| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neor | Structured version Visualization version GIF version | ||
| Description: Logical OR with an equality. (Contributed by NM, 29-Apr-2007.) |
| Ref | Expression |
|---|---|
| neor | ⊢ ((𝐴 = 𝐵 ∨ 𝜓) ↔ (𝐴 ≠ 𝐵 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-or 848 | . 2 ⊢ ((𝐴 = 𝐵 ∨ 𝜓) ↔ (¬ 𝐴 = 𝐵 → 𝜓)) | |
| 2 | df-ne 2932 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 2 | imbi1i 349 | . 2 ⊢ ((𝐴 ≠ 𝐵 → 𝜓) ↔ (¬ 𝐴 = 𝐵 → 𝜓)) |
| 4 | 1, 3 | bitr4i 278 | 1 ⊢ ((𝐴 = 𝐵 ∨ 𝜓) ↔ (𝐴 ≠ 𝐵 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1539 ≠ wne 2931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ne 2932 |
| This theorem is referenced by: frsn 5753 ord0eln0 6419 fimaxre 12194 fiminre 12197 prime 12682 h1datomi 31528 elat2 32287 bnj563 34716 divrngidl 37994 dmncan1 38042 lkrshp4 39068 cvrcmp 39243 leat2 39254 isat3 39267 2llnmat 39485 2lnat 39745 |
| Copyright terms: Public domain | W3C validator |