MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem16 Structured version   Visualization version   GIF version

Theorem tfrlem16 8412
Description: Lemma for finite recursion. Without assuming ax-rep 5254, we can show that the domain of the constructed function is a limit ordinal, and hence contains all the finite ordinals. (Contributed by Mario Carneiro, 14-Nov-2014.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem16 Lim dom recs(𝐹)
Distinct variable group:   𝑥,𝑓,𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem16
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem8 8403 . . 3 Ord dom recs(𝐹)
3 ordzsl 7845 . . 3 (Ord dom recs(𝐹) ↔ (dom recs(𝐹) = ∅ ∨ ∃𝑧 ∈ On dom recs(𝐹) = suc 𝑧 ∨ Lim dom recs(𝐹)))
42, 3mpbi 230 . 2 (dom recs(𝐹) = ∅ ∨ ∃𝑧 ∈ On dom recs(𝐹) = suc 𝑧 ∨ Lim dom recs(𝐹))
5 res0 5975 . . . . . . 7 (recs(𝐹) ↾ ∅) = ∅
6 0ex 5282 . . . . . . 7 ∅ ∈ V
75, 6eqeltri 2831 . . . . . 6 (recs(𝐹) ↾ ∅) ∈ V
8 0elon 6412 . . . . . . 7 ∅ ∈ On
91tfrlem15 8411 . . . . . . 7 (∅ ∈ On → (∅ ∈ dom recs(𝐹) ↔ (recs(𝐹) ↾ ∅) ∈ V))
108, 9ax-mp 5 . . . . . 6 (∅ ∈ dom recs(𝐹) ↔ (recs(𝐹) ↾ ∅) ∈ V)
117, 10mpbir 231 . . . . 5 ∅ ∈ dom recs(𝐹)
1211n0ii 4323 . . . 4 ¬ dom recs(𝐹) = ∅
1312pm2.21i 119 . . 3 (dom recs(𝐹) = ∅ → Lim dom recs(𝐹))
141tfrlem13 8409 . . . . 5 ¬ recs(𝐹) ∈ V
15 simpr 484 . . . . . . . . . 10 ((𝑧 ∈ On ∧ dom recs(𝐹) = suc 𝑧) → dom recs(𝐹) = suc 𝑧)
16 df-suc 6363 . . . . . . . . . 10 suc 𝑧 = (𝑧 ∪ {𝑧})
1715, 16eqtrdi 2787 . . . . . . . . 9 ((𝑧 ∈ On ∧ dom recs(𝐹) = suc 𝑧) → dom recs(𝐹) = (𝑧 ∪ {𝑧}))
1817reseq2d 5971 . . . . . . . 8 ((𝑧 ∈ On ∧ dom recs(𝐹) = suc 𝑧) → (recs(𝐹) ↾ dom recs(𝐹)) = (recs(𝐹) ↾ (𝑧 ∪ {𝑧})))
191tfrlem6 8401 . . . . . . . . 9 Rel recs(𝐹)
20 resdm 6018 . . . . . . . . 9 (Rel recs(𝐹) → (recs(𝐹) ↾ dom recs(𝐹)) = recs(𝐹))
2119, 20ax-mp 5 . . . . . . . 8 (recs(𝐹) ↾ dom recs(𝐹)) = recs(𝐹)
22 resundi 5985 . . . . . . . 8 (recs(𝐹) ↾ (𝑧 ∪ {𝑧})) = ((recs(𝐹) ↾ 𝑧) ∪ (recs(𝐹) ↾ {𝑧}))
2318, 21, 223eqtr3g 2794 . . . . . . 7 ((𝑧 ∈ On ∧ dom recs(𝐹) = suc 𝑧) → recs(𝐹) = ((recs(𝐹) ↾ 𝑧) ∪ (recs(𝐹) ↾ {𝑧})))
24 vex 3468 . . . . . . . . . . 11 𝑧 ∈ V
2524sucid 6441 . . . . . . . . . 10 𝑧 ∈ suc 𝑧
2625, 15eleqtrrid 2842 . . . . . . . . 9 ((𝑧 ∈ On ∧ dom recs(𝐹) = suc 𝑧) → 𝑧 ∈ dom recs(𝐹))
271tfrlem9a 8405 . . . . . . . . 9 (𝑧 ∈ dom recs(𝐹) → (recs(𝐹) ↾ 𝑧) ∈ V)
2826, 27syl 17 . . . . . . . 8 ((𝑧 ∈ On ∧ dom recs(𝐹) = suc 𝑧) → (recs(𝐹) ↾ 𝑧) ∈ V)
29 snex 5411 . . . . . . . . 9 {⟨𝑧, (recs(𝐹)‘𝑧)⟩} ∈ V
301tfrlem7 8402 . . . . . . . . . 10 Fun recs(𝐹)
31 funressn 7154 . . . . . . . . . 10 (Fun recs(𝐹) → (recs(𝐹) ↾ {𝑧}) ⊆ {⟨𝑧, (recs(𝐹)‘𝑧)⟩})
3230, 31ax-mp 5 . . . . . . . . 9 (recs(𝐹) ↾ {𝑧}) ⊆ {⟨𝑧, (recs(𝐹)‘𝑧)⟩}
3329, 32ssexi 5297 . . . . . . . 8 (recs(𝐹) ↾ {𝑧}) ∈ V
34 unexg 7742 . . . . . . . 8 (((recs(𝐹) ↾ 𝑧) ∈ V ∧ (recs(𝐹) ↾ {𝑧}) ∈ V) → ((recs(𝐹) ↾ 𝑧) ∪ (recs(𝐹) ↾ {𝑧})) ∈ V)
3528, 33, 34sylancl 586 . . . . . . 7 ((𝑧 ∈ On ∧ dom recs(𝐹) = suc 𝑧) → ((recs(𝐹) ↾ 𝑧) ∪ (recs(𝐹) ↾ {𝑧})) ∈ V)
3623, 35eqeltrd 2835 . . . . . 6 ((𝑧 ∈ On ∧ dom recs(𝐹) = suc 𝑧) → recs(𝐹) ∈ V)
3736rexlimiva 3134 . . . . 5 (∃𝑧 ∈ On dom recs(𝐹) = suc 𝑧 → recs(𝐹) ∈ V)
3814, 37mto 197 . . . 4 ¬ ∃𝑧 ∈ On dom recs(𝐹) = suc 𝑧
3938pm2.21i 119 . . 3 (∃𝑧 ∈ On dom recs(𝐹) = suc 𝑧 → Lim dom recs(𝐹))
40 id 22 . . 3 (Lim dom recs(𝐹) → Lim dom recs(𝐹))
4113, 39, 403jaoi 1430 . 2 ((dom recs(𝐹) = ∅ ∨ ∃𝑧 ∈ On dom recs(𝐹) = suc 𝑧 ∨ Lim dom recs(𝐹)) → Lim dom recs(𝐹))
424, 41ax-mp 5 1 Lim dom recs(𝐹)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  {cab 2714  wral 3052  wrex 3061  Vcvv 3464  cun 3929  wss 3931  c0 4313  {csn 4606  cop 4612  dom cdm 5659  cres 5661  Rel wrel 5664  Ord word 6356  Oncon0 6357  Lim wlim 6358  suc csuc 6359  Fun wfun 6530   Fn wfn 6531  cfv 6536  recscrecs 8389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390
This theorem is referenced by:  tfr1a  8413
  Copyright terms: Public domain W3C validator