![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neor | Structured version Visualization version GIF version |
Description: Logical OR with an equality. (Contributed by NM, 29-Apr-2007.) |
Ref | Expression |
---|---|
neor | ⊢ ((𝐴 = 𝐵 ∨ 𝜓) ↔ (𝐴 ≠ 𝐵 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-or 848 | . 2 ⊢ ((𝐴 = 𝐵 ∨ 𝜓) ↔ (¬ 𝐴 = 𝐵 → 𝜓)) | |
2 | df-ne 2939 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 2 | imbi1i 349 | . 2 ⊢ ((𝐴 ≠ 𝐵 → 𝜓) ↔ (¬ 𝐴 = 𝐵 → 𝜓)) |
4 | 1, 3 | bitr4i 278 | 1 ⊢ ((𝐴 = 𝐵 ∨ 𝜓) ↔ (𝐴 ≠ 𝐵 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1537 ≠ wne 2938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 848 df-ne 2939 |
This theorem is referenced by: frsn 5776 ord0eln0 6441 fimaxre 12210 fiminre 12213 prime 12697 h1datomi 31610 elat2 32369 bnj563 34736 divrngidl 38015 dmncan1 38063 lkrshp4 39090 cvrcmp 39265 leat2 39276 isat3 39289 2llnmat 39507 2lnat 39767 |
Copyright terms: Public domain | W3C validator |