MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0ii Structured version   Visualization version   GIF version

Theorem n0ii 4306
Description: If a class has elements, then it is not empty. Inference associated with n0i 4303. (Contributed by BJ, 15-Jul-2021.)
Hypothesis
Ref Expression
n0ii.1 𝐴𝐵
Assertion
Ref Expression
n0ii ¬ 𝐵 = ∅

Proof of Theorem n0ii
StepHypRef Expression
1 n0ii.1 . 2 𝐴𝐵
2 n0i 4303 . 2 (𝐴𝐵 → ¬ 𝐵 = ∅)
31, 2ax-mp 5 1 ¬ 𝐵 = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  c0 4296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-dif 3917  df-nul 4297
This theorem is referenced by:  iin0  5317  snsn0non  6459  tfrlem16  8361  hon0  31722  dmadjrnb  31835  bnj98  34857  prv0  35417  dvnprodlem3  45946
  Copyright terms: Public domain W3C validator