![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neor | Structured version Visualization version GIF version |
Description: Logical OR with an equality. (Contributed by NM, 29-Apr-2007.) |
Ref | Expression |
---|---|
neor | ⊢ ((𝐴 = 𝐵 ∨ 𝜓) ↔ (𝐴 ≠ 𝐵 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-or 843 | . 2 ⊢ ((𝐴 = 𝐵 ∨ 𝜓) ↔ (¬ 𝐴 = 𝐵 → 𝜓)) | |
2 | df-ne 2984 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 2 | imbi1i 351 | . 2 ⊢ ((𝐴 ≠ 𝐵 → 𝜓) ↔ (¬ 𝐴 = 𝐵 → 𝜓)) |
4 | 1, 3 | bitr4i 279 | 1 ⊢ ((𝐴 = 𝐵 ∨ 𝜓) ↔ (𝐴 ≠ 𝐵 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∨ wo 842 = wceq 1522 ≠ wne 2983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-or 843 df-ne 2984 |
This theorem is referenced by: frsn 5528 ord0eln0 6123 fimaxre 11434 fimaxreOLD 11435 fiminre 11438 prime 11913 h1datomi 29041 elat2 29800 bnj563 31623 divrngidl 34851 dmncan1 34899 lkrshp4 35788 cvrcmp 35963 leat2 35974 isat3 35987 2llnmat 36204 2lnat 36464 |
Copyright terms: Public domain | W3C validator |