Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snsn0non | Structured version Visualization version GIF version |
Description: The singleton of the singleton of the empty set is not an ordinal (nor a natural number by omsson 7716). It can be used to represent an "undefined" value for a partial operation on natural or ordinal numbers. See also onxpdisj 6386. (Contributed by NM, 21-May-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
snsn0non | ⊢ ¬ {{∅}} ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5354 | . . . . 5 ⊢ {∅} ∈ V | |
2 | 1 | snid 4597 | . . . 4 ⊢ {∅} ∈ {{∅}} |
3 | 2 | n0ii 4270 | . . 3 ⊢ ¬ {{∅}} = ∅ |
4 | 0ex 5231 | . . . . . . 7 ⊢ ∅ ∈ V | |
5 | 4 | snid 4597 | . . . . . 6 ⊢ ∅ ∈ {∅} |
6 | 5 | n0ii 4270 | . . . . 5 ⊢ ¬ {∅} = ∅ |
7 | eqcom 2745 | . . . . 5 ⊢ (∅ = {∅} ↔ {∅} = ∅) | |
8 | 6, 7 | mtbir 323 | . . . 4 ⊢ ¬ ∅ = {∅} |
9 | 4 | elsn 4576 | . . . 4 ⊢ (∅ ∈ {{∅}} ↔ ∅ = {∅}) |
10 | 8, 9 | mtbir 323 | . . 3 ⊢ ¬ ∅ ∈ {{∅}} |
11 | 3, 10 | pm3.2ni 878 | . 2 ⊢ ¬ ({{∅}} = ∅ ∨ ∅ ∈ {{∅}}) |
12 | on0eqel 6384 | . 2 ⊢ ({{∅}} ∈ On → ({{∅}} = ∅ ∨ ∅ ∈ {{∅}})) | |
13 | 11, 12 | mto 196 | 1 ⊢ ¬ {{∅}} ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ∅c0 4256 {csn 4561 Oncon0 6266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 |
This theorem is referenced by: onnev 6387 onnevOLD 6388 onpsstopbas 34619 |
Copyright terms: Public domain | W3C validator |