Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snsn0non | Structured version Visualization version GIF version |
Description: The singleton of the singleton of the empty set is not an ordinal (nor a natural number by omsson 7691). It can be used to represent an "undefined" value for a partial operation on natural or ordinal numbers. See also onxpdisj 6371. (Contributed by NM, 21-May-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
snsn0non | ⊢ ¬ {{∅}} ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5349 | . . . . 5 ⊢ {∅} ∈ V | |
2 | 1 | snid 4594 | . . . 4 ⊢ {∅} ∈ {{∅}} |
3 | 2 | n0ii 4267 | . . 3 ⊢ ¬ {{∅}} = ∅ |
4 | 0ex 5226 | . . . . . . 7 ⊢ ∅ ∈ V | |
5 | 4 | snid 4594 | . . . . . 6 ⊢ ∅ ∈ {∅} |
6 | 5 | n0ii 4267 | . . . . 5 ⊢ ¬ {∅} = ∅ |
7 | eqcom 2745 | . . . . 5 ⊢ (∅ = {∅} ↔ {∅} = ∅) | |
8 | 6, 7 | mtbir 322 | . . . 4 ⊢ ¬ ∅ = {∅} |
9 | 4 | elsn 4573 | . . . 4 ⊢ (∅ ∈ {{∅}} ↔ ∅ = {∅}) |
10 | 8, 9 | mtbir 322 | . . 3 ⊢ ¬ ∅ ∈ {{∅}} |
11 | 3, 10 | pm3.2ni 877 | . 2 ⊢ ¬ ({{∅}} = ∅ ∨ ∅ ∈ {{∅}}) |
12 | on0eqel 6369 | . 2 ⊢ ({{∅}} ∈ On → ({{∅}} = ∅ ∨ ∅ ∈ {{∅}})) | |
13 | 11, 12 | mto 196 | 1 ⊢ ¬ {{∅}} ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∅c0 4253 {csn 4558 Oncon0 6251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 |
This theorem is referenced by: onnev 6372 onnevOLD 6373 onpsstopbas 34546 |
Copyright terms: Public domain | W3C validator |