . . . 4 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → 𝑌 (𝐹𝑌))
142130, 139, 141ertr4d 8690 . . 3 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → (𝐹𝑋) 𝑌)
143130, 133, 142ertrd 8687 . 2 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → 𝑋 𝑌)
144128, 143impbida 800 1 (𝜑 → (𝑋 𝑌 ↔ (𝐹𝑋) = (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  Vcvv 3447  cdif 3911  ifcif 4488  {csn 4589   class class class wbr 5107  {copab 5169  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387   Er wer 8668  0cc0 11068  0cn0 12442  ...cfz 13468  Basecbs 17179  .rcmulr 17221  Scalarcsca 17223   ·𝑠 cvsca 17224  0gc0g 17402  1rcur 20090  Ringcrg 20142  invrcinvr 20296  DivRingcdr 20638  LModclmod 20766  LVecclvec 21009   freeLMod cfrlm 21655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-prds 17410  df-pws 17412  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-nzr 20422  df-subrg 20479  df-rlreg 20603  df-domn 20604  df-drng 20640  df-lmod 20768  df-lss 20838  df-lvec 21010  df-sra 21080  df-rgmod 21081  df-dsmm 21641  df-frlm 21656
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator