| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neor | Structured version Visualization version GIF version | ||
| Description: Logical OR with an equality. (Contributed by NM, 29-Apr-2007.) |
| Ref | Expression |
|---|---|
| neor | ⊢ ((𝐴 = 𝐵 ∨ 𝜓) ↔ (𝐴 ≠ 𝐵 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-or 848 | . 2 ⊢ ((𝐴 = 𝐵 ∨ 𝜓) ↔ (¬ 𝐴 = 𝐵 → 𝜓)) | |
| 2 | df-ne 2926 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 2 | imbi1i 349 | . 2 ⊢ ((𝐴 ≠ 𝐵 → 𝜓) ↔ (¬ 𝐴 = 𝐵 → 𝜓)) |
| 4 | 1, 3 | bitr4i 278 | 1 ⊢ ((𝐴 = 𝐵 ∨ 𝜓) ↔ (𝐴 ≠ 𝐵 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ne 2926 |
| This theorem is referenced by: frsn 5726 ord0eln0 6388 fimaxre 12127 fiminre 12130 prime 12615 h1datomi 31510 elat2 32269 bnj563 34733 divrngidl 38022 dmncan1 38070 lkrshp4 39101 cvrcmp 39276 leat2 39287 isat3 39300 2llnmat 39518 2lnat 39778 |
| Copyright terms: Public domain | W3C validator |