MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snsn0non Structured version   Visualization version   GIF version

Theorem snsn0non 6370
Description: The singleton of the singleton of the empty set is not an ordinal (nor a natural number by omsson 7691). It can be used to represent an "undefined" value for a partial operation on natural or ordinal numbers. See also onxpdisj 6371. (Contributed by NM, 21-May-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
snsn0non ¬ {{∅}} ∈ On

Proof of Theorem snsn0non
StepHypRef Expression
1 snex 5349 . . . . 5 {∅} ∈ V
21snid 4594 . . . 4 {∅} ∈ {{∅}}
32n0ii 4267 . . 3 ¬ {{∅}} = ∅
4 0ex 5226 . . . . . . 7 ∅ ∈ V
54snid 4594 . . . . . 6 ∅ ∈ {∅}
65n0ii 4267 . . . . 5 ¬ {∅} = ∅
7 eqcom 2745 . . . . 5 (∅ = {∅} ↔ {∅} = ∅)
86, 7mtbir 322 . . . 4 ¬ ∅ = {∅}
94elsn 4573 . . . 4 (∅ ∈ {{∅}} ↔ ∅ = {∅})
108, 9mtbir 322 . . 3 ¬ ∅ ∈ {{∅}}
113, 10pm3.2ni 877 . 2 ¬ ({{∅}} = ∅ ∨ ∅ ∈ {{∅}})
12 on0eqel 6369 . 2 ({{∅}} ∈ On → ({{∅}} = ∅ ∨ ∅ ∈ {{∅}}))
1311, 12mto 196 1 ¬ {{∅}} ∈ On
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 843   = wceq 1539  wcel 2108  c0 4253  {csn 4558  Oncon0 6251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255
This theorem is referenced by:  onnev  6372  onnevOLD  6373  onpsstopbas  34546
  Copyright terms: Public domain W3C validator