| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neor | Structured version Visualization version GIF version | ||
| Description: Logical OR with an equality. (Contributed by NM, 29-Apr-2007.) |
| Ref | Expression |
|---|---|
| neor | ⊢ ((𝐴 = 𝐵 ∨ 𝜓) ↔ (𝐴 ≠ 𝐵 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-or 848 | . 2 ⊢ ((𝐴 = 𝐵 ∨ 𝜓) ↔ (¬ 𝐴 = 𝐵 → 𝜓)) | |
| 2 | df-ne 2926 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 2 | imbi1i 349 | . 2 ⊢ ((𝐴 ≠ 𝐵 → 𝜓) ↔ (¬ 𝐴 = 𝐵 → 𝜓)) |
| 4 | 1, 3 | bitr4i 278 | 1 ⊢ ((𝐴 = 𝐵 ∨ 𝜓) ↔ (𝐴 ≠ 𝐵 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ne 2926 |
| This theorem is referenced by: frsn 5711 ord0eln0 6367 fimaxre 12087 fiminre 12090 prime 12575 h1datomi 31543 elat2 32302 bnj563 34712 divrngidl 38010 dmncan1 38058 lkrshp4 39089 cvrcmp 39264 leat2 39275 isat3 39288 2llnmat 39506 2lnat 39766 |
| Copyright terms: Public domain | W3C validator |