MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snsn0non Structured version   Visualization version   GIF version

Theorem snsn0non 6484
Description: The singleton of the singleton of the empty set is not an ordinal (nor a natural number by omsson 7870). It can be used to represent an "undefined" value for a partial operation on natural or ordinal numbers. See also onxpdisj 6485. (Contributed by NM, 21-May-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
snsn0non ¬ {{∅}} ∈ On

Proof of Theorem snsn0non
StepHypRef Expression
1 snex 5411 . . . . 5 {∅} ∈ V
21snid 4643 . . . 4 {∅} ∈ {{∅}}
32n0ii 4323 . . 3 ¬ {{∅}} = ∅
4 0ex 5282 . . . . . . 7 ∅ ∈ V
54snid 4643 . . . . . 6 ∅ ∈ {∅}
65n0ii 4323 . . . . 5 ¬ {∅} = ∅
7 eqcom 2743 . . . . 5 (∅ = {∅} ↔ {∅} = ∅)
86, 7mtbir 323 . . . 4 ¬ ∅ = {∅}
94elsn 4621 . . . 4 (∅ ∈ {{∅}} ↔ ∅ = {∅})
108, 9mtbir 323 . . 3 ¬ ∅ ∈ {{∅}}
113, 10pm3.2ni 880 . 2 ¬ ({{∅}} = ∅ ∨ ∅ ∈ {{∅}})
12 on0eqel 6483 . 2 ({{∅}} ∈ On → ({{∅}} = ∅ ∨ ∅ ∈ {{∅}}))
1311, 12mto 197 1 ¬ {{∅}} ∈ On
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847   = wceq 1540  wcel 2109  c0 4313  {csn 4606  Oncon0 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-tr 5235  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-ord 6360  df-on 6361
This theorem is referenced by:  onnev  6486  onpsstopbas  36453
  Copyright terms: Public domain W3C validator