MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neor Structured version   Visualization version   GIF version

Theorem neor 3035
Description: Logical OR with an equality. (Contributed by NM, 29-Apr-2007.)
Assertion
Ref Expression
neor ((𝐴 = 𝐵𝜓) ↔ (𝐴𝐵𝜓))

Proof of Theorem neor
StepHypRef Expression
1 df-or 844 . 2 ((𝐴 = 𝐵𝜓) ↔ (¬ 𝐴 = 𝐵𝜓))
2 df-ne 2943 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
32imbi1i 349 . 2 ((𝐴𝐵𝜓) ↔ (¬ 𝐴 = 𝐵𝜓))
41, 3bitr4i 277 1 ((𝐴 = 𝐵𝜓) ↔ (𝐴𝐵𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wo 843   = wceq 1539  wne 2942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 844  df-ne 2943
This theorem is referenced by:  frsn  5665  ord0eln0  6305  fimaxre  11849  fiminre  11852  prime  12331  h1datomi  29844  elat2  30603  bnj563  32623  divrngidl  36113  dmncan1  36161  lkrshp4  37049  cvrcmp  37224  leat2  37235  isat3  37248  2llnmat  37465  2lnat  37725
  Copyright terms: Public domain W3C validator