Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspner1 Structured version   Visualization version   GIF version

Theorem prjspner1 42636
Description: Two vectors whose zeroth coordinate is nonzero are equivalent if and only if they have the same representative in the (n-1)-dimensional affine subspace { x0 = 1 } . For example, vectors in 3D space whose 𝑥 coordinate is nonzero are equivalent iff they intersect at the plane 𝑥 = 1 at the same point (also see section header). (Contributed by SN, 13-Aug-2023.)
Hypotheses
Ref Expression
prjspner01.e = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝑆 𝑥 = (𝑙 · 𝑦))}
prjspner01.f 𝐹 = (𝑏𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)))
prjspner01.b 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
prjspner01.w 𝑊 = (𝐾 freeLMod (0...𝑁))
prjspner01.t · = ( ·𝑠𝑊)
prjspner01.s 𝑆 = (Base‘𝐾)
prjspner01.0 0 = (0g𝐾)
prjspner01.i 𝐼 = (invr𝐾)
prjspner01.k (𝜑𝐾 ∈ DivRing)
prjspner01.n (𝜑𝑁 ∈ ℕ0)
prjspner01.x (𝜑𝑋𝐵)
prjspner1.y (𝜑𝑌𝐵)
prjspner1.1 (𝜑 → (𝑋‘0) ≠ 0 )
prjspner1.2 (𝜑 → (𝑌‘0) ≠ 0 )
Assertion
Ref Expression
prjspner1 (𝜑 → (𝑋 𝑌 ↔ (𝐹𝑋) = (𝐹𝑌)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑋,𝑙,𝑥,𝑦   𝑊,𝑙,𝑥,𝑦   · ,𝑙,𝑥,𝑦   𝑆,𝑙   𝐼,𝑙,𝑥,𝑦   𝑥,𝐾,𝑦   𝑥, 0 ,𝑦   𝐵,𝑏   𝑋,𝑏   0 ,𝑏   · ,𝑏   𝐼,𝑏   𝜑,𝑏   𝑌,𝑙,𝑥,𝑦   𝑌,𝑏   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑙)   𝐵(𝑙)   (𝑥,𝑦,𝑏,𝑙)   𝑆(𝑏)   𝐹(𝑥,𝑦,𝑏,𝑙)   𝐾(𝑏,𝑙)   𝑁(𝑥,𝑦,𝑏,𝑙)   𝑊(𝑏)   0 (𝑙)

Proof of Theorem prjspner1
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 prjspner01.e . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝑆 𝑥 = (𝑙 · 𝑦))}
21prjsprel 42614 . . 3 (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌)))
3 prjspner1.1 . . . . . . . . . . . . . 14 (𝜑 → (𝑋‘0) ≠ 0 )
4 fveq1 6905 . . . . . . . . . . . . . . 15 (𝑋 = (0g𝑊) → (𝑋‘0) = ((0g𝑊)‘0))
5 prjspner01.w . . . . . . . . . . . . . . . 16 𝑊 = (𝐾 freeLMod (0...𝑁))
6 prjspner01.0 . . . . . . . . . . . . . . . 16 0 = (0g𝐾)
7 prjspner01.k . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ DivRing)
87drngringd 20737 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ Ring)
9 ovexd 7466 . . . . . . . . . . . . . . . 16 (𝜑 → (0...𝑁) ∈ V)
10 prjspner01.n . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ0)
11 0elfz 13664 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
1210, 11syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ∈ (0...𝑁))
135, 6, 8, 9, 12frlm0vald 42549 . . . . . . . . . . . . . . 15 (𝜑 → ((0g𝑊)‘0) = 0 )
144, 13sylan9eqr 2799 . . . . . . . . . . . . . 14 ((𝜑𝑋 = (0g𝑊)) → (𝑋‘0) = 0 )
153, 14mteqand 3033 . . . . . . . . . . . . 13 (𝜑𝑋 ≠ (0g𝑊))
165frlmsca 21773 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ DivRing ∧ (0...𝑁) ∈ V) → 𝐾 = (Scalar‘𝑊))
177, 9, 16syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 = (Scalar‘𝑊))
1817fveq2d 6910 . . . . . . . . . . . . . . . 16 (𝜑 → (0g𝐾) = (0g‘(Scalar‘𝑊)))
196, 18eqtrid 2789 . . . . . . . . . . . . . . 15 (𝜑0 = (0g‘(Scalar‘𝑊)))
2019oveq1d 7446 . . . . . . . . . . . . . 14 (𝜑 → ( 0 · 𝑌) = ((0g‘(Scalar‘𝑊)) · 𝑌))
215frlmlvec 21781 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ DivRing ∧ (0...𝑁) ∈ V) → 𝑊 ∈ LVec)
227, 9, 21syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑𝑊 ∈ LVec)
2322lveclmodd 21106 . . . . . . . . . . . . . . 15 (𝜑𝑊 ∈ LMod)
24 prjspner1.y . . . . . . . . . . . . . . . . 17 (𝜑𝑌𝐵)
25 prjspner01.b . . . . . . . . . . . . . . . . 17 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
2624, 25eleqtrdi 2851 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ ((Base‘𝑊) ∖ {(0g𝑊)}))
2726eldifad 3963 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ (Base‘𝑊))
28 eqid 2737 . . . . . . . . . . . . . . . 16 (Base‘𝑊) = (Base‘𝑊)
29 eqid 2737 . . . . . . . . . . . . . . . 16 (Scalar‘𝑊) = (Scalar‘𝑊)
30 prjspner01.t . . . . . . . . . . . . . . . 16 · = ( ·𝑠𝑊)
31 eqid 2737 . . . . . . . . . . . . . . . 16 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
32 eqid 2737 . . . . . . . . . . . . . . . 16 (0g𝑊) = (0g𝑊)
3328, 29, 30, 31, 32lmod0vs 20893 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝑌 ∈ (Base‘𝑊)) → ((0g‘(Scalar‘𝑊)) · 𝑌) = (0g𝑊))
3423, 27, 33syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ((0g‘(Scalar‘𝑊)) · 𝑌) = (0g𝑊))
3520, 34eqtrd 2777 . . . . . . . . . . . . 13 (𝜑 → ( 0 · 𝑌) = (0g𝑊))
3615, 35neeqtrrd 3015 . . . . . . . . . . . 12 (𝜑𝑋 ≠ ( 0 · 𝑌))
3736ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) → 𝑋 ≠ ( 0 · 𝑌))
38 oveq1 7438 . . . . . . . . . . . 12 (𝑚 = 0 → (𝑚 · 𝑌) = ( 0 · 𝑌))
3938neeq2d 3001 . . . . . . . . . . 11 (𝑚 = 0 → (𝑋 ≠ (𝑚 · 𝑌) ↔ 𝑋 ≠ ( 0 · 𝑌)))
4037, 39syl5ibrcom 247 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) → (𝑚 = 0𝑋 ≠ (𝑚 · 𝑌)))
4140necon2d 2963 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) → (𝑋 = (𝑚 · 𝑌) → 𝑚0 ))
4241ancrd 551 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) → (𝑋 = (𝑚 · 𝑌) → (𝑚0𝑋 = (𝑚 · 𝑌))))
43 prjspner01.s . . . . . . . . . . . . . . 15 𝑆 = (Base‘𝐾)
44 ovexd 7466 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (0...𝑁) ∈ V)
45 simplr 769 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝑚𝑆)
4627ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝑌 ∈ (Base‘𝑊))
4712ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 0 ∈ (0...𝑁))
48 eqid 2737 . . . . . . . . . . . . . . 15 (.r𝐾) = (.r𝐾)
495, 28, 43, 44, 45, 46, 47, 30, 48frlmvscaval 21788 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝑚 · 𝑌)‘0) = (𝑚(.r𝐾)(𝑌‘0)))
5049fveq2d 6910 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝐼‘((𝑚 · 𝑌)‘0)) = (𝐼‘(𝑚(.r𝐾)(𝑌‘0))))
51 prjspner01.i . . . . . . . . . . . . . 14 𝐼 = (invr𝐾)
527ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝐾 ∈ DivRing)
535, 43, 28frlmbasf 21780 . . . . . . . . . . . . . . . . 17 (((0...𝑁) ∈ V ∧ 𝑌 ∈ (Base‘𝑊)) → 𝑌:(0...𝑁)⟶𝑆)
549, 27, 53syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑𝑌:(0...𝑁)⟶𝑆)
5554, 12ffvelcdmd 7105 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌‘0) ∈ 𝑆)
5655ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝑌‘0) ∈ 𝑆)
57 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝑚0 )
58 prjspner1.2 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌‘0) ≠ 0 )
5958ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝑌‘0) ≠ 0 )
6043, 6, 48, 51, 52, 45, 56, 57, 59drnginvmuld 42537 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝐼‘(𝑚(.r𝐾)(𝑌‘0))) = ((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)))
6150, 60eqtrd 2777 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝐼‘((𝑚 · 𝑌)‘0)) = ((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)))
6261oveq1d 7446 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘((𝑚 · 𝑌)‘0)) · (𝑚 · 𝑌)) = (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)) · (𝑚 · 𝑌)))
6323ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝑊 ∈ LMod)
648ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝐾 ∈ Ring)
6543, 6, 51, 52, 56, 59drnginvrcld 20755 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝐼‘(𝑌‘0)) ∈ 𝑆)
6643, 6, 51, 52, 45, 57drnginvrcld 20755 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝐼𝑚) ∈ 𝑆)
6743, 48, 64, 65, 66ringcld 20257 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)) ∈ 𝑆)
6817fveq2d 6910 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘𝐾) = (Base‘(Scalar‘𝑊)))
6943, 68eqtrid 2789 . . . . . . . . . . . . . 14 (𝜑𝑆 = (Base‘(Scalar‘𝑊)))
7069ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝑆 = (Base‘(Scalar‘𝑊)))
7167, 70eleqtrd 2843 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)) ∈ (Base‘(Scalar‘𝑊)))
7245, 70eleqtrd 2843 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝑚 ∈ (Base‘(Scalar‘𝑊)))
73 eqid 2737 . . . . . . . . . . . . 13 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
74 eqid 2737 . . . . . . . . . . . . 13 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
7528, 29, 30, 73, 74lmodvsass 20885 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑚 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌 ∈ (Base‘𝑊))) → ((((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r‘(Scalar‘𝑊))𝑚) · 𝑌) = (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)) · (𝑚 · 𝑌)))
7663, 71, 72, 46, 75syl13anc 1374 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r‘(Scalar‘𝑊))𝑚) · 𝑌) = (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚)) · (𝑚 · 𝑌)))
7743, 48, 64, 65, 66, 45ringassd 20254 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r𝐾)𝑚) = ((𝐼‘(𝑌‘0))(.r𝐾)((𝐼𝑚)(.r𝐾)𝑚)))
7852, 44, 16syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → 𝐾 = (Scalar‘𝑊))
7978fveq2d 6910 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (.r𝐾) = (.r‘(Scalar‘𝑊)))
8079oveqd 7448 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r𝐾)𝑚) = (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r‘(Scalar‘𝑊))𝑚))
81 eqid 2737 . . . . . . . . . . . . . . . 16 (1r𝐾) = (1r𝐾)
8243, 6, 48, 81, 51, 52, 45, 57drnginvrld 20758 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼𝑚)(.r𝐾)𝑚) = (1r𝐾))
8382oveq2d 7447 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘(𝑌‘0))(.r𝐾)((𝐼𝑚)(.r𝐾)𝑚)) = ((𝐼‘(𝑌‘0))(.r𝐾)(1r𝐾)))
8443, 48, 81, 64, 65ringridmd 20270 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘(𝑌‘0))(.r𝐾)(1r𝐾)) = (𝐼‘(𝑌‘0)))
8583, 84eqtrd 2777 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘(𝑌‘0))(.r𝐾)((𝐼𝑚)(.r𝐾)𝑚)) = (𝐼‘(𝑌‘0)))
8677, 80, 853eqtr3d 2785 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r‘(Scalar‘𝑊))𝑚) = (𝐼‘(𝑌‘0)))
