MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem16 Structured version   Visualization version   GIF version

Theorem tfrlem16 8012
Description: Lemma for finite recursion. Without assuming ax-rep 5154, we can show that the domain of the constructed function is a limit ordinal, and hence contains all the finite ordinals. (Contributed by Mario Carneiro, 14-Nov-2014.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem16 Lim dom recs(𝐹)
Distinct variable group:   𝑥,𝑓,𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem16
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem8 8003 . . 3 Ord dom recs(𝐹)
3 ordzsl 7540 . . 3 (Ord dom recs(𝐹) ↔ (dom recs(𝐹) = ∅ ∨ ∃𝑧 ∈ On dom recs(𝐹) = suc 𝑧 ∨ Lim dom recs(𝐹)))
42, 3mpbi 233 . 2 (dom recs(𝐹) = ∅ ∨ ∃𝑧 ∈ On dom recs(𝐹) = suc 𝑧 ∨ Lim dom recs(𝐹))
5 res0 5822 . . . . . . 7 (recs(𝐹) ↾ ∅) = ∅
6 0ex 5175 . . . . . . 7 ∅ ∈ V
75, 6eqeltri 2886 . . . . . 6 (recs(𝐹) ↾ ∅) ∈ V
8 0elon 6212 . . . . . . 7 ∅ ∈ On
91tfrlem15 8011 . . . . . . 7 (∅ ∈ On → (∅ ∈ dom recs(𝐹) ↔ (recs(𝐹) ↾ ∅) ∈ V))
108, 9ax-mp 5 . . . . . 6 (∅ ∈ dom recs(𝐹) ↔ (recs(𝐹) ↾ ∅) ∈ V)
117, 10mpbir 234 . . . . 5 ∅ ∈ dom recs(𝐹)
1211n0ii 4252 . . . 4 ¬ dom recs(𝐹) = ∅
1312pm2.21i 119 . . 3 (dom recs(𝐹) = ∅ → Lim dom recs(𝐹))
141tfrlem13 8009 . . . . 5 ¬ recs(𝐹) ∈ V
15 simpr 488 . . . . . . . . . 10 ((𝑧 ∈ On ∧ dom recs(𝐹) = suc 𝑧) → dom recs(𝐹) = suc 𝑧)
16 df-suc 6165 . . . . . . . . . 10 suc 𝑧 = (𝑧 ∪ {𝑧})
1715, 16eqtrdi 2849 . . . . . . . . 9 ((𝑧 ∈ On ∧ dom recs(𝐹) = suc 𝑧) → dom recs(𝐹) = (𝑧 ∪ {𝑧}))
1817reseq2d 5818 . . . . . . . 8 ((𝑧 ∈ On ∧ dom recs(𝐹) = suc 𝑧) → (recs(𝐹) ↾ dom recs(𝐹)) = (recs(𝐹) ↾ (𝑧 ∪ {𝑧})))
191tfrlem6 8001 . . . . . . . . 9 Rel recs(𝐹)
20 resdm 5863 . . . . . . . . 9 (Rel recs(𝐹) → (recs(𝐹) ↾ dom recs(𝐹)) = recs(𝐹))
2119, 20ax-mp 5 . . . . . . . 8 (recs(𝐹) ↾ dom recs(𝐹)) = recs(𝐹)
22 resundi 5832 . . . . . . . 8 (recs(𝐹) ↾ (𝑧 ∪ {𝑧})) = ((recs(𝐹) ↾ 𝑧) ∪ (recs(𝐹) ↾ {𝑧}))
2318, 21, 223eqtr3g 2856 . . . . . . 7 ((𝑧 ∈ On ∧ dom recs(𝐹) = suc 𝑧) → recs(𝐹) = ((recs(𝐹) ↾ 𝑧) ∪ (recs(𝐹) ↾ {𝑧})))
24 vex 3444 . . . . . . . . . . 11 𝑧 ∈ V
2524sucid 6238 . . . . . . . . . 10 𝑧 ∈ suc 𝑧
2625, 15eleqtrrid 2897 . . . . . . . . 9 ((𝑧 ∈ On ∧ dom recs(𝐹) = suc 𝑧) → 𝑧 ∈ dom recs(𝐹))
271tfrlem9a 8005 . . . . . . . . 9 (𝑧 ∈ dom recs(𝐹) → (recs(𝐹) ↾ 𝑧) ∈ V)
2826, 27syl 17 . . . . . . . 8 ((𝑧 ∈ On ∧ dom recs(𝐹) = suc 𝑧) → (recs(𝐹) ↾ 𝑧) ∈ V)
29 snex 5297 . . . . . . . . 9 {⟨𝑧, (recs(𝐹)‘𝑧)⟩} ∈ V
301tfrlem7 8002 . . . . . . . . . 10 Fun recs(𝐹)
31 funressn 6898 . . . . . . . . . 10 (Fun recs(𝐹) → (recs(𝐹) ↾ {𝑧}) ⊆ {⟨𝑧, (recs(𝐹)‘𝑧)⟩})
3230, 31ax-mp 5 . . . . . . . . 9 (recs(𝐹) ↾ {𝑧}) ⊆ {⟨𝑧, (recs(𝐹)‘𝑧)⟩}
3329, 32ssexi 5190 . . . . . . . 8 (recs(𝐹) ↾ {𝑧}) ∈ V
34 unexg 7452 . . . . . . . 8 (((recs(𝐹) ↾ 𝑧) ∈ V ∧ (recs(𝐹) ↾ {𝑧}) ∈ V) → ((recs(𝐹) ↾ 𝑧) ∪ (recs(𝐹) ↾ {𝑧})) ∈ V)
3528, 33, 34sylancl 589 . . . . . . 7 ((𝑧 ∈ On ∧ dom recs(𝐹) = suc 𝑧) → ((recs(𝐹) ↾ 𝑧) ∪ (recs(𝐹) ↾ {𝑧})) ∈ V)
3623, 35eqeltrd 2890 . . . . . 6 ((𝑧 ∈ On ∧ dom recs(𝐹) = suc 𝑧) → recs(𝐹) ∈ V)
3736rexlimiva 3240 . . . . 5 (∃𝑧 ∈ On dom recs(𝐹) = suc 𝑧 → recs(𝐹) ∈ V)
3814, 37mto 200 . . . 4 ¬ ∃𝑧 ∈ On dom recs(𝐹) = suc 𝑧
3938pm2.21i 119 . . 3 (∃𝑧 ∈ On dom recs(𝐹) = suc 𝑧 → Lim dom recs(𝐹))
40 id 22 . . 3 (Lim dom recs(𝐹) → Lim dom recs(𝐹))
4113, 39, 403jaoi 1424 . 2 ((dom recs(𝐹) = ∅ ∨ ∃𝑧 ∈ On dom recs(𝐹) = suc 𝑧 ∨ Lim dom recs(𝐹)) → Lim dom recs(𝐹))
424, 41ax-mp 5 1 Lim dom recs(𝐹)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3o 1083   = wceq 1538  wcel 2111  {cab 2776  wral 3106  wrex 3107  Vcvv 3441  cun 3879  wss 3881  c0 4243  {csn 4525  cop 4531  dom cdm 5519  cres 5521  Rel wrel 5524  Ord word 6158  Oncon0 6159  Lim wlim 6160  suc csuc 6161  Fun wfun 6318   Fn wfn 6319  cfv 6324  recscrecs 7990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-wrecs 7930  df-recs 7991
This theorem is referenced by:  tfr1a  8013
  Copyright terms: Public domain W3C validator