MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snsn0non Structured version   Visualization version   GIF version

Theorem snsn0non 6447
Description: The singleton of the singleton of the empty set is not an ordinal (nor a natural number by omsson 7826). It can be used to represent an "undefined" value for a partial operation on natural or ordinal numbers. See also onxpdisj 6448. (Contributed by NM, 21-May-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
snsn0non ¬ {{∅}} ∈ On

Proof of Theorem snsn0non
StepHypRef Expression
1 snex 5386 . . . . 5 {∅} ∈ V
21snid 4622 . . . 4 {∅} ∈ {{∅}}
32n0ii 4302 . . 3 ¬ {{∅}} = ∅
4 0ex 5257 . . . . . . 7 ∅ ∈ V
54snid 4622 . . . . . 6 ∅ ∈ {∅}
65n0ii 4302 . . . . 5 ¬ {∅} = ∅
7 eqcom 2736 . . . . 5 (∅ = {∅} ↔ {∅} = ∅)
86, 7mtbir 323 . . . 4 ¬ ∅ = {∅}
94elsn 4600 . . . 4 (∅ ∈ {{∅}} ↔ ∅ = {∅})
108, 9mtbir 323 . . 3 ¬ ∅ ∈ {{∅}}
113, 10pm3.2ni 880 . 2 ¬ ({{∅}} = ∅ ∨ ∅ ∈ {{∅}})
12 on0eqel 6446 . 2 ({{∅}} ∈ On → ({{∅}} = ∅ ∨ ∅ ∈ {{∅}}))
1311, 12mto 197 1 ¬ {{∅}} ∈ On
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847   = wceq 1540  wcel 2109  c0 4292  {csn 4585  Oncon0 6320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-ord 6323  df-on 6324
This theorem is referenced by:  onnev  6449  onpsstopbas  36411
  Copyright terms: Public domain W3C validator