MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snsn0non Structured version   Visualization version   GIF version

Theorem snsn0non 6308
Description: The singleton of the singleton of the empty set is not an ordinal (nor a natural number by omsson 7583). It can be used to represent an "undefined" value for a partial operation on natural or ordinal numbers. See also onxpdisj 6309. (Contributed by NM, 21-May-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
snsn0non ¬ {{∅}} ∈ On

Proof of Theorem snsn0non
StepHypRef Expression
1 snex 5331 . . . . 5 {∅} ∈ V
21snid 4600 . . . 4 {∅} ∈ {{∅}}
32n0ii 4301 . . 3 ¬ {{∅}} = ∅
4 0ex 5210 . . . . . . 7 ∅ ∈ V
54snid 4600 . . . . . 6 ∅ ∈ {∅}
65n0ii 4301 . . . . 5 ¬ {∅} = ∅
7 eqcom 2828 . . . . 5 (∅ = {∅} ↔ {∅} = ∅)
86, 7mtbir 325 . . . 4 ¬ ∅ = {∅}
94elsn 4581 . . . 4 (∅ ∈ {{∅}} ↔ ∅ = {∅})
108, 9mtbir 325 . . 3 ¬ ∅ ∈ {{∅}}
113, 10pm3.2ni 877 . 2 ¬ ({{∅}} = ∅ ∨ ∅ ∈ {{∅}})
12 on0eqel 6307 . 2 ({{∅}} ∈ On → ({{∅}} = ∅ ∨ ∅ ∈ {{∅}}))
1311, 12mto 199 1 ¬ {{∅}} ∈ On
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 843   = wceq 1533  wcel 2110  c0 4290  {csn 4566  Oncon0 6190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pr 5329
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-tr 5172  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-ord 6193  df-on 6194
This theorem is referenced by:  onnev  6310  onpsstopbas  33778
  Copyright terms: Public domain W3C validator