| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsn0non | Structured version Visualization version GIF version | ||
| Description: The singleton of the singleton of the empty set is not an ordinal (nor a natural number by omsson 7800). It can be used to represent an "undefined" value for a partial operation on natural or ordinal numbers. See also onxpdisj 6433. (Contributed by NM, 21-May-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| Ref | Expression |
|---|---|
| snsn0non | ⊢ ¬ {{∅}} ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 5374 | . . . . 5 ⊢ {∅} ∈ V | |
| 2 | 1 | snid 4615 | . . . 4 ⊢ {∅} ∈ {{∅}} |
| 3 | 2 | n0ii 4293 | . . 3 ⊢ ¬ {{∅}} = ∅ |
| 4 | 0ex 5245 | . . . . . . 7 ⊢ ∅ ∈ V | |
| 5 | 4 | snid 4615 | . . . . . 6 ⊢ ∅ ∈ {∅} |
| 6 | 5 | n0ii 4293 | . . . . 5 ⊢ ¬ {∅} = ∅ |
| 7 | eqcom 2738 | . . . . 5 ⊢ (∅ = {∅} ↔ {∅} = ∅) | |
| 8 | 6, 7 | mtbir 323 | . . . 4 ⊢ ¬ ∅ = {∅} |
| 9 | 4 | elsn 4591 | . . . 4 ⊢ (∅ ∈ {{∅}} ↔ ∅ = {∅}) |
| 10 | 8, 9 | mtbir 323 | . . 3 ⊢ ¬ ∅ ∈ {{∅}} |
| 11 | 3, 10 | pm3.2ni 880 | . 2 ⊢ ¬ ({{∅}} = ∅ ∨ ∅ ∈ {{∅}}) |
| 12 | on0eqel 6431 | . 2 ⊢ ({{∅}} ∈ On → ({{∅}} = ∅ ∨ ∅ ∈ {{∅}})) | |
| 13 | 11, 12 | mto 197 | 1 ⊢ ¬ {{∅}} ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∅c0 4283 {csn 4576 Oncon0 6306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-tr 5199 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-ord 6309 df-on 6310 |
| This theorem is referenced by: onnev 6434 onpsstopbas 36463 |
| Copyright terms: Public domain | W3C validator |