Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  remul01 Structured version   Visualization version   GIF version

Theorem remul01 42440
Description: Real number version of mul01 11287 proven without ax-mulcom 11065. (Contributed by SN, 23-Jan-2024.)
Assertion
Ref Expression
remul01 (𝐴 ∈ ℝ → (𝐴 · 0) = 0)

Proof of Theorem remul01
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7349 . . . . . . 7 ((𝐴 · 0) = 1 → (2 · (𝐴 · 0)) = (2 · 1))
21adantl 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (2 · (𝐴 · 0)) = (2 · 1))
3 2re 12194 . . . . . . 7 2 ∈ ℝ
4 ax-1rid 11071 . . . . . . 7 (2 ∈ ℝ → (2 · 1) = 2)
53, 4mp1i 13 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (2 · 1) = 2)
62, 5eqtrd 2766 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (2 · (𝐴 · 0)) = 2)
73a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → 2 ∈ ℝ)
8 simpl 482 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → 𝐴 ∈ ℝ)
9 0red 11110 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → 0 ∈ ℝ)
108, 9remulcld 11137 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (𝐴 · 0) ∈ ℝ)
117, 10remulcld 11137 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (2 · (𝐴 · 0)) ∈ ℝ)
12 sn-0ne2 42439 . . . . . . . . . . . 12 0 ≠ 2
1312necomi 2982 . . . . . . . . . . 11 2 ≠ 0
1413a1i 11 . . . . . . . . . 10 ((2 · (𝐴 · 0)) = 2 → 2 ≠ 0)
15 eqtr2 2752 . . . . . . . . . 10 (((2 · (𝐴 · 0)) = 2 ∧ (2 · (𝐴 · 0)) = 0) → 2 = 0)
1614, 15mteqand 3019 . . . . . . . . 9 ((2 · (𝐴 · 0)) = 2 → (2 · (𝐴 · 0)) ≠ 0)
17 ax-rrecex 11073 . . . . . . . . 9 (((2 · (𝐴 · 0)) ∈ ℝ ∧ (2 · (𝐴 · 0)) ≠ 0) → ∃𝑥 ∈ ℝ ((2 · (𝐴 · 0)) · 𝑥) = 1)
1811, 16, 17syl2an 596 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) → ∃𝑥 ∈ ℝ ((2 · (𝐴 · 0)) · 𝑥) = 1)
19 2cnd 12198 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 2 ∈ ℂ)
20 simplll 774 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 𝐴 ∈ ℝ)
21 0red 11110 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 0 ∈ ℝ)
2220, 21remulcld 11137 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → (𝐴 · 0) ∈ ℝ)
2322recnd 11135 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → (𝐴 · 0) ∈ ℂ)
24 simprl 770 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 𝑥 ∈ ℝ)
2524recnd 11135 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 𝑥 ∈ ℂ)
2619, 23, 25mulassd 11130 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → ((2 · (𝐴 · 0)) · 𝑥) = (2 · ((𝐴 · 0) · 𝑥)))
27 simprr 772 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → ((2 · (𝐴 · 0)) · 𝑥) = 1)
2820recnd 11135 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 𝐴 ∈ ℂ)
29 0cnd 11100 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 0 ∈ ℂ)
3028, 29, 25mulassd 11130 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → ((𝐴 · 0) · 𝑥) = (𝐴 · (0 · 𝑥)))
31 remul02 42438 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (0 · 𝑥) = 0)
3231ad2antrl 728 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → (0 · 𝑥) = 0)
3332oveq2d 7357 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → (𝐴 · (0 · 𝑥)) = (𝐴 · 0))
3430, 33eqtrd 2766 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → ((𝐴 · 0) · 𝑥) = (𝐴 · 0))
3534oveq2d 7357 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → (2 · ((𝐴 · 0) · 𝑥)) = (2 · (𝐴 · 0)))
3626, 27, 353eqtr3rd 2775 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → (2 · (𝐴 · 0)) = 1)
3718, 36rexlimddv 3139 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) → (2 · (𝐴 · 0)) = 1)
386, 37mpdan 687 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (2 · (𝐴 · 0)) = 1)
39 sn-1ne2 42298 . . . . . . 7 1 ≠ 2
4039a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → 1 ≠ 2)
4138, 40eqnetrd 2995 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (2 · (𝐴 · 0)) ≠ 2)
426, 41pm2.21ddne 3012 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → ¬ (𝐴 · 0) = 1)
4342ex 412 . . 3 (𝐴 ∈ ℝ → ((𝐴 · 0) = 1 → ¬ (𝐴 · 0) = 1))
44 pm2.01 188 . . . 4 (((𝐴 · 0) = 1 → ¬ (𝐴 · 0) = 1) → ¬ (𝐴 · 0) = 1)
4544neqned 2935 . . 3 (((𝐴 · 0) = 1 → ¬ (𝐴 · 0) = 1) → (𝐴 · 0) ≠ 1)
4643, 45syl 17 . 2 (𝐴 ∈ ℝ → (𝐴 · 0) ≠ 1)
47 id 22 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
48 elre0re 42287 . . . . . . 7 (𝐴 ∈ ℝ → 0 ∈ ℝ)
4947, 48remulcld 11137 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 · 0) ∈ ℝ)
50 ax-rrecex 11073 . . . . . 6 (((𝐴 · 0) ∈ ℝ ∧ (𝐴 · 0) ≠ 0) → ∃𝑥 ∈ ℝ ((𝐴 · 0) · 𝑥) = 1)
5149, 50sylan 580 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) → ∃𝑥 ∈ ℝ ((𝐴 · 0) · 𝑥) = 1)
52 simpll 766 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → 𝐴 ∈ ℝ)
5352recnd 11135 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → 𝐴 ∈ ℂ)
54 0cnd 11100 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → 0 ∈ ℂ)
55 simprl 770 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → 𝑥 ∈ ℝ)
5655recnd 11135 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → 𝑥 ∈ ℂ)
5753, 54, 56mulassd 11130 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → ((𝐴 · 0) · 𝑥) = (𝐴 · (0 · 𝑥)))
58 simprr 772 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → ((𝐴 · 0) · 𝑥) = 1)
5931oveq2d 7357 . . . . . . 7 (𝑥 ∈ ℝ → (𝐴 · (0 · 𝑥)) = (𝐴 · 0))
6059ad2antrl 728 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → (𝐴 · (0 · 𝑥)) = (𝐴 · 0))
6157, 58, 603eqtr3rd 2775 . . . . 5 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → (𝐴 · 0) = 1)
6251, 61rexlimddv 3139 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) → (𝐴 · 0) = 1)
6362ex 412 . . 3 (𝐴 ∈ ℝ → ((𝐴 · 0) ≠ 0 → (𝐴 · 0) = 1))
6463necon1d 2950 . 2 (𝐴 ∈ ℝ → ((𝐴 · 0) ≠ 1 → (𝐴 · 0) = 0))
6546, 64mpd 15 1 (𝐴 ∈ ℝ → (𝐴 · 0) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wrex 3056  (class class class)co 7341  cr 11000  0cc0 11001  1c1 11002   · cmul 11006  2c2 12175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-po 5519  df-so 5520  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-ltxr 11146  df-2 12183  df-3 12184  df-resub 42399
This theorem is referenced by:  sn-remul0ord  42441  resubid  42442  remulneg2d  42448  sn-it0e0  42449  remulinvcom  42466  remullid  42467  nn0mulcom  42499  zmulcomlem  42500  mulgt0con2d  42504  mulgt0b2d  42511
  Copyright terms: Public domain W3C validator