MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snsn0non Structured version   Visualization version   GIF version

Theorem snsn0non 6277
Description: The singleton of the singleton of the empty set is not an ordinal (nor a natural number by omsson 7564). It can be used to represent an "undefined" value for a partial operation on natural or ordinal numbers. See also onxpdisj 6278. (Contributed by NM, 21-May-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
snsn0non ¬ {{∅}} ∈ On

Proof of Theorem snsn0non
StepHypRef Expression
1 snex 5297 . . . . 5 {∅} ∈ V
21snid 4561 . . . 4 {∅} ∈ {{∅}}
32n0ii 4252 . . 3 ¬ {{∅}} = ∅
4 0ex 5175 . . . . . . 7 ∅ ∈ V
54snid 4561 . . . . . 6 ∅ ∈ {∅}
65n0ii 4252 . . . . 5 ¬ {∅} = ∅
7 eqcom 2805 . . . . 5 (∅ = {∅} ↔ {∅} = ∅)
86, 7mtbir 326 . . . 4 ¬ ∅ = {∅}
94elsn 4540 . . . 4 (∅ ∈ {{∅}} ↔ ∅ = {∅})
108, 9mtbir 326 . . 3 ¬ ∅ ∈ {{∅}}
113, 10pm3.2ni 878 . 2 ¬ ({{∅}} = ∅ ∨ ∅ ∈ {{∅}})
12 on0eqel 6276 . 2 ({{∅}} ∈ On → ({{∅}} = ∅ ∨ ∅ ∈ {{∅}}))
1311, 12mto 200 1 ¬ {{∅}} ∈ On
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 844   = wceq 1538  wcel 2111  c0 4243  {csn 4525  Oncon0 6159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-tr 5137  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-ord 6162  df-on 6163
This theorem is referenced by:  onnev  6279  onnevOLD  6280  onpsstopbas  33891
  Copyright terms: Public domain W3C validator