| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neor | Structured version Visualization version GIF version | ||
| Description: Logical OR with an equality. (Contributed by NM, 29-Apr-2007.) |
| Ref | Expression |
|---|---|
| neor | ⊢ ((𝐴 = 𝐵 ∨ 𝜓) ↔ (𝐴 ≠ 𝐵 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-or 848 | . 2 ⊢ ((𝐴 = 𝐵 ∨ 𝜓) ↔ (¬ 𝐴 = 𝐵 → 𝜓)) | |
| 2 | df-ne 2929 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 2 | imbi1i 349 | . 2 ⊢ ((𝐴 ≠ 𝐵 → 𝜓) ↔ (¬ 𝐴 = 𝐵 → 𝜓)) |
| 4 | 1, 3 | bitr4i 278 | 1 ⊢ ((𝐴 = 𝐵 ∨ 𝜓) ↔ (𝐴 ≠ 𝐵 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ne 2929 |
| This theorem is referenced by: frsn 5704 ord0eln0 6362 fimaxre 12066 fiminre 12069 prime 12554 h1datomi 31559 elat2 32318 bnj563 34753 divrngidl 38074 dmncan1 38122 lkrshp4 39153 cvrcmp 39328 leat2 39339 isat3 39352 2llnmat 39569 2lnat 39829 |
| Copyright terms: Public domain | W3C validator |