Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspner1 Structured version   Visualization version   GIF version

Theorem prjspner1 40384
Description: Two vectors whose zeroth coordinate is nonzero are equivalent if and only if they have the same representative in the (n-1)-dimensional affine subspace { x0 = 1 } . For example, vectors in 3D space whose 𝑥 coordinate is nonzero are equivalent iff they intersect at the plane 𝑥 = 1 at the same point (also see section header). (Contributed by SN, 13-Aug-2023.)
Hypotheses
Ref Expression
prjspner01.e = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝑆 𝑥 = (𝑙 · 𝑦))}
prjspner01.f 𝐹 = (𝑏𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)))
prjspner01.b 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
prjspner01.w 𝑊 = (𝐾 freeLMod (0...𝑁))
prjspner01.t · = ( ·𝑠𝑊)
prjspner01.s 𝑆 = (Base‘𝐾)
prjspner01.0 0 = (0g𝐾)
prjspner01.i 𝐼 = (invr𝐾)
prjspner01.k (𝜑𝐾 ∈ DivRing)
prjspner01.n (𝜑𝑁 ∈ ℕ0)
prjspner01.x (𝜑𝑋𝐵)
prjspner1.y (𝜑𝑌𝐵)
prjspner1.1 (𝜑 → (𝑋‘0) ≠ 0 )
prjspner1.2 (𝜑 → (𝑌‘0) ≠ 0 )
Assertion
Ref Expression
prjspner1 (𝜑 → (𝑋 𝑌 ↔ (𝐹𝑋) = (𝐹𝑌)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑋,𝑙,𝑥,𝑦   𝑊,𝑙,𝑥,𝑦   · ,𝑙,𝑥,𝑦   𝑆,𝑙   𝐼,𝑙,𝑥,𝑦   𝑥,𝐾,𝑦   𝑥, 0 ,𝑦   𝐵,𝑏   𝑋,𝑏   0 ,𝑏   · ,𝑏   𝐼,𝑏   𝜑,𝑏   𝑌,𝑙,𝑥,𝑦   𝑌,𝑏   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑙)   𝐵(𝑙)   (𝑥,𝑦,𝑏,𝑙)   𝑆(𝑏)   𝐹(𝑥,𝑦,𝑏,𝑙)   𝐾(𝑏,𝑙)   𝑁(𝑥,𝑦,𝑏,𝑙)   𝑊(𝑏)   0 (𝑙)

Proof of Theorem prjspner1
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 prjspner01.e . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝑆 𝑥 = (𝑙 · 𝑦))}
21prjsprel 40364 . . 3 (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌)))
3 prjspner1.1 . . . . . . . . . . . . . 14 (𝜑 → (𝑋‘0) ≠ 0 )
4 fveq1 6755 . . . . . . . . . . . . . . 15 (𝑋 = (0g𝑊) → (𝑋‘0) = ((0g𝑊)‘0))
5 prjspner01.w . . . . . . . . . . . . . . . 16 𝑊 = (𝐾 freeLMod (0...𝑁))
6 prjspner01.0 . . . . . . . . . . . . . . . 16 0 = (0g𝐾)
7 prjspner01.k . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ DivRing)
87drngringd 40172 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ Ring)
9 ovexd 7290 . . . . . . . . . . . . . . . 16 (𝜑 → (0...𝑁) ∈ V)
10 prjspner01.n . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ0)
11 0elfz 13282 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
1210, 11syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ∈ (0...𝑁))
135, 6, 8, 9, 12frlm0vald 40187 . . . . . . . . . . . . . . 15 (𝜑 → ((0g𝑊)‘0) = 0 )
144, 13sylan9eqr 2801 . . . . . . . . . . . . . 14 ((𝜑𝑋 = (0g𝑊)) → (𝑋‘0) = 0 )
153, 14mteqand 3047 . . . . . . . . . . . . 13 (𝜑𝑋 ≠ (0g𝑊))
165frlmsca 20870 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ DivRing ∧ (0...𝑁) ∈ V) → 𝐾 = (Scalar‘𝑊))
177, 9, 16syl2anc 583 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 = (Scalar‘𝑊))
1817fveq2d 6760 . . . . . . . . . . . . . . . 16 (𝜑 → (0g𝐾) = (0g‘(Scalar‘𝑊)))
196, 18syl5eq 2791 . . . . . . . . . . . . . . 15 (𝜑0 = (0g‘(Scalar‘𝑊)))
2019oveq1d 7270 . . . . . . . . . . . . . 14 (𝜑 → ( 0 · 𝑌) = ((0g‘(Scalar‘𝑊)) · 𝑌))
215frlmlvec 20878 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ DivRing ∧ (0...𝑁) ∈ V) → 𝑊 ∈ LVec)
