Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvnprodlem3 Structured version   Visualization version   GIF version

Theorem dvnprodlem3 45949
Description: The multinomial formula for the 𝑘-th derivative of a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
dvnprodlem3.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvnprodlem3.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
dvnprodlem3.t (𝜑𝑇 ∈ Fin)
dvnprodlem3.h ((𝜑𝑡𝑇) → (𝐻𝑡):𝑋⟶ℂ)
dvnprodlem3.n (𝜑𝑁 ∈ ℕ0)
dvnprodlem3.dvnh ((𝜑𝑡𝑇𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻𝑡))‘𝑗):𝑋⟶ℂ)
dvnprodlem3.f 𝐹 = (𝑥𝑋 ↦ ∏𝑡𝑇 ((𝐻𝑡)‘𝑥))
dvnprodlem3.d 𝐷 = (𝑠 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛}))
dvnprodlem3.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛})
Assertion
Ref Expression
dvnprodlem3 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
Distinct variable groups:   𝐶,𝑐   𝐷,𝑐,𝑗,𝑡,𝑛,𝑠,𝑥   𝐹,𝑠   𝐻,𝑐,𝑗,𝑡,𝑛,𝑠,𝑥   𝑁,𝑐,𝑗,𝑡,𝑛,𝑠,𝑥   𝑆,𝑐,𝑗,𝑡,𝑛,𝑠,𝑥   𝑇,𝑐,𝑗,𝑡,𝑛,𝑠,𝑥   𝑋,𝑐,𝑗,𝑡,𝑛,𝑠,𝑥   𝜑,𝑐,𝑗,𝑡,𝑛,𝑠,𝑥
Allowed substitution hints:   𝐶(𝑥,𝑡,𝑗,𝑛,𝑠)   𝐹(𝑥,𝑡,𝑗,𝑛,𝑐)

Proof of Theorem dvnprodlem3
Dummy variables 𝑑 𝑘 𝑙 𝑟 𝑧 𝑦 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 15814 . . . . . . . . 9 (𝑠 = ∅ → ∏𝑡𝑠 ((𝐻𝑡)‘𝑥) = ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥))
21mpteq2dv 5186 . . . . . . . 8 (𝑠 = ∅ → (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)) = (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥)))
32oveq2d 7365 . . . . . . 7 (𝑠 = ∅ → (𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥))) = (𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥))))
43fveq1d 6824 . . . . . 6 (𝑠 = ∅ → ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥)))‘𝑘))
5 fveq2 6822 . . . . . . . . . 10 (𝑠 = ∅ → (𝐷𝑠) = (𝐷‘∅))
65fveq1d 6824 . . . . . . . . 9 (𝑠 = ∅ → ((𝐷𝑠)‘𝑘) = ((𝐷‘∅)‘𝑘))
76sumeq1d 15607 . . . . . . . 8 (𝑠 = ∅ → Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
8 prodeq1 15814 . . . . . . . . . . 11 (𝑠 = ∅ → ∏𝑡𝑠 (!‘(𝑐𝑡)) = ∏𝑡 ∈ ∅ (!‘(𝑐𝑡)))
98oveq2d 7365 . . . . . . . . . 10 (𝑠 = ∅ → ((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) = ((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))))
10 prodeq1 15814 . . . . . . . . . 10 (𝑠 = ∅ → ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥) = ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))
119, 10oveq12d 7367 . . . . . . . . 9 (𝑠 = ∅ → (((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
1211sumeq2sdv 15610 . . . . . . . 8 (𝑠 = ∅ → Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
137, 12eqtrd 2764 . . . . . . 7 (𝑠 = ∅ → Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
1413mpteq2dv 5186 . . . . . 6 (𝑠 = ∅ → (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
154, 14eqeq12d 2745 . . . . 5 (𝑠 = ∅ → (((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) ↔ ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))))
1615ralbidv 3152 . . . 4 (𝑠 = ∅ → (∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) ↔ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))))
17 prodeq1 15814 . . . . . . . . 9 (𝑠 = 𝑟 → ∏𝑡𝑠 ((𝐻𝑡)‘𝑥) = ∏𝑡𝑟 ((𝐻𝑡)‘𝑥))
1817mpteq2dv 5186 . . . . . . . 8 (𝑠 = 𝑟 → (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)) = (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))
1918oveq2d 7365 . . . . . . 7 (𝑠 = 𝑟 → (𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥))) = (𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥))))
2019fveq1d 6824 . . . . . 6 (𝑠 = 𝑟 → ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑘))
21 fveq2 6822 . . . . . . . . . 10 (𝑠 = 𝑟 → (𝐷𝑠) = (𝐷𝑟))
2221fveq1d 6824 . . . . . . . . 9 (𝑠 = 𝑟 → ((𝐷𝑠)‘𝑘) = ((𝐷𝑟)‘𝑘))
2322sumeq1d 15607 . . . . . . . 8 (𝑠 = 𝑟 → Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
24 prodeq1 15814 . . . . . . . . . . 11 (𝑠 = 𝑟 → ∏𝑡𝑠 (!‘(𝑐𝑡)) = ∏𝑡𝑟 (!‘(𝑐𝑡)))
2524oveq2d 7365 . . . . . . . . . 10 (𝑠 = 𝑟 → ((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) = ((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))))
26 prodeq1 15814 . . . . . . . . . 10 (𝑠 = 𝑟 → ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥) = ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))
2725, 26oveq12d 7367 . . . . . . . . 9 (𝑠 = 𝑟 → (((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = (((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
2827sumeq2sdv 15610 . . . . . . . 8 (𝑠 = 𝑟 → Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
2923, 28eqtrd 2764 . . . . . . 7 (𝑠 = 𝑟 → Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
3029mpteq2dv 5186 . . . . . 6 (𝑠 = 𝑟 → (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
3120, 30eqeq12d 2745 . . . . 5 (𝑠 = 𝑟 → (((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) ↔ ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))))
3231ralbidv 3152 . . . 4 (𝑠 = 𝑟 → (∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) ↔ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))))
33 prodeq1 15814 . . . . . . . . 9 (𝑠 = (𝑟 ∪ {𝑧}) → ∏𝑡𝑠 ((𝐻𝑡)‘𝑥) = ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥))
3433mpteq2dv 5186 . . . . . . . 8 (𝑠 = (𝑟 ∪ {𝑧}) → (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)) = (𝑥𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥)))
3534oveq2d 7365 . . . . . . 7 (𝑠 = (𝑟 ∪ {𝑧}) → (𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥))) = (𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥))))
3635fveq1d 6824 . . . . . 6 (𝑠 = (𝑟 ∪ {𝑧}) → ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥)))‘𝑘))
37 fveq2 6822 . . . . . . . . . 10 (𝑠 = (𝑟 ∪ {𝑧}) → (𝐷𝑠) = (𝐷‘(𝑟 ∪ {𝑧})))
3837fveq1d 6824 . . . . . . . . 9 (𝑠 = (𝑟 ∪ {𝑧}) → ((𝐷𝑠)‘𝑘) = ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘))
3938sumeq1d 15607 . . . . . . . 8 (𝑠 = (𝑟 ∪ {𝑧}) → Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
40 prodeq1 15814 . . . . . . . . . . 11 (𝑠 = (𝑟 ∪ {𝑧}) → ∏𝑡𝑠 (!‘(𝑐𝑡)) = ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡)))
