MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snsn0non Structured version   Visualization version   GIF version

Theorem snsn0non 6432
Description: The singleton of the singleton of the empty set is not an ordinal (nor a natural number by omsson 7800). It can be used to represent an "undefined" value for a partial operation on natural or ordinal numbers. See also onxpdisj 6433. (Contributed by NM, 21-May-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
snsn0non ¬ {{∅}} ∈ On

Proof of Theorem snsn0non
StepHypRef Expression
1 snex 5374 . . . . 5 {∅} ∈ V
21snid 4615 . . . 4 {∅} ∈ {{∅}}
32n0ii 4293 . . 3 ¬ {{∅}} = ∅
4 0ex 5245 . . . . . . 7 ∅ ∈ V
54snid 4615 . . . . . 6 ∅ ∈ {∅}
65n0ii 4293 . . . . 5 ¬ {∅} = ∅
7 eqcom 2738 . . . . 5 (∅ = {∅} ↔ {∅} = ∅)
86, 7mtbir 323 . . . 4 ¬ ∅ = {∅}
94elsn 4591 . . . 4 (∅ ∈ {{∅}} ↔ ∅ = {∅})
108, 9mtbir 323 . . 3 ¬ ∅ ∈ {{∅}}
113, 10pm3.2ni 880 . 2 ¬ ({{∅}} = ∅ ∨ ∅ ∈ {{∅}})
12 on0eqel 6431 . 2 ({{∅}} ∈ On → ({{∅}} = ∅ ∨ ∅ ∈ {{∅}}))
1311, 12mto 197 1 ¬ {{∅}} ∈ On
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847   = wceq 1541  wcel 2111  c0 4283  {csn 4576  Oncon0 6306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-tr 5199  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-ord 6309  df-on 6310
This theorem is referenced by:  onnev  6434  onpsstopbas  36463
  Copyright terms: Public domain W3C validator