227, 9, 21syl2anc 583 . . . . . . . . . . . . . . . 16 (𝜑𝑊 ∈ LVec)
2322lveclmodd 40183 . . . . . . . . . . . . . . 15 (𝜑𝑊 ∈ LMod)
24 prjspner1.y . . . . . . . . . . . . . . . . 17 (𝜑𝑌𝐵)
25 prjspner01.b . . . . . . . . . . . . . . . . 17 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
2624, 25eleqtrdi 2849 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ ((Base‘𝑊) ∖ {(0g𝑊)}))
2726eldifad 3895 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ (Base‘𝑊))
28 eqid 2738 . . . . . . . . . . . . . . . 16 (Base‘𝑊) = (Base‘𝑊)
29 eqid 2738 . . . . . . . . . . . . . . . 16 (Scalar‘𝑊) = (Scalar‘𝑊)
30 prjspner01.t . . . . . . . . . . . . . . . 16 · = ( ·𝑠𝑊)
31 eqid 2738 . . . . . . . . . . . . . . . 16 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
32 eqid 2738 . . . . . . . . . . . . . . . 16 (0g𝑊) = (0g𝑊)
3328, 29, 30, 31, 32lmod0vs 20071 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝑌 ∈ (Base‘𝑊)) → ((0g‘(Scalar‘𝑊)) · 𝑌) = (0g𝑊))
3423, 27, 33syl2anc 583 . . . . . . . . . . . . . 14 (𝜑 → ((0g‘(Scalar‘𝑊)) · 𝑌) = (0g𝑊))
3520, 34eqtrd 2778 . . . . . . . . . . . . 13 (𝜑 → ( 0 · 𝑌) = (0g𝑊))
3615, 35neeqtrrd 3017 . . . . . . . . . . . 12 (𝜑𝑋 ≠ ( 0 · 𝑌))
3736ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) → 𝑋 ≠ ( 0 · 𝑌))
38 oveq1 7262 . . . . . . . . . . . 12 (𝑚 = 0 → (𝑚 · 𝑌) = ( 0 · 𝑌))
3938neeq2d 3003 . . . . . . . . . . 11 (𝑚 = 0 → (𝑋 ≠ (𝑚 · 𝑌) ↔ 𝑋 ≠ ( 0 · 𝑌)))
4037, 39syl5ibrcom 246 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) → (𝑚 = 0𝑋 ≠ (𝑚 · 𝑌)))
4140necon2d 2965 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) → (𝑋 = (𝑚 · 𝑌) → 𝑚0 ))
4241ancrd 551 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) → (𝑋 = (𝑚 · 𝑌) → (𝑚0𝑋 = (𝑚 · 𝑌))))
43 prjspner01.s . . . . . . . . . . . . . . 15 𝑆 = (Base‘𝐾)
44 ovexd 7290 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (0...𝑁) ∈ V)
45 simplr 765 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝑚𝑆)
4627ad3antrrr 726 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝑌 ∈ (Base‘𝑊))
4712ad3antrrr 726 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 0 ∈ (0...𝑁))
48 eqid 2738 . . . . . . . . . . . . . . 15 (.r𝐾) = (.r𝐾)
495, 28, 43, 44, 45, 46, 47, 30, 48frlmvscaval 20885 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝑚 · 𝑌)‘0) = (𝑚(.r𝐾)(𝑌‘0)))
5049fveq2d 6760 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝐼‘((𝑚 · 𝑌)‘0)) = (𝐼‘(𝑚(.r𝐾)(𝑌‘0))))
51 prjspner01.i . . . . . . . . . . . . . 14 𝐼 = (invr𝐾)
527ad3antrrr 726 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝐾 ∈ DivRing)
535, 43, 28frlmbasf 20877 . . . . . . . . . . . . . . . . 17 (((0...𝑁) ∈ V ∧ 𝑌 ∈ (Base‘𝑊)) → 𝑌:(0...𝑁)⟶𝑆)
549, 27, 53syl2anc 583 . . . . . . . . . . . . . . . 16 (𝜑𝑌:(0...𝑁)⟶𝑆)
5554, 12ffvelrnd 6944 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌‘0) ∈ 𝑆)
5655ad3antrrr 726 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝑌‘0) ∈ 𝑆)
57 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝑚0 )
58 prjspner1.2 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌‘0) ≠ 0 )
5958ad3antrrr 726 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝑌‘0) ≠ 0 )
6043, 6, 48, 51, 52, 45, 56, 57, 59drnginvmuld 40180 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝐼‘(𝑚(.r𝐾)(𝑌‘0))) = ((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)))
6150, 60eqtrd 2778 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝐼‘((𝑚 · 𝑌)‘0)) = ((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)))
6261oveq1d 7270 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘((𝑚 · 𝑌)‘0)) · (𝑚 · 𝑌)) = (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)) · (𝑚 · 𝑌)))
6323ad3antrrr 726 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝑊 ∈ LMod)
648ad3antrrr 726 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝐾 ∈ Ring)
6543, 6, 51, 52, 56, 59drnginvrcld 40174 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝐼‘(𝑌‘0)) ∈ 𝑆)
6643, 6, 51, 52, 45, 57drnginvrcld 40174 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝐼𝑚) ∈ 𝑆)
6743, 48, 64, 65, 66ringcld 40166 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)) ∈ 𝑆)
6817fveq2d 6760 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘𝐾) = (Base‘(Scalar‘𝑊)))
6943, 68syl5eq 2791 . . . . . . . . . . . . . 14 (𝜑𝑆 = (Base‘(Scalar‘𝑊)))
7069ad3antrrr 726 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝑆 = (Base‘(Scalar‘𝑊)))
7167, 70eleqtrd 2841 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)) ∈ (Base‘(Scalar‘𝑊)))
7245, 70eleqtrd 2841 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝑚 ∈ (Base‘(Scalar‘𝑊)))
73 eqid 2738 . . . . . . . . . . . . 13 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
74 eqid 2738 . . . . . . . . . . . . 13 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
7528, 29, 30, 73, 74lmodvsass 20063 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑚 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌 ∈ (Base‘𝑊))) → ((((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r‘(Scalar‘𝑊))𝑚) · 𝑌) = (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)) · (𝑚 · 𝑌)))
7663, 71, 72, 46, 75syl13anc 1370 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r‘(Scalar‘𝑊))𝑚) · 𝑌) = (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)) · (𝑚 · 𝑌)))
7743, 48, 64, 65, 66, 45ringassd 40167 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r𝐾)𝑚) = ((𝐼‘(𝑌‘0))(.r𝐾)((𝐼𝑚)(.r𝐾)𝑚)))
7852, 44, 16syl2anc 583 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝐾 = (Scalar‘𝑊))
7978fveq2d 6760 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (.r𝐾) = (.r‘(Scalar‘𝑊)))
8079oveqd 7272 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r𝐾)𝑚) = (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r‘(Scalar‘𝑊))𝑚))
81 eqid 2738 . . . . . . . . . . . . . . . 16 (1r𝐾) = (1r𝐾)
8243, 6, 48, 81, 51, 52, 45, 57drnginvrld 40176 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼𝑚)(.r𝐾)𝑚) = (1r𝐾))
8382oveq2d 7271 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘(𝑌‘0))(.r𝐾)((𝐼𝑚)(.r𝐾)𝑚)) = ((𝐼‘(𝑌‘0))(.r𝐾)(1r𝐾)))
8443, 48, 81, 64, 65ringridmd 40169 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘(𝑌‘0))(.r𝐾)(1r𝐾)) = (𝐼‘(𝑌‘0)))
8583, 84eqtrd 2778 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘(𝑌‘0))(.r𝐾)((𝐼𝑚)(.r𝐾)𝑚)) = (𝐼‘(𝑌‘0)))
8677, 80, 853eqtr3d 2786 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r‘(Scalar‘𝑊))𝑚) = (𝐼‘(𝑌‘0)))
8786oveq1d 7270 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r‘(Scalar‘𝑊))𝑚) · 𝑌) = ((𝐼‘(𝑌‘0)) · 𝑌))
8862, 76, 873eqtr2d 2784 . . . . . . . . . 10 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘((𝑚 · 𝑌)‘0)) · (𝑚 · 𝑌)) = ((𝐼‘(𝑌‘0)) · 𝑌))
89 fveq1 6755 . . . . . . . . . . . . 13 (𝑋 = (𝑚 · 𝑌) → (𝑋‘0) = ((𝑚 · 𝑌)‘0))
9089fveq2d 6760 . . . . . . . . . . . 12 (𝑋 = (𝑚 · 𝑌) → (𝐼‘(𝑋‘0)) = (𝐼‘((𝑚 · 𝑌)‘0)))
91 id 22 . . . . . . . . . . . 12 (𝑋 = (𝑚 · 𝑌) → 𝑋 = (𝑚 · 𝑌))
9290, 91oveq12d 7273 . . . . . . . . . . 11 (𝑋 = (𝑚 · 𝑌) → ((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘((𝑚 · 𝑌)‘0)) · (𝑚 · 𝑌)))
9392eqeq1d 2740 . . . . . . . . . 10 (𝑋 = (𝑚 · 𝑌) → (((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘(𝑌‘0)) · 𝑌) ↔ ((𝐼‘((𝑚 · 𝑌)‘0)) · (𝑚 · 𝑌)) = ((𝐼‘(𝑌‘0)) · 𝑌)))
9488, 93syl5ibrcom 246 . . . . . . . . 9 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝑋 = (𝑚 · 𝑌) → ((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘(𝑌‘0)) · 𝑌)))
9594expimpd 453 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) → ((𝑚0𝑋 = (𝑚 · 𝑌)) → ((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘(𝑌‘0)) · 𝑌)))
9642, 95syld 47 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) → (𝑋 = (𝑚 · 𝑌) → ((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘(𝑌‘0)) · 𝑌)))
9796rexlimdva 3212 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (∃𝑚𝑆 𝑋 = (𝑚 · 𝑌) → ((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘(𝑌‘0)) · 𝑌)))
9897impr 454 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → ((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘(𝑌‘0)) · 𝑌))
993neneqd 2947 . . . . . . 7 (𝜑 → ¬ (𝑋‘0) = 0 )
10099iffalsed 4467 . . . . . 6 (𝜑 → if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)) = ((𝐼‘(𝑋‘0)) · 𝑋))
101100adantr 480 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)) = ((𝐼‘(𝑋‘0)) · 𝑋))
10258neneqd 2947 . . . . . . 7 (𝜑 → ¬ (𝑌‘0) = 0 )
103102iffalsed 4467 . . . . . 6 (𝜑 → if((𝑌‘0) = 0 , 𝑌, ((𝐼‘(𝑌‘0)) · 𝑌)) = ((𝐼‘(𝑌‘0)) · 𝑌))
104103adantr 480 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → if((𝑌‘0) = 0 , 𝑌, ((𝐼‘(𝑌‘0)) · 𝑌)) = ((𝐼‘(𝑌‘0)) · 𝑌))
10598, 101, 1043eqtr4d 2788 . . . 4 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)) = if((𝑌‘0) = 0 , 𝑌, ((𝐼‘(𝑌‘0)) · 𝑌)))
106 prjspner01.f . . . . 5 𝐹 = (𝑏𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)))
107 fveq1 6755 . . . . . . 7 (𝑏 = 𝑋 → (𝑏‘0) = (𝑋‘0))
108107eqeq1d 2740 . . . . . 6 (𝑏 = 𝑋 → ((𝑏‘0) = 0 ↔ (𝑋‘0) = 0 ))
109 id 22 . . . . . 6 (𝑏 = 𝑋𝑏 = 𝑋)
110107fveq2d 6760 . . . . . . 7 (𝑏 = 𝑋 → (𝐼‘(𝑏‘0)) = (𝐼‘(𝑋‘0)))
111110, 109oveq12d 7273 . . . . . 6 (𝑏 = 𝑋 → ((𝐼‘(𝑏‘0)) · 𝑏) = ((𝐼‘(𝑋‘0)) · 𝑋))
112108, 109, 111ifbieq12d 4484 . . . . 5 (𝑏 = 𝑋 → if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)) = if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)))
113 simprll 775 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → 𝑋𝐵)
114 ovexd 7290 . . . . . 6 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → ((𝐼‘(𝑋‘0)) · 𝑋) ∈ V)
115113, 114ifexd 4504 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)) ∈ V)
