MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neor Structured version   Visualization version   GIF version

Theorem neor 3075
Description: Logical OR with an equality. (Contributed by NM, 29-Apr-2007.)
Assertion
Ref Expression
neor ((𝐴 = 𝐵𝜓) ↔ (𝐴𝐵𝜓))

Proof of Theorem neor
StepHypRef Expression
1 df-or 843 . 2 ((𝐴 = 𝐵𝜓) ↔ (¬ 𝐴 = 𝐵𝜓))
2 df-ne 2984 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
32imbi1i 351 . 2 ((𝐴𝐵𝜓) ↔ (¬ 𝐴 = 𝐵𝜓))
41, 3bitr4i 279 1 ((𝐴 = 𝐵𝜓) ↔ (𝐴𝐵𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wo 842   = wceq 1522  wne 2983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 208  df-or 843  df-ne 2984
This theorem is referenced by:  frsn  5528  ord0eln0  6123  fimaxre  11434  fimaxreOLD  11435  fiminre  11438  prime  11913  h1datomi  29041  elat2  29800  bnj563  31623  divrngidl  34851  dmncan1  34899  lkrshp4  35788  cvrcmp  35963  leat2  35974  isat3  35987  2llnmat  36204  2lnat  36464
  Copyright terms: Public domain W3C validator