MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snsn0non Structured version   Visualization version   GIF version

Theorem snsn0non 6385
Description: The singleton of the singleton of the empty set is not an ordinal (nor a natural number by omsson 7716). It can be used to represent an "undefined" value for a partial operation on natural or ordinal numbers. See also onxpdisj 6386. (Contributed by NM, 21-May-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
snsn0non ¬ {{∅}} ∈ On

Proof of Theorem snsn0non
StepHypRef Expression
1 snex 5354 . . . . 5 {∅} ∈ V
21snid 4597 . . . 4 {∅} ∈ {{∅}}
32n0ii 4270 . . 3 ¬ {{∅}} = ∅
4 0ex 5231 . . . . . . 7 ∅ ∈ V
54snid 4597 . . . . . 6 ∅ ∈ {∅}
65n0ii 4270 . . . . 5 ¬ {∅} = ∅
7 eqcom 2745 . . . . 5 (∅ = {∅} ↔ {∅} = ∅)
86, 7mtbir 323 . . . 4 ¬ ∅ = {∅}
94elsn 4576 . . . 4 (∅ ∈ {{∅}} ↔ ∅ = {∅})
108, 9mtbir 323 . . 3 ¬ ∅ ∈ {{∅}}
113, 10pm3.2ni 878 . 2 ¬ ({{∅}} = ∅ ∨ ∅ ∈ {{∅}})
12 on0eqel 6384 . 2 ({{∅}} ∈ On → ({{∅}} = ∅ ∨ ∅ ∈ {{∅}}))
1311, 12mto 196 1 ¬ {{∅}} ∈ On
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 844   = wceq 1539  wcel 2106  c0 4256  {csn 4561  Oncon0 6266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270
This theorem is referenced by:  onnev  6387  onnevOLD  6388  onpsstopbas  34619
  Copyright terms: Public domain W3C validator