![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snsn0non | Structured version Visualization version GIF version |
Description: The singleton of the singleton of the empty set is not an ordinal (nor a natural number by omsson 7856). It can be used to represent an "undefined" value for a partial operation on natural or ordinal numbers. See also onxpdisj 6484. (Contributed by NM, 21-May-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
snsn0non | ⊢ ¬ {{∅}} ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5424 | . . . . 5 ⊢ {∅} ∈ V | |
2 | 1 | snid 4659 | . . . 4 ⊢ {∅} ∈ {{∅}} |
3 | 2 | n0ii 4331 | . . 3 ⊢ ¬ {{∅}} = ∅ |
4 | 0ex 5300 | . . . . . . 7 ⊢ ∅ ∈ V | |
5 | 4 | snid 4659 | . . . . . 6 ⊢ ∅ ∈ {∅} |
6 | 5 | n0ii 4331 | . . . . 5 ⊢ ¬ {∅} = ∅ |
7 | eqcom 2733 | . . . . 5 ⊢ (∅ = {∅} ↔ {∅} = ∅) | |
8 | 6, 7 | mtbir 323 | . . . 4 ⊢ ¬ ∅ = {∅} |
9 | 4 | elsn 4638 | . . . 4 ⊢ (∅ ∈ {{∅}} ↔ ∅ = {∅}) |
10 | 8, 9 | mtbir 323 | . . 3 ⊢ ¬ ∅ ∈ {{∅}} |
11 | 3, 10 | pm3.2ni 877 | . 2 ⊢ ¬ ({{∅}} = ∅ ∨ ∅ ∈ {{∅}}) |
12 | on0eqel 6482 | . 2 ⊢ ({{∅}} ∈ On → ({{∅}} = ∅ ∨ ∅ ∈ {{∅}})) | |
13 | 11, 12 | mto 196 | 1 ⊢ ¬ {{∅}} ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 844 = wceq 1533 ∈ wcel 2098 ∅c0 4317 {csn 4623 Oncon0 6358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-tr 5259 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-ord 6361 df-on 6362 |
This theorem is referenced by: onnev 6485 onnevOLD 6486 onpsstopbas 35823 |
Copyright terms: Public domain | W3C validator |