Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  remul01 Structured version   Visualization version   GIF version

Theorem remul01 39286
Description: Real number version of mul01 10819 proven without ax-mulcom 10601. (Contributed by SN, 23-Jan-2024.)
Assertion
Ref Expression
remul01 (𝐴 ∈ ℝ → (𝐴 · 0) = 0)

Proof of Theorem remul01
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7164 . . . . . . 7 ((𝐴 · 0) = 1 → (2 · (𝐴 · 0)) = (2 · 1))
21adantl 484 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (2 · (𝐴 · 0)) = (2 · 1))
3 2re 11712 . . . . . . 7 2 ∈ ℝ
4 ax-1rid 10607 . . . . . . 7 (2 ∈ ℝ → (2 · 1) = 2)
53, 4mp1i 13 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (2 · 1) = 2)
62, 5eqtrd 2856 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (2 · (𝐴 · 0)) = 2)
73a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → 2 ∈ ℝ)
8 simpl 485 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → 𝐴 ∈ ℝ)
9 0red 10644 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → 0 ∈ ℝ)
108, 9remulcld 10671 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (𝐴 · 0) ∈ ℝ)
117, 10remulcld 10671 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (2 · (𝐴 · 0)) ∈ ℝ)
12 sn-0ne2 39285 . . . . . . . . . . . 12 0 ≠ 2
1312necomi 3070 . . . . . . . . . . 11 2 ≠ 0
1413a1i 11 . . . . . . . . . 10 ((2 · (𝐴 · 0)) = 2 → 2 ≠ 0)
15 eqtr2 2842 . . . . . . . . . 10 (((2 · (𝐴 · 0)) = 2 ∧ (2 · (𝐴 · 0)) = 0) → 2 = 0)
1614, 15mteqand 3122 . . . . . . . . 9 ((2 · (𝐴 · 0)) = 2 → (2 · (𝐴 · 0)) ≠ 0)
17 ax-rrecex 10609 . . . . . . . . 9 (((2 · (𝐴 · 0)) ∈ ℝ ∧ (2 · (𝐴 · 0)) ≠ 0) → ∃𝑥 ∈ ℝ ((2 · (𝐴 · 0)) · 𝑥) = 1)
1811, 16, 17syl2an 597 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) → ∃𝑥 ∈ ℝ ((2 · (𝐴 · 0)) · 𝑥) = 1)
19 2cnd 11716 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 2 ∈ ℂ)
20 simplll 773 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 𝐴 ∈ ℝ)
21 0red 10644 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 0 ∈ ℝ)
2220, 21remulcld 10671 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → (𝐴 · 0) ∈ ℝ)
2322recnd 10669 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → (𝐴 · 0) ∈ ℂ)
24 simprl 769 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 𝑥 ∈ ℝ)
2524recnd 10669 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 𝑥 ∈ ℂ)
2619, 23, 25mulassd 10664 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → ((2 · (𝐴 · 0)) · 𝑥) = (2 · ((𝐴 · 0) · 𝑥)))
27 simprr 771 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → ((2 · (𝐴 · 0)) · 𝑥) = 1)
2820recnd 10669 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 𝐴 ∈ ℂ)
29 0cnd 10634 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → 0 ∈ ℂ)
3028, 29, 25mulassd 10664 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → ((𝐴 · 0) · 𝑥) = (𝐴 · (0 · 𝑥)))
31 remul02 39284 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (0 · 𝑥) = 0)
3231ad2antrl 726 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → (0 · 𝑥) = 0)
3332oveq2d 7172 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → (𝐴 · (0 · 𝑥)) = (𝐴 · 0))
