Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  remul01 Structured version   Visualization version   GIF version

Theorem remul01 42118
Description: Real number version of mul01 11434 proven without ax-mulcom 11213. (Contributed by SN, 23-Jan-2024.)
Assertion
Ref Expression
remul01 (𝐴 ∈ ℝ → (𝐴 · 0) = 0)

Proof of Theorem remul01
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7424 . . . . . . 7 ((𝐴 · 0) = 1 → (2 · (𝐴 · 0)) = (2 · 1))
21adantl 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (2 · (𝐴 · 0)) = (2 · 1))
3 2re 12332 . . . . . . 7 2 ∈ ℝ
4 ax-1rid 11219 . . . . . . 7 (2 ∈ ℝ → (2 · 1) = 2)
53, 4mp1i 13 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (2 · 1) = 2)
62, 5eqtrd 2766 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (2 · (𝐴 · 0)) = 2)
73a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → 2 ∈ ℝ)
8 simpl 481 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → 𝐴 ∈ ℝ)
9 0red 11258 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → 0 ∈ ℝ)
108, 9remulcld 11285 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (𝐴 · 0) ∈ ℝ)
117, 10remulcld 11285 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (2 · (𝐴 · 0)) ∈ ℝ)
12 sn-0ne2 42117 . . . . . . . . . . . 12 0 ≠ 2
1312necomi 2985 . . . . . . . . . . 11 2 ≠ 0
1413a1i 11 . . . . . . . . . 10 ((2 · (𝐴 · 0)) = 2 → 2 ≠ 0)
15 eqtr2 2750 . . . . . . . . . 10 (((2 · (𝐴 · 0)) = 2 ∧ (2 · (𝐴 · 0)) = 0) → 2 = 0)
1614, 15mteqand 3023 . . . . . . . . 9 ((2 · (𝐴 · 0)) = 2 → (2 · (𝐴 · 0)) ≠ 0)
17 ax-rrecex 11221 . . . . . . . . 9 (((2 · (𝐴 · 0)) ∈ ℝ ∧ (2 · (𝐴 · 0)) ≠ 0) → ∃𝑥 ∈ ℝ ((2 · (𝐴 · 0)) · 𝑥) = 1)
1811, 16, 17syl2an 594 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) → ∃𝑥 ∈ ℝ ((2 · (𝐴 · 0)) · 𝑥) = 1)
19 2cnd 12336 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 2 ∈ ℂ)
20 simplll 773 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 𝐴 ∈ ℝ)
21 0red 11258 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 0 ∈ ℝ)
2220, 21remulcld 11285 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → (𝐴 · 0) ∈ ℝ)
2322recnd 11283 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → (𝐴 · 0) ∈ ℂ)
24 simprl 769 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 𝑥 ∈ ℝ)
2524recnd 11283 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 𝑥 ∈ ℂ)
2619, 23, 25mulassd 11278 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → ((2 · (𝐴 · 0)) · 𝑥) = (2 · ((𝐴 · 0) · 𝑥)))
27 simprr 771 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → ((2 · (𝐴 · 0)) · 𝑥) = 1)
2820recnd 11283 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 𝐴 ∈ ℂ)
29 0cnd 11248 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 0 ∈ ℂ)
3028, 29, 25mulassd 11278 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → ((𝐴 · 0) · 𝑥) = (𝐴 · (0 · 𝑥)))
31 remul02 42116 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (0 · 𝑥) = 0)
3231ad2antrl 726 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → (0 · 𝑥) = 0)
3332oveq2d 7432 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → (𝐴 · (0 · 𝑥)) = (𝐴 · 0))
3430, 33eqtrd 2766 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → ((𝐴 · 0) · 𝑥) = (𝐴 · 0))
3534oveq2d 7432 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → (2 · ((𝐴 · 0) · 𝑥)) = (2 · (𝐴 · 0)))
3626, 27, 353eqtr3rd 2775 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → (2 · (𝐴 · 0)) = 1)
3718, 36rexlimddv 3151 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) → (2 · (𝐴 · 0)) = 1)
386, 37mpdan 685 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (2 · (𝐴 · 0)) = 1)
39 sn-1ne2 42004 . . . . . . 7 1 ≠ 2
4039a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → 1 ≠ 2)
4138, 40eqnetrd 2998 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (2 · (𝐴 · 0)) ≠ 2)
426, 41pm2.21ddne 3016 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → ¬ (𝐴 · 0) = 1)
4342ex 411 . . 3 (𝐴 ∈ ℝ → ((𝐴 · 0) = 1 → ¬ (𝐴 · 0) = 1))
44 pm2.01 188 . . . 4 (((𝐴 · 0) = 1 → ¬ (𝐴 · 0) = 1) → ¬ (𝐴 · 0) = 1)
4544neqned 2937 . . 3 (((𝐴 · 0) = 1 → ¬ (𝐴 · 0) = 1) → (𝐴 · 0) ≠ 1)
4643, 45syl 17 . 2 (𝐴 ∈ ℝ → (𝐴 · 0) ≠ 1)
47 id 22 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
48 elre0re 42000 . . . . . . 7 (𝐴 ∈ ℝ → 0 ∈ ℝ)
4947, 48remulcld 11285 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 · 0) ∈ ℝ)
50 ax-rrecex 11221 . . . . . 6 (((𝐴 · 0) ∈ ℝ ∧ (𝐴 · 0) ≠ 0) → ∃𝑥 ∈ ℝ ((𝐴 · 0) · 𝑥) = 1)
5149, 50sylan 578 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) → ∃𝑥 ∈ ℝ ((𝐴 · 0) · 𝑥) = 1)
52 simpll 765 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → 𝐴 ∈ ℝ)
5352recnd 11283 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → 𝐴 ∈ ℂ)
54 0cnd 11248 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → 0 ∈ ℂ)
55 simprl 769 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → 𝑥 ∈ ℝ)
5655recnd 11283 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → 𝑥 ∈ ℂ)
5753, 54, 56mulassd 11278 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → ((𝐴 · 0) · 𝑥) = (𝐴 · (0 · 𝑥)))
58 simprr 771 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → ((𝐴 · 0) · 𝑥) = 1)
5931oveq2d 7432 . . . . . . 7 (𝑥 ∈ ℝ → (𝐴 · (0 · 𝑥)) = (𝐴 · 0))
6059ad2antrl 726 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → (𝐴 · (0 · 𝑥)) = (𝐴 · 0))
6157, 58, 603eqtr3rd 2775 . . . . 5 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → (𝐴 · 0) = 1)
6251, 61rexlimddv 3151 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) → (𝐴 · 0) = 1)
6362ex 411 . . 3 (𝐴 ∈ ℝ → ((𝐴 · 0) ≠ 0 → (𝐴 · 0) = 1))
6463necon1d 2952 . 2 (𝐴 ∈ ℝ → ((𝐴 · 0) ≠ 1 → (𝐴 · 0) = 0))
6546, 64mpd 15 1 (𝐴 ∈ ℝ → (𝐴 · 0) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1534  wcel 2099  wne 2930  wrex 3060  (class class class)co 7416  cr 11148  0cc0 11149  1c1 11150   · cmul 11154  2c2 12313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-po 5586  df-so 5587  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-pnf 11291  df-mnf 11292  df-ltxr 11294  df-2 12321  df-3 12322  df-resub 42077
This theorem is referenced by:  resubid  42119  remulneg2d  42125  sn-it0e0  42126  remulinvcom  42143  remullid  42144  nn0mulcom  42165  zmulcomlem  42166  mulgt0con2d  42170
  Copyright terms: Public domain W3C validator