8786oveq1d 7446 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((((𝐼‘(𝑌‘0))(.r𝐾)(𝐼𝑚))(.r‘(Scalar‘𝑊))𝑚) · 𝑌) = ((𝐼‘(𝑌‘0)) · 𝑌))
8862, 76, 873eqtr2d 2783 . . . . . . . . . 10 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → ((𝐼‘((𝑚 · 𝑌)‘0)) · (𝑚 · 𝑌)) = ((𝐼‘(𝑌‘0)) · 𝑌))
89 fveq1 6905 . . . . . . . . . . . . 13 (𝑋 = (𝑚 · 𝑌) → (𝑋‘0) = ((𝑚 · 𝑌)‘0))
9089fveq2d 6910 . . . . . . . . . . . 12 (𝑋 = (𝑚 · 𝑌) → (𝐼‘(𝑋‘0)) = (𝐼‘((𝑚 · 𝑌)‘0)))
91 id 22 . . . . . . . . . . . 12 (𝑋 = (𝑚 · 𝑌) → 𝑋 = (𝑚 · 𝑌))
9290, 91oveq12d 7449 . . . . . . . . . . 11 (𝑋 = (𝑚 · 𝑌) → ((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘((𝑚 · 𝑌)‘0)) · (𝑚 · 𝑌)))
9392eqeq1d 2739 . . . . . . . . . 10 (𝑋 = (𝑚 · 𝑌) → (((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘(𝑌‘0)) · 𝑌) ↔ ((𝐼‘((𝑚 · 𝑌)‘0)) · (𝑚 · 𝑌)) = ((𝐼‘(𝑌‘0)) · 𝑌)))
9488, 93syl5ibrcom 247 . . . . . . . . 9 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) ∧ 𝑚0 ) → (𝑋 = (𝑚 · 𝑌) → ((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘(𝑌‘0)) · 𝑌)))
9594expimpd 453 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) → ((𝑚0𝑋 = (𝑚 · 𝑌)) → ((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘(𝑌‘0)) · 𝑌)))
9642, 95syld 47 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑚𝑆) → (𝑋 = (𝑚 · 𝑌) → ((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘(𝑌‘0)) · 𝑌)))
9796rexlimdva 3155 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (∃𝑚𝑆 𝑋 = (𝑚 · 𝑌) → ((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘(𝑌‘0)) · 𝑌)))
9897impr 454 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → ((𝐼‘(𝑋‘0)) · 𝑋) = ((𝐼‘(𝑌‘0)) · 𝑌))
993neneqd 2945 . . . . . . 7 (𝜑 → ¬ (𝑋‘0) = 0 )
10099iffalsed 4536 . . . . . 6 (𝜑 → if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)) = ((𝐼‘(𝑋‘0)) · 𝑋))
101100adantr 480 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)) = ((𝐼‘(𝑋‘0)) · 𝑋))
10258neneqd 2945 . . . . . . 7 (𝜑 → ¬ (𝑌‘0) = 0 )
103102iffalsed 4536 . . . . . 6 (𝜑 → if((𝑌‘0) = 0 , 𝑌, ((𝐼‘(𝑌‘0)) · 𝑌)) = ((𝐼‘(𝑌‘0)) · 𝑌))
104103adantr 480 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → if((𝑌‘0) = 0 , 𝑌, ((𝐼‘(𝑌‘0)) · 𝑌)) = ((𝐼‘(𝑌‘0)) · 𝑌))
10598, 101, 1043eqtr4d 2787 . . . 4 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)) = if((𝑌‘0) = 0 , 𝑌, ((𝐼‘(𝑌‘0)) · 𝑌)))
106 prjspner01.f . . . . 5 𝐹 = (𝑏𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)))
107 fveq1 6905 . . . . . . 7 (𝑏 = 𝑋 → (𝑏‘0) = (𝑋‘0))
108107eqeq1d 2739 . . . . . 6 (𝑏 = 𝑋 → ((𝑏‘0) = 0 ↔ (𝑋‘0) = 0 ))
109 id 22 . . . . . 6 (𝑏 = 𝑋𝑏 = 𝑋)
110107fveq2d 6910 . . . . . . 7 (𝑏 = 𝑋 → (𝐼‘(𝑏‘0)) = (𝐼‘(𝑋‘0)))
111110, 109oveq12d 7449 . . . . . 6 (𝑏 = 𝑋 → ((𝐼‘(𝑏‘0)) · 𝑏) = ((𝐼‘(𝑋‘0)) · 𝑋))
112108, 109, 111ifbieq12d 4554 . . . . 5 (𝑏 = 𝑋 → if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)) = if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)))
113 simprll 779 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → 𝑋𝐵)
114 ovexd 7466 . . . . . 6 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → ((𝐼‘(𝑋‘0)) · 𝑋) ∈ V)
115113, 114ifexd 4574 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)) ∈ V)
116106, 112, 113, 115fvmptd3 7039 . . . 4 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → (𝐹𝑋) = if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)))