116106, 112, 113, 115fvmptd3 6880 . . . 4 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → (𝐹𝑋) = if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)))
117 fveq1 6755 . . . . . . 7 (𝑏 = 𝑌 → (𝑏‘0) = (𝑌‘0))
118117eqeq1d 2740 . . . . . 6 (𝑏 = 𝑌 → ((𝑏‘0) = 0 ↔ (𝑌‘0) = 0 ))
119 id 22 . . . . . 6 (𝑏 = 𝑌𝑏 = 𝑌)
120117fveq2d 6760 . . . . . . 7 (𝑏 = 𝑌 → (𝐼‘(𝑏‘0)) = (𝐼‘(𝑌‘0)))
121120, 119oveq12d 7273 . . . . . 6 (𝑏 = 𝑌 → ((𝐼‘(𝑏‘0)) · 𝑏) = ((𝐼‘(𝑌‘0)) · 𝑌))
122118, 119, 121ifbieq12d 4484 . . . . 5 (𝑏 = 𝑌 → if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)) = if((𝑌‘0) = 0 , 𝑌, ((𝐼‘(𝑌‘0)) · 𝑌)))
123 simprlr 776 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → 𝑌𝐵)
124 ovexd 7290 . . . . . 6 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → ((𝐼‘(𝑌‘0)) · 𝑌) ∈ V)
125123, 124ifexd 4504 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → if((𝑌‘0) = 0 , 𝑌, ((𝐼‘(𝑌‘0)) · 𝑌)) ∈ V)
126106, 122, 123, 125fvmptd3 6880 . . . 4 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → (𝐹𝑌) = if((𝑌‘0) = 0 , 𝑌, ((𝐼‘(𝑌‘0)) · 𝑌)))
127105, 116, 1263eqtr4d 2788 . . 3 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → (𝐹𝑋) = (𝐹𝑌))
1282, 127sylan2b 593 . 2 ((𝜑𝑋 𝑌) → (𝐹𝑋) = (𝐹𝑌))
1291, 5, 25, 43, 30, 7prjspner 40379 . . . 4 (𝜑 Er 𝐵)
130129adantr 480 . . 3 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → Er 𝐵)
131 prjspner01.x . . . . 5 (𝜑𝑋𝐵)
1321, 106, 25, 5, 30, 43, 6, 51, 7, 10, 131prjspner01 40383 . . . 4 (𝜑𝑋 (𝐹𝑋))
133132adantr 480 . . 3 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → 𝑋 (𝐹𝑋))
134129, 132ercl2 8469 . . . . . . 7 (𝜑 → (𝐹𝑋) ∈ 𝐵)
135134adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → (𝐹𝑋) ∈ 𝐵)
136130, 135erref 8476 . . . . 5 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → (𝐹𝑋) (𝐹𝑋))
137 breq2 5074 . . . . . 6 ((𝐹𝑋) = (𝐹𝑌) → ((𝐹𝑋) (𝐹𝑋) ↔ (𝐹𝑋) (𝐹𝑌)))
138137adantl 481 . . . . 5 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → ((𝐹𝑋) (𝐹𝑋) ↔ (𝐹𝑋) (𝐹𝑌)))
139136, 138mpbid 231 . . . 4 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → (𝐹𝑋) (𝐹𝑌))
1401, 106, 25, 5, 30, 43, 6, 51, 7, 10, 24prjspner01 40383 . . . . 5 (𝜑𝑌 (𝐹𝑌))
141140adantr 480 . . . 4 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → 𝑌 (𝐹𝑌))
142130, 139, 141ertr4d 8475 . . 3 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → (𝐹𝑋) 𝑌)
143130, 133, 142ertrd 8472 . 2 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → 𝑋 𝑌)
144128, 143impbida 797 1 (𝜑 → (𝑋 𝑌 ↔ (𝐹𝑋) = (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wrex 3064  Vcvv 3422  cdif 3880  ifcif 4456  {csn 4558   class class class wbr 5070  {copab 5132  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255   Er wer 8453  0cc0 10802  0cn0 12163  ...cfz 13168  Basecbs 16840  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  1rcur 19652  Ringcrg 19698  invrcinvr 19828  DivRingcdr 19906  LModclmod 20038  LVecclvec 20279   freeLMod cfrlm 20863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-0g 17069  df-prds 17075  df-pws 17077  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-subrg 19937  df-lmod 20040  df-lss 20109  df-lvec 20280  df-sra 20349  df-rgmod 20350  df-dsmm 20849  df-frlm 20864
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator