HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmadjrnb Structured version   Visualization version   GIF version

Theorem dmadjrnb 31886
Description: The adjoint of an operator belongs to the adjoint function's domain. (Note: the converse is dependent on our definition of function value, since it uses ndmfv 6854.) (Contributed by NM, 19-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
dmadjrnb (𝑇 ∈ dom adj ↔ (adj𝑇) ∈ dom adj)

Proof of Theorem dmadjrnb
StepHypRef Expression
1 dmadjrn 31875 . 2 (𝑇 ∈ dom adj → (adj𝑇) ∈ dom adj)
2 ax-hv0cl 30983 . . . . . . . . 9 0 ∈ ℋ
32n0ii 4290 . . . . . . . 8 ¬ ℋ = ∅
4 eqcom 2738 . . . . . . . 8 (∅ = ℋ ↔ ℋ = ∅)
53, 4mtbir 323 . . . . . . 7 ¬ ∅ = ℋ
6 dm0 5859 . . . . . . . 8 dom ∅ = ∅
76eqeq1i 2736 . . . . . . 7 (dom ∅ = ℋ ↔ ∅ = ℋ)
85, 7mtbir 323 . . . . . 6 ¬ dom ∅ = ℋ
9 fdm 6660 . . . . . 6 (∅: ℋ⟶ ℋ → dom ∅ = ℋ)
108, 9mto 197 . . . . 5 ¬ ∅: ℋ⟶ ℋ
11 dmadjop 31868 . . . . 5 (∅ ∈ dom adj → ∅: ℋ⟶ ℋ)
1210, 11mto 197 . . . 4 ¬ ∅ ∈ dom adj
13 ndmfv 6854 . . . . 5 𝑇 ∈ dom adj → (adj𝑇) = ∅)
1413eleq1d 2816 . . . 4 𝑇 ∈ dom adj → ((adj𝑇) ∈ dom adj ↔ ∅ ∈ dom adj))
1512, 14mtbiri 327 . . 3 𝑇 ∈ dom adj → ¬ (adj𝑇) ∈ dom adj)
1615con4i 114 . 2 ((adj𝑇) ∈ dom adj𝑇 ∈ dom adj)
171, 16impbii 209 1 (𝑇 ∈ dom adj ↔ (adj𝑇) ∈ dom adj)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1541  wcel 2111  c0 4280  dom cdm 5614  wf 6477  cfv 6481  chba 30899  0c0v 30904  adjcado 30935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-hilex 30979  ax-hfvadd 30980  ax-hvcom 30981  ax-hvass 30982  ax-hv0cl 30983  ax-hvaddid 30984  ax-hfvmul 30985  ax-hvmulid 30986  ax-hvdistr2 30989  ax-hvmul0 30990  ax-hfi 31059  ax-his1 31062  ax-his2 31063  ax-his3 31064  ax-his4 31065
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-cj 15006  df-re 15007  df-im 15008  df-hvsub 30951  df-adjh 31829
This theorem is referenced by:  adjbdlnb  32064  adjeq0  32071
  Copyright terms: Public domain W3C validator