| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsn0non | Structured version Visualization version GIF version | ||
| Description: The singleton of the singleton of the empty set is not an ordinal (nor a natural number by omsson 7865). It can be used to represent an "undefined" value for a partial operation on natural or ordinal numbers. See also onxpdisj 6480. (Contributed by NM, 21-May-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| Ref | Expression |
|---|---|
| snsn0non | ⊢ ¬ {{∅}} ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 5406 | . . . . 5 ⊢ {∅} ∈ V | |
| 2 | 1 | snid 4638 | . . . 4 ⊢ {∅} ∈ {{∅}} |
| 3 | 2 | n0ii 4318 | . . 3 ⊢ ¬ {{∅}} = ∅ |
| 4 | 0ex 5277 | . . . . . . 7 ⊢ ∅ ∈ V | |
| 5 | 4 | snid 4638 | . . . . . 6 ⊢ ∅ ∈ {∅} |
| 6 | 5 | n0ii 4318 | . . . . 5 ⊢ ¬ {∅} = ∅ |
| 7 | eqcom 2742 | . . . . 5 ⊢ (∅ = {∅} ↔ {∅} = ∅) | |
| 8 | 6, 7 | mtbir 323 | . . . 4 ⊢ ¬ ∅ = {∅} |
| 9 | 4 | elsn 4616 | . . . 4 ⊢ (∅ ∈ {{∅}} ↔ ∅ = {∅}) |
| 10 | 8, 9 | mtbir 323 | . . 3 ⊢ ¬ ∅ ∈ {{∅}} |
| 11 | 3, 10 | pm3.2ni 880 | . 2 ⊢ ¬ ({{∅}} = ∅ ∨ ∅ ∈ {{∅}}) |
| 12 | on0eqel 6478 | . 2 ⊢ ({{∅}} ∈ On → ({{∅}} = ∅ ∨ ∅ ∈ {{∅}})) | |
| 13 | 11, 12 | mto 197 | 1 ⊢ ¬ {{∅}} ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ∅c0 4308 {csn 4601 Oncon0 6352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 |
| This theorem is referenced by: onnev 6481 onpsstopbas 36448 |
| Copyright terms: Public domain | W3C validator |