MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neor Structured version   Visualization version   GIF version

Theorem neor 3023
Description: Logical OR with an equality. (Contributed by NM, 29-Apr-2007.)
Assertion
Ref Expression
neor ((𝐴 = 𝐵𝜓) ↔ (𝐴𝐵𝜓))

Proof of Theorem neor
StepHypRef Expression
1 df-or 848 . 2 ((𝐴 = 𝐵𝜓) ↔ (¬ 𝐴 = 𝐵𝜓))
2 df-ne 2932 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
32imbi1i 349 . 2 ((𝐴𝐵𝜓) ↔ (¬ 𝐴 = 𝐵𝜓))
41, 3bitr4i 278 1 ((𝐴 = 𝐵𝜓) ↔ (𝐴𝐵𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 847   = wceq 1539  wne 2931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848  df-ne 2932
This theorem is referenced by:  frsn  5753  ord0eln0  6419  fimaxre  12194  fiminre  12197  prime  12682  h1datomi  31528  elat2  32287  bnj563  34716  divrngidl  37994  dmncan1  38042  lkrshp4  39068  cvrcmp  39243  leat2  39254  isat3  39267  2llnmat  39485  2lnat  39745
  Copyright terms: Public domain W3C validator