MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neor Structured version   Visualization version   GIF version

Theorem neor 3036
Description: Logical OR with an equality. (Contributed by NM, 29-Apr-2007.)
Assertion
Ref Expression
neor ((𝐴 = 𝐵𝜓) ↔ (𝐴𝐵𝜓))

Proof of Theorem neor
StepHypRef Expression
1 df-or 845 . 2 ((𝐴 = 𝐵𝜓) ↔ (¬ 𝐴 = 𝐵𝜓))
2 df-ne 2944 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
32imbi1i 350 . 2 ((𝐴𝐵𝜓) ↔ (¬ 𝐴 = 𝐵𝜓))
41, 3bitr4i 277 1 ((𝐴 = 𝐵𝜓) ↔ (𝐴𝐵𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wo 844   = wceq 1539  wne 2943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845  df-ne 2944
This theorem is referenced by:  frsn  5674  ord0eln0  6320  fimaxre  11919  fiminre  11922  prime  12401  h1datomi  29943  elat2  30702  bnj563  32723  divrngidl  36186  dmncan1  36234  lkrshp4  37122  cvrcmp  37297  leat2  37308  isat3  37321  2llnmat  37538  2lnat  37798
  Copyright terms: Public domain W3C validator