4140oveq2d 7365 . . . . . . . . . 10 (𝑠 = (𝑟 ∪ {𝑧}) → ((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) = ((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))))
42 prodeq1 15814 . . . . . . . . . 10 (𝑠 = (𝑟 ∪ {𝑧}) → ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥) = ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))
4341, 42oveq12d 7367 . . . . . . . . 9 (𝑠 = (𝑟 ∪ {𝑧}) → (((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = (((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
4443sumeq2sdv 15610 . . . . . . . 8 (𝑠 = (𝑟 ∪ {𝑧}) → Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
4539, 44eqtrd 2764 . . . . . . 7 (𝑠 = (𝑟 ∪ {𝑧}) → Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
4645mpteq2dv 5186 . . . . . 6 (𝑠 = (𝑟 ∪ {𝑧}) → (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
4736, 46eqeq12d 2745 . . . . 5 (𝑠 = (𝑟 ∪ {𝑧}) → (((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) ↔ ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))))
4847ralbidv 3152 . . . 4 (𝑠 = (𝑟 ∪ {𝑧}) → (∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) ↔ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))))
49 prodeq1 15814 . . . . . . . . . 10 (𝑠 = 𝑇 → ∏𝑡𝑠 ((𝐻𝑡)‘𝑥) = ∏𝑡𝑇 ((𝐻𝑡)‘𝑥))
5049mpteq2dv 5186 . . . . . . . . 9 (𝑠 = 𝑇 → (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)) = (𝑥𝑋 ↦ ∏𝑡𝑇 ((𝐻𝑡)‘𝑥)))
51 dvnprodlem3.f . . . . . . . . . . 11 𝐹 = (𝑥𝑋 ↦ ∏𝑡𝑇 ((𝐻𝑡)‘𝑥))
5251a1i 11 . . . . . . . . . 10 (𝑠 = 𝑇𝐹 = (𝑥𝑋 ↦ ∏𝑡𝑇 ((𝐻𝑡)‘𝑥)))
5352eqcomd 2735 . . . . . . . . 9 (𝑠 = 𝑇 → (𝑥𝑋 ↦ ∏𝑡𝑇 ((𝐻𝑡)‘𝑥)) = 𝐹)
5450, 53eqtrd 2764 . . . . . . . 8 (𝑠 = 𝑇 → (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)) = 𝐹)
5554oveq2d 7365 . . . . . . 7 (𝑠 = 𝑇 → (𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥))) = (𝑆 D𝑛 𝐹))
5655fveq1d 6824 . . . . . 6 (𝑠 = 𝑇 → ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 𝐹)‘𝑘))
57 fveq2 6822 . . . . . . . . . 10 (𝑠 = 𝑇 → (𝐷𝑠) = (𝐷𝑇))
5857fveq1d 6824 . . . . . . . . 9 (𝑠 = 𝑇 → ((𝐷𝑠)‘𝑘) = ((𝐷𝑇)‘𝑘))
5958sumeq1d 15607 . . . . . . . 8 (𝑠 = 𝑇 → Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
60 prodeq1 15814 . . . . . . . . . . 11 (𝑠 = 𝑇 → ∏𝑡𝑠 (!‘(𝑐𝑡)) = ∏𝑡𝑇 (!‘(𝑐𝑡)))
6160oveq2d 7365 . . . . . . . . . 10 (𝑠 = 𝑇 → ((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) = ((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))))
62 prodeq1 15814 . . . . . . . . . 10 (𝑠 = 𝑇 → ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥) = ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))
6361, 62oveq12d 7367 . . . . . . . . 9 (𝑠 = 𝑇 → (((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = (((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
6463sumeq2sdv 15610 . . . . . . . 8 (𝑠 = 𝑇 → Σ𝑐 ∈ ((𝐷𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
6559, 64eqtrd 2764 . . . . . . 7 (𝑠 = 𝑇 → Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
6665mpteq2dv 5186 . . . . . 6 (𝑠 = 𝑇 → (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
6756, 66eqeq12d 2745 . . . . 5 (𝑠 = 𝑇 → (((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) ↔ ((𝑆 D𝑛 𝐹)‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))))
6867ralbidv 3152 . . . 4 (𝑠 = 𝑇 → (∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑠 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡𝑠 (!‘(𝑐𝑡))) · ∏𝑡𝑠 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) ↔ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 𝐹)‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))))
69 prod0 15850 . . . . . . . . . . . . 13 𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥) = 1
7069mpteq2i 5188 . . . . . . . . . . . 12 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥)) = (𝑥𝑋 ↦ 1)
7170oveq2i 7360 . . . . . . . . . . 11 (𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥))) = (𝑆 D𝑛 (𝑥𝑋 ↦ 1))
7271a1i 11 . . . . . . . . . 10 (𝑘 = 0 → (𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥))) = (𝑆 D𝑛 (𝑥𝑋 ↦ 1)))
73 id 22 . . . . . . . . . 10 (𝑘 = 0 → 𝑘 = 0)
7472, 73fveq12d 6829 . . . . . . . . 9 (𝑘 = 0 → ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝑥𝑋 ↦ 1))‘0))
7574adantl 481 . . . . . . . 8 ((𝜑𝑘 = 0) → ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝑥𝑋 ↦ 1))‘0))
76 dvnprodlem3.s . . . . . . . . . . 11 (𝜑𝑆 ∈ {ℝ, ℂ})
77 recnprss 25803 . . . . . . . . . . 11 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
7876, 77syl 17 . . . . . . . . . 10 (𝜑𝑆 ⊆ ℂ)
79 1cnd 11110 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → 1 ∈ ℂ)
8079fmpttd 7049 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝑋 ↦ 1):𝑋⟶ℂ)
81 1re 11115 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
8281rgenw 3048 . . . . . . . . . . . . . . . 16 𝑥𝑋 1 ∈ ℝ
83 dmmptg 6191 . . . . . . . . . . . . . . . 16 (∀𝑥𝑋 1 ∈ ℝ → dom (𝑥𝑋 ↦ 1) = 𝑋)
8482, 83ax-mp 5 . . . . . . . . . . . . . . 15 dom (𝑥𝑋 ↦ 1) = 𝑋
8584a1i 11 . . . . . . . . . . . . . 14 (𝜑 → dom (𝑥𝑋 ↦ 1) = 𝑋)
8685feq2d 6636 . . . . . . . . . . . . 13 (𝜑 → ((𝑥𝑋 ↦ 1):dom (𝑥𝑋 ↦ 1)⟶ℂ ↔ (𝑥𝑋 ↦ 1):𝑋⟶ℂ))
8780, 86mpbird 257 . . . . . . . . . . . 12 (𝜑 → (𝑥𝑋 ↦ 1):dom (𝑥𝑋 ↦ 1)⟶ℂ)
88 restsspw 17335 . . . . . . . . . . . . . . 15 ((TopOpen‘ℂfld) ↾t 𝑆) ⊆ 𝒫 𝑆
89 dvnprodlem3.x . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
9088, 89sselid 3933 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ 𝒫 𝑆)
91 elpwi 4558 . . . . . . . . . . . . . 14 (𝑋 ∈ 𝒫 𝑆𝑋𝑆)
9290, 91syl 17 . . . . . . . . . . . . 13 (𝜑𝑋𝑆)
9385, 92eqsstrd 3970 . . . . . . . . . . . 12 (𝜑 → dom (𝑥𝑋 ↦ 1) ⊆ 𝑆)
9487, 93jca 511 . . . . . . . . . . 11 (𝜑 → ((𝑥𝑋 ↦ 1):dom (𝑥𝑋 ↦ 1)⟶ℂ ∧ dom (𝑥𝑋 ↦ 1) ⊆ 𝑆))
95 cnex 11090 . . . . . . . . . . . . 13 ℂ ∈ V
9695a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ∈ V)
97 elpm2g 8771 . . . . . . . . . . . 12 ((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) → ((𝑥𝑋 ↦ 1) ∈ (ℂ ↑pm 𝑆) ↔ ((𝑥𝑋 ↦ 1):dom (𝑥𝑋 ↦ 1)⟶ℂ ∧ dom (𝑥𝑋 ↦ 1) ⊆ 𝑆)))
9896, 76, 97syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝑥𝑋 ↦ 1) ∈ (ℂ ↑pm 𝑆) ↔ ((𝑥𝑋 ↦ 1):dom (𝑥𝑋 ↦ 1)⟶ℂ ∧ dom (𝑥𝑋 ↦ 1) ⊆ 𝑆)))
9994, 98mpbird 257 . . . . . . . . . 10 (𝜑 → (𝑥𝑋 ↦ 1) ∈ (ℂ ↑pm 𝑆))
100 dvn0 25824 . . . . . . . . . 10 ((𝑆 ⊆ ℂ ∧ (𝑥𝑋 ↦ 1) ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 (𝑥𝑋 ↦ 1))‘0) = (𝑥𝑋 ↦ 1))
10178, 99, 100syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ 1))‘0) = (𝑥𝑋 ↦ 1))
102101adantr 480 . . . . . . . 8 ((𝜑𝑘 = 0) → ((𝑆 D𝑛 (𝑥𝑋 ↦ 1))‘0) = (𝑥𝑋 ↦ 1))
103 fveq2 6822 . . . . . . . . . . . . . . 15 (𝑘 = 0 → ((𝐷‘∅)‘𝑘) = ((𝐷‘∅)‘0))
104103adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑘 = 0) → ((𝐷‘∅)‘𝑘) = ((𝐷‘∅)‘0))
105 dvnprodlem3.d . . . . . . . . . . . . . . . . 17 𝐷 = (𝑠 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛}))
106 oveq2 7357 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = ∅ → ((0...𝑛) ↑m 𝑠) = ((0...𝑛) ↑m ∅))
107 elmapfn 8792 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ ((0...𝑛) ↑m ∅) → 𝑥 Fn ∅)
108 fn0 6613 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 Fn ∅ ↔ 𝑥 = ∅)
109107, 108sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ ((0...𝑛) ↑m ∅) → 𝑥 = ∅)
110 velsn 4593 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
111109, 110sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ((0...𝑛) ↑m ∅) → 𝑥 ∈ {∅})
112110biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ {∅} → 𝑥 = ∅)
113 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = ∅ → 𝑥 = ∅)
114 f0 6705 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ∅:∅⟶(0...𝑛)
115 ovex 7382 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (0...𝑛) ∈ V
116 0ex 5246 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ∅ ∈ V
117115, 116elmap 8798 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (∅ ∈ ((0...𝑛) ↑m ∅) ↔ ∅:∅⟶(0...𝑛))
118114, 117mpbir 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ∅ ∈ ((0...𝑛) ↑m ∅)
119118a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = ∅ → ∅ ∈ ((0...𝑛) ↑m ∅))
120113, 119eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = ∅ → 𝑥 ∈ ((0...𝑛) ↑m ∅))
121112, 120syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ {∅} → 𝑥 ∈ ((0...𝑛) ↑m ∅))
122111, 121impbii 209 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ((0...𝑛) ↑m ∅) ↔ 𝑥 ∈ {∅})
123122ax-gen 1795 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥(𝑥 ∈ ((0...𝑛) ↑m ∅) ↔ 𝑥 ∈ {∅})
124 dfcleq 2722 . . . . . . . . . . . . . . . . . . . . . . 23 (((0...𝑛) ↑m ∅) = {∅} ↔ ∀𝑥(𝑥 ∈ ((0...𝑛) ↑m ∅) ↔ 𝑥 ∈ {∅}))
125123, 124mpbir 231 . . . . . . . . . . . . . . . . . . . . . 22 ((0...𝑛) ↑m ∅) = {∅}
126125a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = ∅ → ((0...𝑛) ↑m ∅) = {∅})
127106, 126eqtrd 2764 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = ∅ → ((0...𝑛) ↑m 𝑠) = {∅})
128 rabeq 3409 . . . . . . . . . . . . . . . . . . . 20 (((0...𝑛) ↑m 𝑠) = {∅} → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛} = {𝑐 ∈ {∅} ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛})
129127, 128syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑠 = ∅ → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛} = {𝑐 ∈ {∅} ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛})
130 sumeq1 15596 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = ∅ → Σ𝑡𝑠 (𝑐𝑡) = Σ𝑡 ∈ ∅ (𝑐𝑡))
131130eqeq1d 2731 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = ∅ → (Σ𝑡𝑠 (𝑐𝑡) = 𝑛 ↔ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛))
132131rabbidv 3402 . . . . . . . . . . . . . . . . . . 19 (𝑠 = ∅ → {𝑐 ∈ {∅} ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛})
133129, 132eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (𝑠 = ∅ → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛})
134133mpteq2dv 5186 . . . . . . . . . . . . . . . . 17 (𝑠 = ∅ → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛}))
135 0elpw 5295 . . . . . . . . . . . . . . . . . 18 ∅ ∈ 𝒫 𝑇
136135a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ∅ ∈ 𝒫 𝑇)
137 nn0ex 12390 . . . . . . . . . . . . . . . . . . 19 0 ∈ V
138137mptex 7159 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛}) ∈ V
139138a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛}) ∈ V)
140105, 134, 136, 139fvmptd3 6953 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐷‘∅) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛}))
141 eqeq2 2741 . . . . . . . . . . . . . . . . . 18 (𝑛 = 0 → (Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛 ↔ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0))
142141rabbidv 3402 . . . . . . . . . . . . . . . . 17 (𝑛 = 0 → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0})
143142adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 = 0) → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0})
144 0nn0 12399 . . . . . . . . . . . . . . . . 17 0 ∈ ℕ0
145144a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ∈ ℕ0)
146 p0ex 5323 . . . . . . . . . . . . . . . . . 18 {∅} ∈ V
147146rabex 5278 . . . . . . . . . . . . . . . . 17 {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0} ∈ V
148147a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0} ∈ V)
149140, 143, 145, 148fvmptd 6937 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐷‘∅)‘0) = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0})
150149adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 = 0) → ((𝐷‘∅)‘0) = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0})
151 snidg 4612 . . . . . . . . . . . . . . . . . . . . 21 (∅ ∈ V → ∅ ∈ {∅})
152116, 151ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ∅ ∈ {∅}
153 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 0 = 0
154152, 153pm3.2i 470 . . . . . . . . . . . . . . . . . . 19 (∅ ∈ {∅} ∧ 0 = 0)
155 sum0 15628 . . . . . . . . . . . . . . . . . . . . . 22 Σ𝑡 ∈ ∅ (𝑐𝑡) = 0
156155a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = ∅ → Σ𝑡 ∈ ∅ (𝑐𝑡) = 0)
157156eqeq1d 2731 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = ∅ → (Σ𝑡 ∈ ∅ (𝑐𝑡) = 0 ↔ 0 = 0))
158157elrab 3648 . . . . . . . . . . . . . . . . . . 19 (∅ ∈ {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0} ↔ (∅ ∈ {∅} ∧ 0 = 0))
159154, 158mpbir 231 . . . . . . . . . . . . . . . . . 18 ∅ ∈ {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0}
160159n0ii 4294 . . . . . . . . . . . . . . . . 17 ¬ {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0} = ∅
161 eqid 2729 . . . . . . . . . . . . . . . . . 18 {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0}
162 rabrsn 4676 . . . . . . . . . . . . . . . . . 18 ({𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0} → ({𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0} = ∅ ∨ {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0} = {∅}))
163161, 162ax-mp 5 . . . . . . . . . . . . . . . . 17 ({𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0} = ∅ ∨ {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0} = {∅})
164160, 163mtpor 1770 . . . . . . . . . . . . . . . 16 {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0} = {∅}
165164a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑘 = 0) → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0} = {∅})
166 iftrue 4482 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → if(𝑘 = 0, {∅}, ∅) = {∅})
167166adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 = 0) → if(𝑘 = 0, {∅}, ∅) = {∅})
168165, 167eqtr4d 2767 . . . . . . . . . . . . . 14 ((𝜑𝑘 = 0) → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 0} = if(𝑘 = 0, {∅}, ∅))
169104, 150, 1683eqtrd 2768 . . . . . . . . . . . . 13 ((𝜑𝑘 = 0) → ((𝐷‘∅)‘𝑘) = if(𝑘 = 0, {∅}, ∅))
170169, 167eqtrd 2764 . . . . . . . . . . . 12 ((𝜑𝑘 = 0) → ((𝐷‘∅)‘𝑘) = {∅})
171170sumeq1d 15607 . . . . . . . . . . 11 ((𝜑𝑘 = 0) → Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ {∅} (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
172 fveq2 6822 . . . . . . . . . . . . . . . . . 18 (𝑘 = 0 → (!‘𝑘) = (!‘0))
173 fac0 14183 . . . . . . . . . . . . . . . . . . 19 (!‘0) = 1
174173a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑘 = 0 → (!‘0) = 1)
175172, 174eqtrd 2764 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (!‘𝑘) = 1)
176175oveq1d 7364 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → ((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) = (1 / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))))
177 prod0 15850 . . . . . . . . . . . . . . . . . 18 𝑡 ∈ ∅ (!‘(𝑐𝑡)) = 1
178177oveq2i 7360 . . . . . . . . . . . . . . . . 17 (1 / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) = (1 / 1)
179 1div1e1 11815 . . . . . . . . . . . . . . . . 17 (1 / 1) = 1
180178, 179eqtri 2752 . . . . . . . . . . . . . . . 16 (1 / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) = 1
181176, 180eqtrdi 2780 . . . . . . . . . . . . . . 15 (𝑘 = 0 → ((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) = 1)
182 prod0 15850 . . . . . . . . . . . . . . . 16 𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥) = 1
183182a1i 11 . . . . . . . . . . . . . . 15 (𝑘 = 0 → ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥) = 1)
184181, 183oveq12d 7367 . . . . . . . . . . . . . 14 (𝑘 = 0 → (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = (1 · 1))
185184ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑘 = 0) ∧ 𝑐 ∈ {∅}) → (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = (1 · 1))
186 1t1e1 12285 . . . . . . . . . . . . . 14 (1 · 1) = 1
187186a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑘 = 0) ∧ 𝑐 ∈ {∅}) → (1 · 1) = 1)
188185, 187eqtrd 2764 . . . . . . . . . . . 12 (((𝜑𝑘 = 0) ∧ 𝑐 ∈ {∅}) → (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = 1)
189188sumeq2dv 15609 . . . . . . . . . . 11 ((𝜑𝑘 = 0) → Σ𝑐 ∈ {∅} (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ {∅}1)
190 ax-1cn 11067 . . . . . . . . . . . . 13 1 ∈ ℂ
191 eqidd 2730 . . . . . . . . . . . . . 14 (𝑐 = ∅ → 1 = 1)
192191sumsn 15653 . . . . . . . . . . . . 13 ((∅ ∈ V ∧ 1 ∈ ℂ) → Σ𝑐 ∈ {∅}1 = 1)
193116, 190, 192mp2an 692 . . . . . . . . . . . 12 Σ𝑐 ∈ {∅}1 = 1
194193a1i 11 . . . . . . . . . . 11 ((𝜑𝑘 = 0) → Σ𝑐 ∈ {∅}1 = 1)
195171, 189, 1943eqtrd 2768 . . . . . . . . . 10 ((𝜑𝑘 = 0) → Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = 1)
196195mpteq2dv 5186 . . . . . . . . 9 ((𝜑𝑘 = 0) → (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) = (𝑥𝑋 ↦ 1))
197196eqcomd 2735 . . . . . . . 8 ((𝜑𝑘 = 0) → (𝑥𝑋 ↦ 1) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
19875, 102, 1973eqtrd 2768 . . . . . . 7 ((𝜑𝑘 = 0) → ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
199198a1d 25 . . . . . 6 ((𝜑𝑘 = 0) → (𝑘 ∈ (0...𝑁) → ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))))
20071fveq1i 6823 . . . . . . . . 9 ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝑥𝑋 ↦ 1))‘𝑘)
201200a1i 11 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝑥𝑋 ↦ 1))‘𝑘))
20276adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑘 = 0) → 𝑆 ∈ {ℝ, ℂ})
203202adantr 480 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑆 ∈ {ℝ, ℂ})
20489adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑘 = 0) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
205204adantr 480 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
206190a1i 11 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → 1 ∈ ℂ)
207 elfznn0 13523 . . . . . . . . . . . . 13 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
208207adantl 481 . . . . . . . . . . . 12 ((¬ 𝑘 = 0 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
209 neqne 2933 . . . . . . . . . . . . 13 𝑘 = 0 → 𝑘 ≠ 0)
210209adantr 480 . . . . . . . . . . . 12 ((¬ 𝑘 = 0 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ≠ 0)
211208, 210jca 511 . . . . . . . . . . 11 ((¬ 𝑘 = 0 ∧ 𝑘 ∈ (0...𝑁)) → (𝑘 ∈ ℕ0𝑘 ≠ 0))
212 elnnne0 12398 . . . . . . . . . . 11 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℕ0𝑘 ≠ 0))
213211, 212sylibr 234 . . . . . . . . . 10 ((¬ 𝑘 = 0 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ)
214213adantll 714 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ)
215203, 205, 206, 214dvnmptconst 45942 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝑥𝑋 ↦ 1))‘𝑘) = (𝑥𝑋 ↦ 0))
216140ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → (𝐷‘∅) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛}))
217 eqeq2 2741 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛 ↔ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑘))
218217rabbidv 3402 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑘})
219218adantl 481 . . . . . . . . . . . . . . 15 ((¬ 𝑘 = 0 ∧ 𝑛 = 𝑘) → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑘})
220 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . 22 𝑡 ∈ ∅ (𝑐𝑡) = 𝑘𝑘 = 𝑘)
221 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 𝑡 ∈ ∅ (𝑐𝑡) = 𝑘 → Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑘)
222221eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . 22 𝑡 ∈ ∅ (𝑐𝑡) = 𝑘𝑘 = Σ𝑡 ∈ ∅ (𝑐𝑡))
223155a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 𝑡 ∈ ∅ (𝑐𝑡) = 𝑘 → Σ𝑡 ∈ ∅ (𝑐𝑡) = 0)
224220, 222, 2233eqtrd 2768 . . . . . . . . . . . . . . . . . . . . 21 𝑡 ∈ ∅ (𝑐𝑡) = 𝑘𝑘 = 0)
225224adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ {∅} ∧ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑘) → 𝑘 = 0)
226225adantll 714 . . . . . . . . . . . . . . . . . . 19 (((¬ 𝑘 = 0 ∧ 𝑐 ∈ {∅}) ∧ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑘) → 𝑘 = 0)
227 simpll 766 . . . . . . . . . . . . . . . . . . 19 (((¬ 𝑘 = 0 ∧ 𝑐 ∈ {∅}) ∧ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑘) → ¬ 𝑘 = 0)
228226, 227pm2.65da 816 . . . . . . . . . . . . . . . . . 18 ((¬ 𝑘 = 0 ∧ 𝑐 ∈ {∅}) → ¬ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑘)
229228ralrimiva 3121 . . . . . . . . . . . . . . . . 17 𝑘 = 0 → ∀𝑐 ∈ {∅} ¬ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑘)
230 rabeq0 4339 . . . . . . . . . . . . . . . . 17 ({𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑘} = ∅ ↔ ∀𝑐 ∈ {∅} ¬ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑘)
231229, 230sylibr 234 . . . . . . . . . . . . . . . 16 𝑘 = 0 → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑘} = ∅)
232231adantr 480 . . . . . . . . . . . . . . 15 ((¬ 𝑘 = 0 ∧ 𝑛 = 𝑘) → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑘} = ∅)
233219, 232eqtrd 2764 . . . . . . . . . . . . . 14 ((¬ 𝑘 = 0 ∧ 𝑛 = 𝑘) → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛} = ∅)
234233adantll 714 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑛 = 𝑘) → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛} = ∅)
235234adantlr 715 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑛 = 𝑘) → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐𝑡) = 𝑛} = ∅)
236207adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
237116a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → ∅ ∈ V)
238216, 235, 236, 237fvmptd 6937 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐷‘∅)‘𝑘) = ∅)
239238sumeq1d 15607 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ∅ (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
240 sum0 15628 . . . . . . . . . . 11 Σ𝑐 ∈ ∅ (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = 0
241240a1i 11 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → Σ𝑐 ∈ ∅ (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = 0)
242239, 241eqtr2d 2765 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → 0 = Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
243242mpteq2dv 5186 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑥𝑋 ↦ 0) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
244201, 215, 2433eqtrd 2768 . . . . . . 7 (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
245244ex 412 . . . . . 6 ((𝜑 ∧ ¬ 𝑘 = 0) → (𝑘 ∈ (0...𝑁) → ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))))
246199, 245pm2.61dan 812 . . . . 5 (𝜑 → (𝑘 ∈ (0...𝑁) → ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))))
247246ralrimiv 3120 . . . 4 (𝜑 → ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
248 simpll 766 . . . . . . . 8 ((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))) ∧ 𝑗 ∈ (0...𝑁)) → (𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))))
249 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → ((𝐻𝑡)‘𝑥) = ((𝐻𝑡)‘𝑦))
250249prodeq2ad 45593 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ∏𝑡𝑟 ((𝐻𝑡)‘𝑥) = ∏𝑡𝑟 ((𝐻𝑡)‘𝑦))
251 fveq2 6822 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑢 → (𝐻𝑡) = (𝐻𝑢))
252251fveq1d 6824 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑢 → ((𝐻𝑡)‘𝑦) = ((𝐻𝑢)‘𝑦))
253252cbvprodv 15821 . . . . . . . . . . . . . . . . 17 𝑡𝑟 ((𝐻𝑡)‘𝑦) = ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)
254253a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ∏𝑡𝑟 ((𝐻𝑡)‘𝑦) = ∏𝑢𝑟 ((𝐻𝑢)‘𝑦))
255250, 254eqtrd 2764 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ∏𝑡𝑟 ((𝐻𝑡)‘𝑥) = ∏𝑢𝑟 ((𝐻𝑢)‘𝑦))
256255cbvmptv 5196 . . . . . . . . . . . . . 14 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)) = (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦))
257256oveq2i 7360 . . . . . . . . . . . . 13 (𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥))) = (𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))
258257fveq1i 6823 . . . . . . . . . . . 12 ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘)
259 fveq2 6822 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑢 → (𝑐𝑡) = (𝑐𝑢))
260259fveq2d 6826 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑢 → (!‘(𝑐𝑡)) = (!‘(𝑐𝑢)))
261260cbvprodv 15821 . . . . . . . . . . . . . . . . . 18 𝑡𝑟 (!‘(𝑐𝑡)) = ∏𝑢𝑟 (!‘(𝑐𝑢))
262261oveq2i 7360 . . . . . . . . . . . . . . . . 17 ((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) = ((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑐𝑢)))
263262a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) = ((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑐𝑢))))
264 fveq2 6822 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥) = (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑦))
265264prodeq2ad 45593 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥) = ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑦))
266251oveq2d 7365 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑢 → (𝑆 D𝑛 (𝐻𝑡)) = (𝑆 D𝑛 (𝐻𝑢)))
267266, 259fveq12d 6829 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑢 → ((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡)) = ((𝑆 D𝑛 (𝐻𝑢))‘(𝑐𝑢)))
268267fveq1d 6824 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑢 → (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑦) = (((𝑆 D𝑛 (𝐻𝑢))‘(𝑐𝑢))‘𝑦))
269268cbvprodv 15821 . . . . . . . . . . . . . . . . . 18 𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑦) = ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑐𝑢))‘𝑦)
270269a1i 11 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑦) = ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑐𝑢))‘𝑦))
271265, 270eqtrd 2764 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥) = ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑐𝑢))‘𝑦))
272263, 271oveq12d 7367 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = (((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑐𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑐𝑢))‘𝑦)))
273272sumeq2sdv 15610 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑐𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑐𝑢))‘𝑦)))
274 fveq1 6821 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = 𝑑 → (𝑐𝑢) = (𝑑𝑢))
275274fveq2d 6826 . . . . . . . . . . . . . . . . . . 19 (𝑐 = 𝑑 → (!‘(𝑐𝑢)) = (!‘(𝑑𝑢)))
276275prodeq2ad 45593 . . . . . . . . . . . . . . . . . 18 (𝑐 = 𝑑 → ∏𝑢𝑟 (!‘(𝑐𝑢)) = ∏𝑢𝑟 (!‘(𝑑𝑢)))
277276oveq2d 7365 . . . . . . . . . . . . . . . . 17 (𝑐 = 𝑑 → ((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑐𝑢))) = ((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))))
278274fveq2d 6826 . . . . . . . . . . . . . . . . . . 19 (𝑐 = 𝑑 → ((𝑆 D𝑛 (𝐻𝑢))‘(𝑐𝑢)) = ((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢)))
279278fveq1d 6824 . . . . . . . . . . . . . . . . . 18 (𝑐 = 𝑑 → (((𝑆 D𝑛 (𝐻𝑢))‘(𝑐𝑢))‘𝑦) = (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦))
280279prodeq2ad 45593 . . . . . . . . . . . . . . . . 17 (𝑐 = 𝑑 → ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑐𝑢))‘𝑦) = ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦))
281277, 280oveq12d 7367 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑑 → (((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑐𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑐𝑢))‘𝑦)) = (((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))
282281cbvsumv 15603 . . . . . . . . . . . . . . 15 Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑐𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑐𝑢))‘𝑦)) = Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦))
283282a1i 11 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑐𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑐𝑢))‘𝑦)) = Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))
284273, 283eqtrd 2764 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))
285284cbvmptv 5196 . . . . . . . . . . . 12 (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))
286258, 285eqeq12i 2747 . . . . . . . . . . 11 (((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) ↔ ((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦))))
287286ralbii 3075 . . . . . . . . . 10 (∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) ↔ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦))))
288287biimpi 216 . . . . . . . . 9 (∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) → ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦))))
289288ad2antlr 727 . . . . . . . 8 ((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))) ∧ 𝑗 ∈ (0...𝑁)) → ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦))))
290 simpr 484 . . . . . . . 8 ((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑗 ∈ (0...𝑁))
29176ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑆 ∈ {ℝ, ℂ})
29289ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
293 dvnprodlem3.t . . . . . . . . . 10 (𝜑𝑇 ∈ Fin)
294293ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑇 ∈ Fin)
295 simp-4l 782 . . . . . . . . . 10 (((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡𝑇) → 𝜑)
296 simpr 484 . . . . . . . . . 10 (((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡𝑇) → 𝑡𝑇)
297 dvnprodlem3.h . . . . . . . . . 10 ((𝜑𝑡𝑇) → (𝐻𝑡):𝑋⟶ℂ)
298295, 296, 297syl2anc 584 . . . . . . . . 9 (((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡𝑇) → (𝐻𝑡):𝑋⟶ℂ)
299 dvnprodlem3.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
300299ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0)
301 simplll 774 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝜑)
3023013ad2ant1 1133 . . . . . . . . . 10 (((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡𝑇 ∈ (0...𝑁)) → 𝜑)
303 simp2 1137 . . . . . . . . . 10 (((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡𝑇 ∈ (0...𝑁)) → 𝑡𝑇)
304 simp3 1138 . . . . . . . . . 10 (((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡𝑇 ∈ (0...𝑁)) → ∈ (0...𝑁))
305 eleq1w 2811 . . . . . . . . . . . . 13 (𝑗 = → (𝑗 ∈ (0...𝑁) ↔ ∈ (0...𝑁)))
3063053anbi3d 1444 . . . . . . . . . . . 12 (𝑗 = → ((𝜑𝑡𝑇𝑗 ∈ (0...𝑁)) ↔ (𝜑𝑡𝑇 ∈ (0...𝑁))))
307 fveq2 6822 . . . . . . . . . . . . 13 (𝑗 = → ((𝑆 D𝑛 (𝐻𝑡))‘𝑗) = ((𝑆 D𝑛 (𝐻𝑡))‘))
308307feq1d 6634 . . . . . . . . . . . 12 (𝑗 = → (((𝑆 D𝑛 (𝐻𝑡))‘𝑗):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻𝑡))‘):𝑋⟶ℂ))
309306, 308imbi12d 344 . . . . . . . . . . 11 (𝑗 = → (((𝜑𝑡𝑇𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻𝑡))‘𝑗):𝑋⟶ℂ) ↔ ((𝜑𝑡𝑇 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻𝑡))‘):𝑋⟶ℂ)))
310 dvnprodlem3.dvnh . . . . . . . . . . 11 ((𝜑𝑡𝑇𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻𝑡))‘𝑗):𝑋⟶ℂ)
311309, 310chvarvv 1989 . . . . . . . . . 10 ((𝜑𝑡𝑇 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻𝑡))‘):𝑋⟶ℂ)
312302, 303, 304, 311syl3anc 1373 . . . . . . . . 9 (((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡𝑇 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻𝑡))‘):𝑋⟶ℂ)
313 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) → 𝑟𝑇)
314313ad2antrr 726 . . . . . . . . 9 ((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑟𝑇)
315 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) → 𝑧 ∈ (𝑇𝑟))
316315ad2antrr 726 . . . . . . . . 9 ((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑧 ∈ (𝑇𝑟))
317257eqcomi 2738 . . . . . . . . . . . . . . 15 (𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦))) = (𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))
318317a1i 11 . . . . . . . . . . . . . 14 (𝑘 = 𝑙 → (𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦))) = (𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥))))
319 id 22 . . . . . . . . . . . . . 14 (𝑘 = 𝑙𝑘 = 𝑙)
320318, 319fveq12d 6829 . . . . . . . . . . . . 13 (𝑘 = 𝑙 → ((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑙))
321285eqcomi 2738 . . . . . . . . . . . . . . 15 (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦))) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
322321a1i 11 . . . . . . . . . . . . . 14 (𝑘 = 𝑙 → (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦))) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
323 fveq2 6822 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑙 → (!‘𝑘) = (!‘𝑙))
324323oveq1d 7364 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑙 → ((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) = ((!‘𝑙) / ∏𝑡𝑟 (!‘(𝑐𝑡))))
325324oveq1d 7364 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑙 → (((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = (((!‘𝑙) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
326325sumeq2sdv 15610 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑙 → Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑙) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
327 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑙 → ((𝐷𝑟)‘𝑘) = ((𝐷𝑟)‘𝑙))
328327sumeq1d 15607 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑙 → Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑙) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷𝑟)‘𝑙)(((!‘𝑙) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
329326, 328eqtrd 2764 . . . . . . . . . . . . . . 15 (𝑘 = 𝑙 → Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷𝑟)‘𝑙)(((!‘𝑙) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
330329mpteq2dv 5186 . . . . . . . . . . . . . 14 (𝑘 = 𝑙 → (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑙)(((!‘𝑙) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
331322, 330eqtrd 2764 . . . . . . . . . . . . 13 (𝑘 = 𝑙 → (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦))) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑙)(((!‘𝑙) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
332320, 331eqeq12d 2745 . . . . . . . . . . . 12 (𝑘 = 𝑙 → (((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦))) ↔ ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑙) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑙)(((!‘𝑙) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))))
333332cbvralvw 3207 . . . . . . . . . . 11 (∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦))) ↔ ∀𝑙 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑙) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑙)(((!‘𝑙) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
334333biimpi 216 . . . . . . . . . 10 (∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦))) → ∀𝑙 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑙) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑙)(((!‘𝑙) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
335334ad2antlr 727 . . . . . . . . 9 ((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → ∀𝑙 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑙) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑙)(((!‘𝑙) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
336 simpr 484 . . . . . . . . 9 ((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑗 ∈ (0...𝑁))
337 fveq1 6821 . . . . . . . . . . . 12 (𝑑 = 𝑐 → (𝑑𝑧) = (𝑐𝑧))
338337oveq2d 7365 . . . . . . . . . . 11 (𝑑 = 𝑐 → (𝑗 − (𝑑𝑧)) = (𝑗 − (𝑐𝑧)))
339 reseq1 5924 . . . . . . . . . . 11 (𝑑 = 𝑐 → (𝑑𝑟) = (𝑐𝑟))
340338, 339opeq12d 4832 . . . . . . . . . 10 (𝑑 = 𝑐 → ⟨(𝑗 − (𝑑𝑧)), (𝑑𝑟)⟩ = ⟨(𝑗 − (𝑐𝑧)), (𝑐𝑟)⟩)
341340cbvmptv 5196 . . . . . . . . 9 (𝑑 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗) ↦ ⟨(𝑗 − (𝑑𝑧)), (𝑑𝑟)⟩) = (𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗) ↦ ⟨(𝑗 − (𝑐𝑧)), (𝑐𝑟)⟩)
342291, 292, 294, 298, 300, 312, 105, 314, 316, 335, 336, 341dvnprodlem2 45948 . . . . . . . 8 ((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦𝑋 ↦ ∏𝑢𝑟 ((𝐻𝑢)‘𝑦)))‘𝑘) = (𝑦𝑋 ↦ Σ𝑑 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢𝑟 (!‘(𝑑𝑢))) · ∏𝑢𝑟 (((𝑆 D𝑛 (𝐻𝑢))‘(𝑑𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥)))‘𝑗) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
343248, 289, 290, 342syl21anc 837 . . . . . . 7 ((((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))) ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥)))‘𝑗) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
344343ralrimiva 3121 . . . . . 6 (((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))) → ∀𝑗 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥)))‘𝑗) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
345 fveq2 6822 . . . . . . . 8 (𝑗 = 𝑘 → ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥)))‘𝑗) = ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥)))‘𝑘))
346 fveq2 6822 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → (!‘𝑗) = (!‘𝑘))
347346oveq1d 7364 . . . . . . . . . . . 12 (𝑗 = 𝑘 → ((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) = ((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))))
348347oveq1d 7364 . . . . . . . . . . 11 (𝑗 = 𝑘 → (((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = (((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
349348sumeq2sdv 15610 . . . . . . . . . 10 (𝑗 = 𝑘 → Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
350 fveq2 6822 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗) = ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘))
351350sumeq1d 15607 . . . . . . . . . 10 (𝑗 = 𝑘 → Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
352349, 351eqtrd 2764 . . . . . . . . 9 (𝑗 = 𝑘 → Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
353352mpteq2dv 5186 . . . . . . . 8 (𝑗 = 𝑘 → (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
354345, 353eqeq12d 2745 . . . . . . 7 (𝑗 = 𝑘 → (((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥)))‘𝑗) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) ↔ ((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))))
355354cbvralvw 3207 . . . . . 6 (∀𝑗 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥)))‘𝑗) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) ↔ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
356344, 355sylib 218 . . . . 5 (((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))) → ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
357356ex 412 . . . 4 ((𝜑 ∧ (𝑟𝑇𝑧 ∈ (𝑇𝑟))) → (∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡𝑟 ((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡𝑟 (!‘(𝑐𝑡))) · ∏𝑡𝑟 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) → ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻𝑡)‘𝑥)))‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))))
35816, 32, 48, 68, 247, 357, 293findcard2d 9080 . . 3 (𝜑 → ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 𝐹)‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
359 nn0uz 12777 . . . . 5 0 = (ℤ‘0)
360299, 359eleqtrdi 2838 . . . 4 (𝜑𝑁 ∈ (ℤ‘0))
361 eluzfz2 13435 . . . 4 (𝑁 ∈ (ℤ‘0) → 𝑁 ∈ (0...𝑁))
362360, 361syl 17 . . 3 (𝜑𝑁 ∈ (0...𝑁))
363 fveq2 6822 . . . . 5 (𝑘 = 𝑁 → ((𝑆 D𝑛 𝐹)‘𝑘) = ((𝑆 D𝑛 𝐹)‘𝑁))
364 fveq2 6822 . . . . . . . 8 (𝑘 = 𝑁 → ((𝐷𝑇)‘𝑘) = ((𝐷𝑇)‘𝑁))
365364sumeq1d 15607 . . . . . . 7 (𝑘 = 𝑁 → Σ𝑐 ∈ ((𝐷𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷𝑇)‘𝑁)(((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
366 fveq2 6822 . . . . . . . . . 10 (𝑘 = 𝑁 → (!‘𝑘) = (!‘𝑁))
367366oveq1d 7364 . . . . . . . . 9 (𝑘 = 𝑁 → ((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))) = ((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))))
368367oveq1d 7364 . . . . . . . 8 (𝑘 = 𝑁 → (((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = (((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
369368sumeq2sdv 15610 . . . . . . 7 (𝑘 = 𝑁 → Σ𝑐 ∈ ((𝐷𝑇)‘𝑁)(((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷𝑇)‘𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
370365, 369eqtrd 2764 . . . . . 6 (𝑘 = 𝑁 → Σ𝑐 ∈ ((𝐷𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷𝑇)‘𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
371370mpteq2dv 5186 . . . . 5 (𝑘 = 𝑁 → (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑇)‘𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
372363, 371eqeq12d 2745 . . . 4 (𝑘 = 𝑁 → (((𝑆 D𝑛 𝐹)‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) ↔ ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑇)‘𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))))
373372rspccva 3576 . . 3 ((∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 𝐹)‘𝑘) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) ∧ 𝑁 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑇)‘𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
374358, 362, 373syl2anc 584 . 2 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑇)‘𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
375 oveq2 7357 . . . . . . . . . 10 (𝑠 = 𝑇 → ((0...𝑛) ↑m 𝑠) = ((0...𝑛) ↑m 𝑇))
376 rabeq 3409 . . . . . . . . . 10 (((0...𝑛) ↑m 𝑠) = ((0...𝑛) ↑m 𝑇) → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛})
377375, 376syl 17 . . . . . . . . 9 (𝑠 = 𝑇 → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛})
378 sumeq1 15596 . . . . . . . . . . 11 (𝑠 = 𝑇 → Σ𝑡𝑠 (𝑐𝑡) = Σ𝑡𝑇 (𝑐𝑡))
379378eqeq1d 2731 . . . . . . . . . 10 (𝑠 = 𝑇 → (Σ𝑡𝑠 (𝑐𝑡) = 𝑛 ↔ Σ𝑡𝑇 (𝑐𝑡) = 𝑛))
380379rabbidv 3402 . . . . . . . . 9 (𝑠 = 𝑇 → {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛})
381377, 380eqtrd 2764 . . . . . . . 8 (𝑠 = 𝑇 → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛})
382381mpteq2dv 5186 . . . . . . 7 (𝑠 = 𝑇 → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡𝑠 (𝑐𝑡) = 𝑛}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛}))
383 pwidg 4571 . . . . . . . 8 (𝑇 ∈ Fin → 𝑇 ∈ 𝒫 𝑇)
384293, 383syl 17 . . . . . . 7 (𝜑𝑇 ∈ 𝒫 𝑇)
385137mptex 7159 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛}) ∈ V
386385a1i 11 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛}) ∈ V)
387105, 382, 384, 386fvmptd3 6953 . . . . . 6 (𝜑 → (𝐷𝑇) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛}))
388 dvnprodlem3.c . . . . . . 7 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛})
389388a1i 11 . . . . . 6 (𝜑𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡𝑇 (𝑐𝑡) = 𝑛}))
390387, 389eqtr4d 2767 . . . . 5 (𝜑 → (𝐷𝑇) = 𝐶)
391390fveq1d 6824 . . . 4 (𝜑 → ((𝐷𝑇)‘𝑁) = (𝐶𝑁))
392391sumeq1d 15607 . . 3 (𝜑 → Σ𝑐 ∈ ((𝐷𝑇)‘𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥)))
393392mpteq2dv 5186 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝐷𝑇)‘𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
394374, 393eqtrd 2764 1 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑡𝑇 (!‘(𝑐𝑡))) · ∏𝑡𝑇 (((𝑆 D𝑛 (𝐻𝑡))‘(𝑐𝑡))‘𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3394  Vcvv 3436  cdif 3900  cun 3901  wss 3903  c0 4284  ifcif 4476  𝒫 cpw 4551  {csn 4577  {cpr 4579  cop 4583  cmpt 5173  dom cdm 5619  cres 5621   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  m cmap 8753  pm cpm 8754  Fincfn 8872  cc 11007  cr 11008  0cc0 11009  1c1 11010   · cmul 11014  cmin 11347   / cdiv 11777  cn 12128  0cn0 12384  cuz 12735  ...cfz 13410  !cfa 14180  Σcsu 15593  cprod 15810  t crest 17324  TopOpenctopn 17325  fldccnfld 21261   D𝑛 cdvn 25763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-prod 15811  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766  df-dvn 25767
This theorem is referenced by:  dvnprod  45950
  Copyright terms: Public domain W3C validator