MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neor Structured version   Visualization version   GIF version

Theorem neor 3040
Description: Logical OR with an equality. (Contributed by NM, 29-Apr-2007.)
Assertion
Ref Expression
neor ((𝐴 = 𝐵𝜓) ↔ (𝐴𝐵𝜓))

Proof of Theorem neor
StepHypRef Expression
1 df-or 847 . 2 ((𝐴 = 𝐵𝜓) ↔ (¬ 𝐴 = 𝐵𝜓))
2 df-ne 2947 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
32imbi1i 349 . 2 ((𝐴𝐵𝜓) ↔ (¬ 𝐴 = 𝐵𝜓))
41, 3bitr4i 278 1 ((𝐴 = 𝐵𝜓) ↔ (𝐴𝐵𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 846   = wceq 1537  wne 2946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 847  df-ne 2947
This theorem is referenced by:  frsn  5787  ord0eln0  6450  fimaxre  12239  fiminre  12242  prime  12724  h1datomi  31613  elat2  32372  bnj563  34719  divrngidl  37988  dmncan1  38036  lkrshp4  39064  cvrcmp  39239  leat2  39250  isat3  39263  2llnmat  39481  2lnat  39741
  Copyright terms: Public domain W3C validator