Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  remul01 Structured version   Visualization version   GIF version

Theorem remul01 40701
Description: Real number version of mul01 11259 proven without ax-mulcom 11040. (Contributed by SN, 23-Jan-2024.)
Assertion
Ref Expression
remul01 (𝐴 ∈ ℝ → (𝐴 · 0) = 0)

Proof of Theorem remul01
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7349 . . . . . . 7 ((𝐴 · 0) = 1 → (2 · (𝐴 · 0)) = (2 · 1))
21adantl 483 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (2 · (𝐴 · 0)) = (2 · 1))
3 2re 12152 . . . . . . 7 2 ∈ ℝ
4 ax-1rid 11046 . . . . . . 7 (2 ∈ ℝ → (2 · 1) = 2)
53, 4mp1i 13 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (2 · 1) = 2)
62, 5eqtrd 2777 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (2 · (𝐴 · 0)) = 2)
73a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → 2 ∈ ℝ)
8 simpl 484 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → 𝐴 ∈ ℝ)
9 0red 11083 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → 0 ∈ ℝ)
108, 9remulcld 11110 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (𝐴 · 0) ∈ ℝ)
117, 10remulcld 11110 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (2 · (𝐴 · 0)) ∈ ℝ)
12 sn-0ne2 40700 . . . . . . . . . . . 12 0 ≠ 2
1312necomi 2996 . . . . . . . . . . 11 2 ≠ 0
1413a1i 11 . . . . . . . . . 10 ((2 · (𝐴 · 0)) = 2 → 2 ≠ 0)
15 eqtr2 2761 . . . . . . . . . 10 (((2 · (𝐴 · 0)) = 2 ∧ (2 · (𝐴 · 0)) = 0) → 2 = 0)
1614, 15mteqand 3046 . . . . . . . . 9 ((2 · (𝐴 · 0)) = 2 → (2 · (𝐴 · 0)) ≠ 0)
17 ax-rrecex 11048 . . . . . . . . 9 (((2 · (𝐴 · 0)) ∈ ℝ ∧ (2 · (𝐴 · 0)) ≠ 0) → ∃𝑥 ∈ ℝ ((2 · (𝐴 · 0)) · 𝑥) = 1)
1811, 16, 17syl2an 597 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) → ∃𝑥 ∈ ℝ ((2 · (𝐴 · 0)) · 𝑥) = 1)
19 2cnd 12156 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 2 ∈ ℂ)
20 simplll 773 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 𝐴 ∈ ℝ)
21 0red 11083 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 0 ∈ ℝ)
2220, 21remulcld 11110 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → (𝐴 · 0) ∈ ℝ)
2322recnd 11108 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → (𝐴 · 0) ∈ ℂ)
24 simprl 769 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 𝑥 ∈ ℝ)
2524recnd 11108 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 𝑥 ∈ ℂ)
2619, 23, 25mulassd 11103 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → ((2 · (𝐴 · 0)) · 𝑥) = (2 · ((𝐴 · 0) · 𝑥)))
27 simprr 771 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → ((2 · (𝐴 · 0)) · 𝑥) = 1)
2820recnd 11108 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 𝐴 ∈ ℂ)
29 0cnd 11073 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 0 ∈ ℂ)
3028, 29, 25mulassd 11103 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → ((𝐴 · 0) · 𝑥) = (𝐴 · (0 · 𝑥)))
31 remul02 40699 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (0 · 𝑥) = 0)
3231ad2antrl 726 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → (0 · 𝑥) = 0)
3332oveq2d 7357 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → (𝐴 · (0 · 𝑥)) = (𝐴 · 0))
3430, 33eqtrd 2777 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → ((𝐴 · 0) · 𝑥) = (𝐴 · 0))
3534oveq2d 7357 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → (2 · ((𝐴 · 0) · 𝑥)) = (2 · (𝐴 · 0)))
3626, 27, 353eqtr3rd 2786 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → (2 · (𝐴 · 0)) = 1)
3718, 36rexlimddv 3155 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) → (2 · (𝐴 · 0)) = 1)
386, 37mpdan 685 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (2 · (𝐴 · 0)) = 1)
39 sn-1ne2 40606 . . . . . . 7 1 ≠ 2
4039a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → 1 ≠ 2)
4138, 40eqnetrd 3009 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (2 · (𝐴 · 0)) ≠ 2)
426, 41pm2.21ddne 3027 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → ¬ (𝐴 · 0) = 1)
4342ex 414 . . 3 (𝐴 ∈ ℝ → ((𝐴 · 0) = 1 → ¬ (𝐴 · 0) = 1))
44 pm2.01 188 . . . 4 (((𝐴 · 0) = 1 → ¬ (𝐴 · 0) = 1) → ¬ (𝐴 · 0) = 1)
4544neqned 2948 . . 3 (((𝐴 · 0) = 1 → ¬ (𝐴 · 0) = 1) → (𝐴 · 0) ≠ 1)
4643, 45syl 17 . 2 (𝐴 ∈ ℝ → (𝐴 · 0) ≠ 1)
47 id 22 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
48 elre0re 40602 . . . . . . 7 (𝐴 ∈ ℝ → 0 ∈ ℝ)
4947, 48remulcld 11110 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 · 0) ∈ ℝ)
50 ax-rrecex 11048 . . . . . 6 (((𝐴 · 0) ∈ ℝ ∧ (𝐴 · 0) ≠ 0) → ∃𝑥 ∈ ℝ ((𝐴 · 0) · 𝑥) = 1)
5149, 50sylan 581 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) → ∃𝑥 ∈ ℝ ((𝐴 · 0) · 𝑥) = 1)
52 simpll 765 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → 𝐴 ∈ ℝ)
5352recnd 11108 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → 𝐴 ∈ ℂ)
54 0cnd 11073 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → 0 ∈ ℂ)
55 simprl 769 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → 𝑥 ∈ ℝ)
5655recnd 11108 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → 𝑥 ∈ ℂ)
5753, 54, 56mulassd 11103 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → ((𝐴 · 0) · 𝑥) = (𝐴 · (0 · 𝑥)))
58 simprr 771 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → ((𝐴 · 0) · 𝑥) = 1)
5931oveq2d 7357 . . . . . . 7 (𝑥 ∈ ℝ → (𝐴 · (0 · 𝑥)) = (𝐴 · 0))
6059ad2antrl 726 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → (𝐴 · (0 · 𝑥)) = (𝐴 · 0))
6157, 58, 603eqtr3rd 2786 . . . . 5 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → (𝐴 · 0) = 1)
6251, 61rexlimddv 3155 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) → (𝐴 · 0) = 1)
6362ex 414 . . 3 (𝐴 ∈ ℝ → ((𝐴 · 0) ≠ 0 → (𝐴 · 0) = 1))
6463necon1d 2963 . 2 (𝐴 ∈ ℝ → ((𝐴 · 0) ≠ 1 → (𝐴 · 0) = 0))
6546, 64mpd 15 1 (𝐴 ∈ ℝ → (𝐴 · 0) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1541  wcel 2106  wne 2941  wrex 3071  (class class class)co 7341  cr 10975  0cc0 10976  1c1 10977   · cmul 10981  2c2 12133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-resscn 11033  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-addrcl 11037  ax-mulcl 11038  ax-mulrcl 11039  ax-addass 11041  ax-mulass 11042  ax-distr 11043  ax-i2m1 11044  ax-1ne0 11045  ax-1rid 11046  ax-rnegex 11047  ax-rrecex 11048  ax-cnre 11049  ax-pre-lttri 11050  ax-pre-lttrn 11051  ax-pre-ltadd 11052
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-br 5097  df-opab 5159  df-mpt 5180  df-id 5522  df-po 5536  df-so 5537  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-er 8573  df-en 8809  df-dom 8810  df-sdom 8811  df-pnf 11116  df-mnf 11117  df-ltxr 11119  df-2 12141  df-3 12142  df-resub 40660
This theorem is referenced by:  resubid  40702  sn-it0e0  40708  rei4  40716  remulinvcom  40725  remulid2  40726  mulgt0con2d  40740  mulgt0b2d  40741  sn-0lt1  40743  sn-inelr  40746
  Copyright terms: Public domain W3C validator