3430, 33eqtrd 2856 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → ((𝐴 · 0) · 𝑥) = (𝐴 · 0))
3534oveq2d 7172 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → (2 · ((𝐴 · 0) · 𝑥)) = (2 · (𝐴 · 0)))
3626, 27, 353eqtr3rd 2865 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) ∧ (𝑥 ∈ ℝ ∧ ((2 · (𝐴 · 0)) · 𝑥) = 1)) → (2 · (𝐴 · 0)) = 1)
3718, 36rexlimddv 3291 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) ∧ (2 · (𝐴 · 0)) = 2) → (2 · (𝐴 · 0)) = 1)
386, 37mpdan 685 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (2 · (𝐴 · 0)) = 1)
39 sn-1ne2 39207 . . . . . . 7 1 ≠ 2
4039a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → 1 ≠ 2)
4138, 40eqnetrd 3083 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → (2 · (𝐴 · 0)) ≠ 2)
426, 41pm2.21ddne 3101 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) = 1) → ¬ (𝐴 · 0) = 1)
4342ex 415 . . 3 (𝐴 ∈ ℝ → ((𝐴 · 0) = 1 → ¬ (𝐴 · 0) = 1))
44 pm2.01 191 . . . 4 (((𝐴 · 0) = 1 → ¬ (𝐴 · 0) = 1) → ¬ (𝐴 · 0) = 1)
4544neqned 3023 . . 3 (((𝐴 · 0) = 1 → ¬ (𝐴 · 0) = 1) → (𝐴 · 0) ≠ 1)
4643, 45syl 17 . 2 (𝐴 ∈ ℝ → (𝐴 · 0) ≠ 1)
47 id 22 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
48 elre0re 39203 . . . . . . 7 (𝐴 ∈ ℝ → 0 ∈ ℝ)
4947, 48remulcld 10671 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 · 0) ∈ ℝ)
50 ax-rrecex 10609 . . . . . 6 (((𝐴 · 0) ∈ ℝ ∧ (𝐴 · 0) ≠ 0) → ∃𝑥 ∈ ℝ ((𝐴 · 0) · 𝑥) = 1)
5149, 50sylan 582 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) → ∃𝑥 ∈ ℝ ((𝐴 · 0) · 𝑥) = 1)
52 simpll 765 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → 𝐴 ∈ ℝ)
5352recnd 10669 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → 𝐴 ∈ ℂ)
54 0cnd 10634 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → 0 ∈ ℂ)
55 simprl 769 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → 𝑥 ∈ ℝ)
5655recnd 10669 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → 𝑥 ∈ ℂ)
5753, 54, 56mulassd 10664 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → ((𝐴 · 0) · 𝑥) = (𝐴 · (0 · 𝑥)))
58 simprr 771 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → ((𝐴 · 0) · 𝑥) = 1)
5931oveq2d 7172 . . . . . . 7 (𝑥 ∈ ℝ → (𝐴 · (0 · 𝑥)) = (𝐴 · 0))
6059ad2antrl 726 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → (𝐴 · (0 · 𝑥)) = (𝐴 · 0))
6157, 58, 603eqtr3rd 2865 . . . . 5 (((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) ∧ (𝑥 ∈ ℝ ∧ ((𝐴 · 0) · 𝑥) = 1)) → (𝐴 · 0) = 1)
6251, 61rexlimddv 3291 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐴 · 0) ≠ 0) → (𝐴 · 0) = 1)
6362ex 415 . . 3 (𝐴 ∈ ℝ → ((𝐴 · 0) ≠ 0 → (𝐴 · 0) = 1))
6463necon1d 3038 . 2 (𝐴 ∈ ℝ → ((𝐴 · 0) ≠ 1 → (𝐴 · 0) = 0))
6546, 64mpd 15 1 (𝐴 ∈ ℝ → (𝐴 · 0) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3016  wrex 3139  (class class class)co 7156  cr 10536  0cc0 10537  1c1 10538   · cmul 10542  2c2 11693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-ltxr 10680  df-2 11701  df-3 11702  df-resub 39245
This theorem is referenced by:  resubid  39287  sn-0lt1  39295  remulinvcom  39297  remulid2  39298
  Copyright terms: Public domain W3C validator