Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  remul01 Structured version   Visualization version   GIF version

Theorem remul01 42450
Description: Real number version of mul01 11414 proven without ax-mulcom 11193. (Contributed by SN, 23-Jan-2024.)
Assertion
Ref Expression
remul01 (𝐴 ∈ ℝ → (𝐴 · 0) = 0)

Proof of Theorem remul01
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7413 . . . . . . 7 ((𝐴 · 0) = 1 → (2 · (𝐴 · 0)) = (2 · 1))
21adantl 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (2 · (𝐴 · 0)) = (2 · 1))
3 2re 12314 . . . . . . 7 2 ∈ ℝ
4 ax-1rid 11199 . . . . . . 7 (2 ∈ ℝ → (2 · 1) = 2)
53, 4mp1i 13 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (2 · 1) = 2)
62, 5eqtrd 2770 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (2 · (𝐴 · 0)) = 2)
73a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → 2 ∈ ℝ)
8 simpl 482 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → 𝐴 ∈ ℝ)
9 0red 11238 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → 0 ∈ ℝ)
108, 9remulcld 11265 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (𝐴 · 0) ∈ ℝ)
117, 10remulcld 11265 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (2 · (𝐴 · 0)) ∈ ℝ)
12 sn-0ne2 42449 . . . . . . . . . . . 12 0 ≠ 2
1312necomi 2986 . . . . . . . . . . 11 2 ≠ 0
1413a1i 11 . . . . . . . . . 10 ((2 · (𝐴 · 0)) = 2 → 2 ≠ 0)
15 eqtr2 2756 . . . . . . . . . 10 (((2 · (𝐴 · 0)) = 2 ∧ (2 · (𝐴 · 0)) = 0) → 2 = 0)
1614, 15mteqand 3023 . . . . . . . . 9 ((2 · (𝐴 · 0)) = 2 → (2 · (𝐴 · 0)) ≠ 0)
17 ax-rrecex 11201 . . . . . . . . 9 (((2 · (𝐴 · 0)) ∈ ℝ ∧ (2 · (𝐴 · 0)) ≠ 0) → ∃𝑥 ∈ ℝ ((2 · (𝐴 · 0)) · 𝑥) = 1)
1811, 16, 17syl2an 596 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) → ∃𝑥 ∈ ℝ ((2 · (𝐴 · 0)) · 𝑥) = 1)
19 2cnd 12318 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 2 ∈ ℂ)
20 simplll 774 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 𝐴 ∈ ℝ)
21 0red 11238 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 0 ∈ ℝ)
2220, 21remulcld 11265 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → (𝐴 · 0) ∈ ℝ)
2322recnd 11263 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → (𝐴 · 0) ∈ ℂ)
24 simprl 770 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 𝑥 ∈ ℝ)
2524recnd 11263 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 𝑥 ∈ ℂ)
2619, 23, 25mulassd 11258 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → ((2 · (𝐴 · 0)) · 𝑥) = (2 · ((𝐴 · 0) · 𝑥)))
27 simprr 772 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → ((2 · (𝐴 · 0)) · 𝑥) = 1)
2820recnd 11263 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 𝐴 ∈ ℂ)
29 0cnd 11228 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 0 ∈ ℂ)
3028, 29, 25mulassd 11258 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → ((𝐴 · 0) · 𝑥) = (𝐴 · (0 · 𝑥)))
31 remul02 42448 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (0 · 𝑥) = 0)
3231ad2antrl 728 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → (0 · 𝑥) = 0)
3332oveq2d 7421 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → (𝐴 · (0 · 𝑥)) = (𝐴 · 0))
3430, 33eqtrd 2770 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → ((𝐴 · 0) · 𝑥) = (𝐴 · 0))
3534oveq2d 7421 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → (2 · ((𝐴 · 0) · 𝑥)) = (2 · (𝐴 · 0)))
3626, 27, 353eqtr3rd 2779 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → (2 · (𝐴 · 0)) = 1)
3718, 36rexlimddv 3147 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) → (2 · (𝐴 · 0)) = 1)
386, 37mpdan 687 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (2 · (𝐴 · 0)) = 1)
39 sn-1ne2 42315 . . . . . . 7 1 ≠ 2
4039a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → 1 ≠ 2)
4138, 40eqnetrd 2999 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (2 · (𝐴 · 0)) ≠ 2)
426, 41pm2.21ddne 3016 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → ¬ (𝐴 · 0) = 1)
4342ex 412 . . 3 (𝐴 ∈ ℝ → ((𝐴 · 0) = 1 → ¬ (𝐴 · 0) = 1))
44 pm2.01 188 . . . 4 (((𝐴 · 0) = 1 → ¬ (𝐴 · 0) = 1) → ¬ (𝐴 · 0) = 1)
4544neqned 2939 . . 3 (((𝐴 · 0) = 1 → ¬ (𝐴 · 0) = 1) → (𝐴 · 0) ≠ 1)
4643, 45syl 17 . 2 (𝐴 ∈ ℝ → (𝐴 · 0) ≠ 1)
47 id 22 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
48 elre0re 42305 . . . . . . 7 (𝐴 ∈ ℝ → 0 ∈ ℝ)
4947, 48remulcld 11265 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 · 0) ∈ ℝ)
50 ax-rrecex 11201 . . . . . 6 (((𝐴 · 0) ∈ ℝ ∧ (𝐴 · 0) ≠ 0) → ∃𝑥 ∈ ℝ ((𝐴 · 0) · 𝑥) = 1)
5149, 50sylan 580 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) → ∃𝑥 ∈ ℝ ((𝐴 · 0) · 𝑥) = 1)
52 simpll 766 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → 𝐴 ∈ ℝ)
5352recnd 11263 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → 𝐴 ∈ ℂ)
54 0cnd 11228 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → 0 ∈ ℂ)
55 simprl 770 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → 𝑥 ∈ ℝ)
5655recnd 11263 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → 𝑥 ∈ ℂ)
5753, 54, 56mulassd 11258 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → ((𝐴 · 0) · 𝑥) = (𝐴 · (0 · 𝑥)))
58 simprr 772 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → ((𝐴 · 0) · 𝑥) = 1)
5931oveq2d 7421 . . . . . . 7 (𝑥 ∈ ℝ → (𝐴 · (0 · 𝑥)) = (𝐴 · 0))
6059ad2antrl 728 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → (𝐴 · (0 · 𝑥)) = (𝐴 · 0))
6157, 58, 603eqtr3rd 2779 . . . . 5 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → (𝐴 · 0) = 1)
6251, 61rexlimddv 3147 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) → (𝐴 · 0) = 1)
6362ex 412 . . 3 (𝐴 ∈ ℝ → ((𝐴 · 0) ≠ 0 → (𝐴 · 0) = 1))
6463necon1d 2954 . 2 (𝐴 ∈ ℝ → ((𝐴 · 0) ≠ 1 → (𝐴 · 0) = 0))
6546, 64mpd 15 1 (𝐴 ∈ ℝ → (𝐴 · 0) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  wrex 3060  (class class class)co 7405  cr 11128  0cc0 11129  1c1 11130   · cmul 11134  2c2 12295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-ltxr 11274  df-2 12303  df-3 12304  df-resub 42409
This theorem is referenced by:  resubid  42451  remulneg2d  42457  sn-it0e0  42458  remulinvcom  42475  remullid  42476  nn0mulcom  42497  zmulcomlem  42498  mulgt0con2d  42502
  Copyright terms: Public domain W3C validator