117 fveq1 6905 . . . . . . 7 (𝑏 = 𝑌 → (𝑏‘0) = (𝑌‘0))
118117eqeq1d 2739 . . . . . 6 (𝑏 = 𝑌 → ((𝑏‘0) = 0 ↔ (𝑌‘0) = 0 ))
119 id 22 . . . . . 6 (𝑏 = 𝑌𝑏 = 𝑌)
120117fveq2d 6910 . . . . . . 7 (𝑏 = 𝑌 → (𝐼‘(𝑏‘0)) = (𝐼‘(𝑌‘0)))
121120, 119oveq12d 7449 . . . . . 6 (𝑏 = 𝑌 → ((𝐼‘(𝑏‘0)) · 𝑏) = ((𝐼‘(𝑌‘0)) · 𝑌))
122118, 119, 121ifbieq12d 4554 . . . . 5 (𝑏 = 𝑌 → if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)) = if((𝑌‘0) = 0 , 𝑌, ((𝐼‘(𝑌‘0)) · 𝑌)))
123 simprlr 780 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → 𝑌𝐵)
124 ovexd 7466 . . . . . 6 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → ((𝐼‘(𝑌‘0)) · 𝑌) ∈ V)
125123, 124ifexd 4574 . . . . 5 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → if((𝑌‘0) = 0 , 𝑌, ((𝐼‘(𝑌‘0)) · 𝑌)) ∈ V)
126106, 122, 123, 125fvmptd3 7039 . . . 4 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → (𝐹𝑌) = if((𝑌‘0) = 0 , 𝑌, ((𝐼‘(𝑌‘0)) · 𝑌)))
127105, 116, 1263eqtr4d 2787 . . 3 ((𝜑 ∧ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝑆 𝑋 = (𝑚 · 𝑌))) → (𝐹𝑋) = (𝐹𝑌))
1282, 127sylan2b 594 . 2 ((𝜑𝑋 𝑌) → (𝐹𝑋) = (𝐹𝑌))
1291, 5, 25, 43, 30, 7prjspner 42629 . . . 4 (𝜑 Er 𝐵)
130129adantr 480 . . 3 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → Er 𝐵)
131 prjspner01.x . . . . 5 (𝜑𝑋𝐵)
1321, 106, 25, 5, 30, 43, 6, 51, 7, 10, 131prjspner01 42635 . . . 4 (𝜑𝑋 (𝐹𝑋))
133132adantr 480 . . 3 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → 𝑋 (𝐹𝑋))
134129, 132ercl2 8758 . . . . . . 7 (𝜑 → (𝐹𝑋) ∈ 𝐵)
135134adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → (𝐹𝑋) ∈ 𝐵)
136130, 135erref 8765 . . . . 5 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → (𝐹𝑋) (𝐹𝑋))
137 breq2 5147 . . . . . 6 ((𝐹𝑋) = (𝐹𝑌) → ((𝐹𝑋) (𝐹𝑋) ↔ (𝐹𝑋) (𝐹𝑌)))
138137adantl 481 . . . . 5 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → ((𝐹𝑋) (𝐹𝑋) ↔ (𝐹𝑋) (𝐹𝑌)))
139136, 138mpbid 232 . . . 4 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → (𝐹𝑋) (𝐹𝑌))
1401, 106, 25, 5, 30, 43, 6, 51, 7, 10, 24prjspner01 42635 . . . . 5 (𝜑𝑌 (𝐹𝑌))
141140adantr 480 . . . 4 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → 𝑌 (𝐹𝑌))
142130, 139, 141ertr4d 8764 . . 3 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → (𝐹𝑋) 𝑌)
143130, 133, 142ertrd 8761 . 2 ((𝜑 ∧ (𝐹𝑋) = (𝐹𝑌)) → 𝑋 𝑌)
144128, 143impbida 801 1 (𝜑 → (𝑋 𝑌 ↔ (𝐹𝑋) = (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wrex 3070  Vcvv 3480  cdif 3948  ifcif 4525  {csn 4626   class class class wbr 5143  {copab 5205  cmpt 5225  wf 6557  cfv 6561  (class class class)co 7431   Er wer 8742  0cc0 11155  0cn0 12526  ...cfz 13547  Basecbs 17247  .rcmulr 17298  Scalarcsca 17300   ·𝑠 cvsca 17301  0gc0g 17484  1rcur 20178  Ringcrg 20230  invrcinvr 20387  DivRingcdr 20729  LModclmod 20858  LVecclvec 21101   freeLMod cfrlm 21766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17486  df-prds 17492  df-pws 17494  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-nzr 20513  df-subrg 20570  df-rlreg 20694  df-domn 20695  df-drng 20731  df-lmod 20860  df-lss 20930  df-lvec 21102  df-sra 21172  df-rgmod 21173  df-dsmm 21752  df-frlm 21767
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator