Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neor | Structured version Visualization version GIF version |
Description: Logical OR with an equality. (Contributed by NM, 29-Apr-2007.) |
Ref | Expression |
---|---|
neor | ⊢ ((𝐴 = 𝐵 ∨ 𝜓) ↔ (𝐴 ≠ 𝐵 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-or 845 | . 2 ⊢ ((𝐴 = 𝐵 ∨ 𝜓) ↔ (¬ 𝐴 = 𝐵 → 𝜓)) | |
2 | df-ne 2952 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 2 | imbi1i 353 | . 2 ⊢ ((𝐴 ≠ 𝐵 → 𝜓) ↔ (¬ 𝐴 = 𝐵 → 𝜓)) |
4 | 1, 3 | bitr4i 281 | 1 ⊢ ((𝐴 = 𝐵 ∨ 𝜓) ↔ (𝐴 ≠ 𝐵 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∨ wo 844 = wceq 1538 ≠ wne 2951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-or 845 df-ne 2952 |
This theorem is referenced by: frsn 5608 ord0eln0 6223 fimaxre 11622 fiminre 11625 prime 12102 h1datomi 29463 elat2 30222 bnj563 32242 divrngidl 35746 dmncan1 35794 lkrshp4 36684 cvrcmp 36859 leat2 36870 isat3 36883 2llnmat 37100 2lnat 37360 |
Copyright terms: Public domain | W3C validator |