| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | prodeq1 15943 | . . . . . . . . 9
⊢ (𝑠 = ∅ → ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥) = ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥)) | 
| 2 | 1 | mpteq2dv 5244 | . . . . . . . 8
⊢ (𝑠 = ∅ → (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)) = (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥))) | 
| 3 | 2 | oveq2d 7447 | . . . . . . 7
⊢ (𝑠 = ∅ → (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥))) = (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥)))) | 
| 4 | 3 | fveq1d 6908 | . . . . . 6
⊢ (𝑠 = ∅ → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥)))‘𝑘)) | 
| 5 |  | fveq2 6906 | . . . . . . . . . 10
⊢ (𝑠 = ∅ → (𝐷‘𝑠) = (𝐷‘∅)) | 
| 6 | 5 | fveq1d 6908 | . . . . . . . . 9
⊢ (𝑠 = ∅ → ((𝐷‘𝑠)‘𝑘) = ((𝐷‘∅)‘𝑘)) | 
| 7 | 6 | sumeq1d 15736 | . . . . . . . 8
⊢ (𝑠 = ∅ → Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 8 |  | prodeq1 15943 | . . . . . . . . . . 11
⊢ (𝑠 = ∅ → ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡)) = ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) | 
| 9 | 8 | oveq2d 7447 | . . . . . . . . . 10
⊢ (𝑠 = ∅ →
((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) = ((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡)))) | 
| 10 |  | prodeq1 15943 | . . . . . . . . . 10
⊢ (𝑠 = ∅ → ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) = ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) | 
| 11 | 9, 10 | oveq12d 7449 | . . . . . . . . 9
⊢ (𝑠 = ∅ →
(((!‘𝑘) /
∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 12 | 11 | sumeq2sdv 15739 | . . . . . . . 8
⊢ (𝑠 = ∅ → Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 13 | 7, 12 | eqtrd 2777 | . . . . . . 7
⊢ (𝑠 = ∅ → Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 14 | 13 | mpteq2dv 5244 | . . . . . 6
⊢ (𝑠 = ∅ → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) | 
| 15 | 4, 14 | eqeq12d 2753 | . . . . 5
⊢ (𝑠 = ∅ → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) | 
| 16 | 15 | ralbidv 3178 | . . . 4
⊢ (𝑠 = ∅ → (∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ↔ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) | 
| 17 |  | prodeq1 15943 | . . . . . . . . 9
⊢ (𝑠 = 𝑟 → ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥) = ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)) | 
| 18 | 17 | mpteq2dv 5244 | . . . . . . . 8
⊢ (𝑠 = 𝑟 → (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)) = (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥))) | 
| 19 | 18 | oveq2d 7447 | . . . . . . 7
⊢ (𝑠 = 𝑟 → (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥))) = (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))) | 
| 20 | 19 | fveq1d 6908 | . . . . . 6
⊢ (𝑠 = 𝑟 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑘)) | 
| 21 |  | fveq2 6906 | . . . . . . . . . 10
⊢ (𝑠 = 𝑟 → (𝐷‘𝑠) = (𝐷‘𝑟)) | 
| 22 | 21 | fveq1d 6908 | . . . . . . . . 9
⊢ (𝑠 = 𝑟 → ((𝐷‘𝑠)‘𝑘) = ((𝐷‘𝑟)‘𝑘)) | 
| 23 | 22 | sumeq1d 15736 | . . . . . . . 8
⊢ (𝑠 = 𝑟 → Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 24 |  | prodeq1 15943 | . . . . . . . . . . 11
⊢ (𝑠 = 𝑟 → ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡)) = ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) | 
| 25 | 24 | oveq2d 7447 | . . . . . . . . . 10
⊢ (𝑠 = 𝑟 → ((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) = ((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡)))) | 
| 26 |  | prodeq1 15943 | . . . . . . . . . 10
⊢ (𝑠 = 𝑟 → ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) = ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) | 
| 27 | 25, 26 | oveq12d 7449 | . . . . . . . . 9
⊢ (𝑠 = 𝑟 → (((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = (((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 28 | 27 | sumeq2sdv 15739 | . . . . . . . 8
⊢ (𝑠 = 𝑟 → Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 29 | 23, 28 | eqtrd 2777 | . . . . . . 7
⊢ (𝑠 = 𝑟 → Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 30 | 29 | mpteq2dv 5244 | . . . . . 6
⊢ (𝑠 = 𝑟 → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) | 
| 31 | 20, 30 | eqeq12d 2753 | . . . . 5
⊢ (𝑠 = 𝑟 → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) | 
| 32 | 31 | ralbidv 3178 | . . . 4
⊢ (𝑠 = 𝑟 → (∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ↔ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) | 
| 33 |  | prodeq1 15943 | . . . . . . . . 9
⊢ (𝑠 = (𝑟 ∪ {𝑧}) → ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥) = ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥)) | 
| 34 | 33 | mpteq2dv 5244 | . . . . . . . 8
⊢ (𝑠 = (𝑟 ∪ {𝑧}) → (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)) = (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥))) | 
| 35 | 34 | oveq2d 7447 | . . . . . . 7
⊢ (𝑠 = (𝑟 ∪ {𝑧}) → (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥))) = (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥)))) | 
| 36 | 35 | fveq1d 6908 | . . . . . 6
⊢ (𝑠 = (𝑟 ∪ {𝑧}) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥)))‘𝑘)) | 
| 37 |  | fveq2 6906 | . . . . . . . . . 10
⊢ (𝑠 = (𝑟 ∪ {𝑧}) → (𝐷‘𝑠) = (𝐷‘(𝑟 ∪ {𝑧}))) | 
| 38 | 37 | fveq1d 6908 | . . . . . . . . 9
⊢ (𝑠 = (𝑟 ∪ {𝑧}) → ((𝐷‘𝑠)‘𝑘) = ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)) | 
| 39 | 38 | sumeq1d 15736 | . . . . . . . 8
⊢ (𝑠 = (𝑟 ∪ {𝑧}) → Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 40 |  | prodeq1 15943 | . . . . . . . . . . 11
⊢ (𝑠 = (𝑟 ∪ {𝑧}) → ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡)) = ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) | 
| 41 | 40 | oveq2d 7447 | . . . . . . . . . 10
⊢ (𝑠 = (𝑟 ∪ {𝑧}) → ((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) = ((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡)))) | 
| 42 |  | prodeq1 15943 | . . . . . . . . . 10
⊢ (𝑠 = (𝑟 ∪ {𝑧}) → ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) = ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) | 
| 43 | 41, 42 | oveq12d 7449 | . . . . . . . . 9
⊢ (𝑠 = (𝑟 ∪ {𝑧}) → (((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = (((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 44 | 43 | sumeq2sdv 15739 | . . . . . . . 8
⊢ (𝑠 = (𝑟 ∪ {𝑧}) → Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 45 | 39, 44 | eqtrd 2777 | . . . . . . 7
⊢ (𝑠 = (𝑟 ∪ {𝑧}) → Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 46 | 45 | mpteq2dv 5244 | . . . . . 6
⊢ (𝑠 = (𝑟 ∪ {𝑧}) → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) | 
| 47 | 36, 46 | eqeq12d 2753 | . . . . 5
⊢ (𝑠 = (𝑟 ∪ {𝑧}) → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) | 
| 48 | 47 | ralbidv 3178 | . . . 4
⊢ (𝑠 = (𝑟 ∪ {𝑧}) → (∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ↔ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) | 
| 49 |  | prodeq1 15943 | . . . . . . . . . 10
⊢ (𝑠 = 𝑇 → ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥) = ∏𝑡 ∈ 𝑇 ((𝐻‘𝑡)‘𝑥)) | 
| 50 | 49 | mpteq2dv 5244 | . . . . . . . . 9
⊢ (𝑠 = 𝑇 → (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)) = (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑇 ((𝐻‘𝑡)‘𝑥))) | 
| 51 |  | dvnprodlem3.f | . . . . . . . . . . 11
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑇 ((𝐻‘𝑡)‘𝑥)) | 
| 52 | 51 | a1i 11 | . . . . . . . . . 10
⊢ (𝑠 = 𝑇 → 𝐹 = (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑇 ((𝐻‘𝑡)‘𝑥))) | 
| 53 | 52 | eqcomd 2743 | . . . . . . . . 9
⊢ (𝑠 = 𝑇 → (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑇 ((𝐻‘𝑡)‘𝑥)) = 𝐹) | 
| 54 | 50, 53 | eqtrd 2777 | . . . . . . . 8
⊢ (𝑠 = 𝑇 → (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)) = 𝐹) | 
| 55 | 54 | oveq2d 7447 | . . . . . . 7
⊢ (𝑠 = 𝑇 → (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥))) = (𝑆 D𝑛 𝐹)) | 
| 56 | 55 | fveq1d 6908 | . . . . . 6
⊢ (𝑠 = 𝑇 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 𝐹)‘𝑘)) | 
| 57 |  | fveq2 6906 | . . . . . . . . . 10
⊢ (𝑠 = 𝑇 → (𝐷‘𝑠) = (𝐷‘𝑇)) | 
| 58 | 57 | fveq1d 6908 | . . . . . . . . 9
⊢ (𝑠 = 𝑇 → ((𝐷‘𝑠)‘𝑘) = ((𝐷‘𝑇)‘𝑘)) | 
| 59 | 58 | sumeq1d 15736 | . . . . . . . 8
⊢ (𝑠 = 𝑇 → Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 60 |  | prodeq1 15943 | . . . . . . . . . . 11
⊢ (𝑠 = 𝑇 → ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡)) = ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) | 
| 61 | 60 | oveq2d 7447 | . . . . . . . . . 10
⊢ (𝑠 = 𝑇 → ((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) = ((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡)))) | 
| 62 |  | prodeq1 15943 | . . . . . . . . . 10
⊢ (𝑠 = 𝑇 → ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) = ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) | 
| 63 | 61, 62 | oveq12d 7449 | . . . . . . . . 9
⊢ (𝑠 = 𝑇 → (((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = (((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 64 | 63 | sumeq2sdv 15739 | . . . . . . . 8
⊢ (𝑠 = 𝑇 → Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 65 | 59, 64 | eqtrd 2777 | . . . . . . 7
⊢ (𝑠 = 𝑇 → Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 66 | 65 | mpteq2dv 5244 | . . . . . 6
⊢ (𝑠 = 𝑇 → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) | 
| 67 | 56, 66 | eqeq12d 2753 | . . . . 5
⊢ (𝑠 = 𝑇 → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ↔ ((𝑆 D𝑛 𝐹)‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) | 
| 68 | 67 | ralbidv 3178 | . . . 4
⊢ (𝑠 = 𝑇 → (∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ↔ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 𝐹)‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) | 
| 69 |  | prod0 15979 | . . . . . . . . . . . . 13
⊢
∏𝑡 ∈
∅ ((𝐻‘𝑡)‘𝑥) = 1 | 
| 70 | 69 | mpteq2i 5247 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥)) = (𝑥 ∈ 𝑋 ↦ 1) | 
| 71 | 70 | oveq2i 7442 | . . . . . . . . . . 11
⊢ (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥))) = (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 1)) | 
| 72 | 71 | a1i 11 | . . . . . . . . . 10
⊢ (𝑘 = 0 → (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥))) = (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 1))) | 
| 73 |  | id 22 | . . . . . . . . . 10
⊢ (𝑘 = 0 → 𝑘 = 0) | 
| 74 | 72, 73 | fveq12d 6913 | . . . . . . . . 9
⊢ (𝑘 = 0 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 1))‘0)) | 
| 75 | 74 | adantl 481 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 = 0) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 1))‘0)) | 
| 76 |  | dvnprodlem3.s | . . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | 
| 77 |  | recnprss 25939 | . . . . . . . . . . 11
⊢ (𝑆 ∈ {ℝ, ℂ}
→ 𝑆 ⊆
ℂ) | 
| 78 | 76, 77 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → 𝑆 ⊆ ℂ) | 
| 79 |  | 1cnd 11256 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 1 ∈ ℂ) | 
| 80 | 79 | fmpttd 7135 | . . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 1):𝑋⟶ℂ) | 
| 81 |  | 1re 11261 | . . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℝ | 
| 82 | 81 | rgenw 3065 | . . . . . . . . . . . . . . . 16
⊢
∀𝑥 ∈
𝑋 1 ∈
ℝ | 
| 83 |  | dmmptg 6262 | . . . . . . . . . . . . . . . 16
⊢
(∀𝑥 ∈
𝑋 1 ∈ ℝ →
dom (𝑥 ∈ 𝑋 ↦ 1) = 𝑋) | 
| 84 | 82, 83 | ax-mp 5 | . . . . . . . . . . . . . . 15
⊢ dom
(𝑥 ∈ 𝑋 ↦ 1) = 𝑋 | 
| 85 | 84 | a1i 11 | . . . . . . . . . . . . . 14
⊢ (𝜑 → dom (𝑥 ∈ 𝑋 ↦ 1) = 𝑋) | 
| 86 | 85 | feq2d 6722 | . . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 1):dom (𝑥 ∈ 𝑋 ↦ 1)⟶ℂ ↔ (𝑥 ∈ 𝑋 ↦ 1):𝑋⟶ℂ)) | 
| 87 | 80, 86 | mpbird 257 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 1):dom (𝑥 ∈ 𝑋 ↦ 1)⟶ℂ) | 
| 88 |  | restsspw 17476 | . . . . . . . . . . . . . . 15
⊢
((TopOpen‘ℂfld) ↾t 𝑆) ⊆ 𝒫 𝑆 | 
| 89 |  | dvnprodlem3.x | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) | 
| 90 | 88, 89 | sselid 3981 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑋 ∈ 𝒫 𝑆) | 
| 91 |  | elpwi 4607 | . . . . . . . . . . . . . 14
⊢ (𝑋 ∈ 𝒫 𝑆 → 𝑋 ⊆ 𝑆) | 
| 92 | 90, 91 | syl 17 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ⊆ 𝑆) | 
| 93 | 85, 92 | eqsstrd 4018 | . . . . . . . . . . . 12
⊢ (𝜑 → dom (𝑥 ∈ 𝑋 ↦ 1) ⊆ 𝑆) | 
| 94 | 87, 93 | jca 511 | . . . . . . . . . . 11
⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 1):dom (𝑥 ∈ 𝑋 ↦ 1)⟶ℂ ∧ dom (𝑥 ∈ 𝑋 ↦ 1) ⊆ 𝑆)) | 
| 95 |  | cnex 11236 | . . . . . . . . . . . . 13
⊢ ℂ
∈ V | 
| 96 | 95 | a1i 11 | . . . . . . . . . . . 12
⊢ (𝜑 → ℂ ∈
V) | 
| 97 |  | elpm2g 8884 | . . . . . . . . . . . 12
⊢ ((ℂ
∈ V ∧ 𝑆 ∈
{ℝ, ℂ}) → ((𝑥 ∈ 𝑋 ↦ 1) ∈ (ℂ
↑pm 𝑆)
↔ ((𝑥 ∈ 𝑋 ↦ 1):dom (𝑥 ∈ 𝑋 ↦ 1)⟶ℂ ∧ dom (𝑥 ∈ 𝑋 ↦ 1) ⊆ 𝑆))) | 
| 98 | 96, 76, 97 | syl2anc 584 | . . . . . . . . . . 11
⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 1) ∈ (ℂ
↑pm 𝑆)
↔ ((𝑥 ∈ 𝑋 ↦ 1):dom (𝑥 ∈ 𝑋 ↦ 1)⟶ℂ ∧ dom (𝑥 ∈ 𝑋 ↦ 1) ⊆ 𝑆))) | 
| 99 | 94, 98 | mpbird 257 | . . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 1) ∈ (ℂ
↑pm 𝑆)) | 
| 100 |  | dvn0 25960 | . . . . . . . . . 10
⊢ ((𝑆 ⊆ ℂ ∧ (𝑥 ∈ 𝑋 ↦ 1) ∈ (ℂ
↑pm 𝑆))
→ ((𝑆
D𝑛 (𝑥
∈ 𝑋 ↦
1))‘0) = (𝑥 ∈
𝑋 ↦
1)) | 
| 101 | 78, 99, 100 | syl2anc 584 | . . . . . . . . 9
⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 1))‘0) = (𝑥 ∈ 𝑋 ↦ 1)) | 
| 102 | 101 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 = 0) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 1))‘0) = (𝑥 ∈ 𝑋 ↦ 1)) | 
| 103 |  | fveq2 6906 | . . . . . . . . . . . . . . 15
⊢ (𝑘 = 0 → ((𝐷‘∅)‘𝑘) = ((𝐷‘∅)‘0)) | 
| 104 | 103 | adantl 481 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 = 0) → ((𝐷‘∅)‘𝑘) = ((𝐷‘∅)‘0)) | 
| 105 |  | dvnprodlem3.d | . . . . . . . . . . . . . . . . 17
⊢ 𝐷 = (𝑠 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛})) | 
| 106 |  | oveq2 7439 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 = ∅ → ((0...𝑛) ↑m 𝑠) = ((0...𝑛) ↑m
∅)) | 
| 107 |  | elmapfn 8905 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 ∈ ((0...𝑛) ↑m ∅) → 𝑥 Fn ∅) | 
| 108 |  | fn0 6699 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 Fn ∅ ↔ 𝑥 = ∅) | 
| 109 | 107, 108 | sylib 218 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 ∈ ((0...𝑛) ↑m ∅) → 𝑥 = ∅) | 
| 110 |  | velsn 4642 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | 
| 111 | 109, 110 | sylibr 234 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ ((0...𝑛) ↑m ∅) → 𝑥 ∈
{∅}) | 
| 112 | 110 | biimpi 216 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 ∈ {∅} → 𝑥 = ∅) | 
| 113 |  | id 22 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 = ∅ → 𝑥 = ∅) | 
| 114 |  | f0 6789 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
∅:∅⟶(0...𝑛) | 
| 115 |  | ovex 7464 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(0...𝑛) ∈
V | 
| 116 |  | 0ex 5307 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ∅
∈ V | 
| 117 | 115, 116 | elmap 8911 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (∅
∈ ((0...𝑛)
↑m ∅) ↔ ∅:∅⟶(0...𝑛)) | 
| 118 | 114, 117 | mpbir 231 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ∅
∈ ((0...𝑛)
↑m ∅) | 
| 119 | 118 | a1i 11 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 = ∅ → ∅ ∈
((0...𝑛) ↑m
∅)) | 
| 120 | 113, 119 | eqeltrd 2841 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 = ∅ → 𝑥 ∈ ((0...𝑛) ↑m
∅)) | 
| 121 | 112, 120 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ {∅} → 𝑥 ∈ ((0...𝑛) ↑m
∅)) | 
| 122 | 111, 121 | impbii 209 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 ∈ ((0...𝑛) ↑m ∅) ↔ 𝑥 ∈
{∅}) | 
| 123 | 122 | ax-gen 1795 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
∀𝑥(𝑥 ∈ ((0...𝑛) ↑m ∅) ↔ 𝑥 ∈
{∅}) | 
| 124 |  | dfcleq 2730 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((0...𝑛)
↑m ∅) = {∅} ↔ ∀𝑥(𝑥 ∈ ((0...𝑛) ↑m ∅) ↔ 𝑥 ∈
{∅})) | 
| 125 | 123, 124 | mpbir 231 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
((0...𝑛)
↑m ∅) = {∅} | 
| 126 | 125 | a1i 11 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 = ∅ → ((0...𝑛) ↑m ∅) =
{∅}) | 
| 127 | 106, 126 | eqtrd 2777 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 = ∅ → ((0...𝑛) ↑m 𝑠) = {∅}) | 
| 128 |  | rabeq 3451 | . . . . . . . . . . . . . . . . . . . 20
⊢
(((0...𝑛)
↑m 𝑠) =
{∅} → {𝑐 ∈
((0...𝑛) ↑m
𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) | 
| 129 | 127, 128 | syl 17 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 = ∅ → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) | 
| 130 |  | sumeq1 15725 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 = ∅ → Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = Σ𝑡 ∈ ∅ (𝑐‘𝑡)) | 
| 131 | 130 | eqeq1d 2739 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 = ∅ → (Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛 ↔ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑛)) | 
| 132 | 131 | rabbidv 3444 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 = ∅ → {𝑐 ∈ {∅} ∣
Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑛}) | 
| 133 | 129, 132 | eqtrd 2777 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑠 = ∅ → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑛}) | 
| 134 | 133 | mpteq2dv 5244 | . . . . . . . . . . . . . . . . 17
⊢ (𝑠 = ∅ → (𝑛 ∈ ℕ0
↦ {𝑐 ∈
((0...𝑛) ↑m
𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ {∅} ∣
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 𝑛})) | 
| 135 |  | 0elpw 5356 | . . . . . . . . . . . . . . . . . 18
⊢ ∅
∈ 𝒫 𝑇 | 
| 136 | 135 | a1i 11 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∅ ∈ 𝒫
𝑇) | 
| 137 |  | nn0ex 12532 | . . . . . . . . . . . . . . . . . . 19
⊢
ℕ0 ∈ V | 
| 138 | 137 | mptex 7243 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ0
↦ {𝑐 ∈ {∅}
∣ Σ𝑡 ∈
∅ (𝑐‘𝑡) = 𝑛}) ∈ V | 
| 139 | 138 | a1i 11 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ {∅} ∣
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 𝑛}) ∈ V) | 
| 140 | 105, 134,
136, 139 | fvmptd3 7039 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐷‘∅) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ {∅} ∣
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 𝑛})) | 
| 141 |  | eqeq2 2749 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 0 → (Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑛 ↔ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 0)) | 
| 142 | 141 | rabbidv 3444 | . . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 0 → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 0}) | 
| 143 | 142 | adantl 481 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 = 0) → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 0}) | 
| 144 |  | 0nn0 12541 | . . . . . . . . . . . . . . . . 17
⊢ 0 ∈
ℕ0 | 
| 145 | 144 | a1i 11 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 ∈
ℕ0) | 
| 146 |  | p0ex 5384 | . . . . . . . . . . . . . . . . . 18
⊢ {∅}
∈ V | 
| 147 | 146 | rabex 5339 | . . . . . . . . . . . . . . . . 17
⊢ {𝑐 ∈ {∅} ∣
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 0} ∈ V | 
| 148 | 147 | a1i 11 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 0} ∈ V) | 
| 149 | 140, 143,
145, 148 | fvmptd 7023 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐷‘∅)‘0) = {𝑐 ∈ {∅} ∣
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 0}) | 
| 150 | 149 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 = 0) → ((𝐷‘∅)‘0) = {𝑐 ∈ {∅} ∣
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 0}) | 
| 151 |  | snidg 4660 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (∅
∈ V → ∅ ∈ {∅}) | 
| 152 | 116, 151 | ax-mp 5 | . . . . . . . . . . . . . . . . . . . 20
⊢ ∅
∈ {∅} | 
| 153 |  | eqid 2737 | . . . . . . . . . . . . . . . . . . . 20
⊢ 0 =
0 | 
| 154 | 152, 153 | pm3.2i 470 | . . . . . . . . . . . . . . . . . . 19
⊢ (∅
∈ {∅} ∧ 0 = 0) | 
| 155 |  | sum0 15757 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
Σ𝑡 ∈
∅ (𝑐‘𝑡) = 0 | 
| 156 | 155 | a1i 11 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 = ∅ → Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 0) | 
| 157 | 156 | eqeq1d 2739 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 = ∅ → (Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 0 ↔ 0 = 0)) | 
| 158 | 157 | elrab 3692 | . . . . . . . . . . . . . . . . . . 19
⊢ (∅
∈ {𝑐 ∈ {∅}
∣ Σ𝑡 ∈
∅ (𝑐‘𝑡) = 0} ↔ (∅ ∈
{∅} ∧ 0 = 0)) | 
| 159 | 154, 158 | mpbir 231 | . . . . . . . . . . . . . . . . . 18
⊢ ∅
∈ {𝑐 ∈ {∅}
∣ Σ𝑡 ∈
∅ (𝑐‘𝑡) = 0} | 
| 160 | 159 | n0ii 4343 | . . . . . . . . . . . . . . . . 17
⊢  ¬
{𝑐 ∈ {∅} ∣
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 0} = ∅ | 
| 161 |  | eqid 2737 | . . . . . . . . . . . . . . . . . 18
⊢ {𝑐 ∈ {∅} ∣
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 0} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 0} | 
| 162 |  | rabrsn 4724 | . . . . . . . . . . . . . . . . . 18
⊢ ({𝑐 ∈ {∅} ∣
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 0} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 0} → ({𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 0} = ∅ ∨ {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 0} = {∅})) | 
| 163 | 161, 162 | ax-mp 5 | . . . . . . . . . . . . . . . . 17
⊢ ({𝑐 ∈ {∅} ∣
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 0} = ∅ ∨ {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 0} = {∅}) | 
| 164 | 160, 163 | mtpor 1770 | . . . . . . . . . . . . . . . 16
⊢ {𝑐 ∈ {∅} ∣
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 0} = {∅} | 
| 165 | 164 | a1i 11 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 = 0) → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 0} = {∅}) | 
| 166 |  | iftrue 4531 | . . . . . . . . . . . . . . . 16
⊢ (𝑘 = 0 → if(𝑘 = 0, {∅}, ∅) =
{∅}) | 
| 167 | 166 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 = 0) → if(𝑘 = 0, {∅}, ∅) =
{∅}) | 
| 168 | 165, 167 | eqtr4d 2780 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 = 0) → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 0} = if(𝑘 = 0, {∅}, ∅)) | 
| 169 | 104, 150,
168 | 3eqtrd 2781 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 = 0) → ((𝐷‘∅)‘𝑘) = if(𝑘 = 0, {∅}, ∅)) | 
| 170 | 169, 167 | eqtrd 2777 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 = 0) → ((𝐷‘∅)‘𝑘) = {∅}) | 
| 171 | 170 | sumeq1d 15736 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 = 0) → Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ {∅} (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 172 |  | fveq2 6906 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 0 → (!‘𝑘) =
(!‘0)) | 
| 173 |  | fac0 14315 | . . . . . . . . . . . . . . . . . . 19
⊢
(!‘0) = 1 | 
| 174 | 173 | a1i 11 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 0 → (!‘0) =
1) | 
| 175 | 172, 174 | eqtrd 2777 | . . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 0 → (!‘𝑘) = 1) | 
| 176 | 175 | oveq1d 7446 | . . . . . . . . . . . . . . . 16
⊢ (𝑘 = 0 → ((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) = (1 / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡)))) | 
| 177 |  | prod0 15979 | . . . . . . . . . . . . . . . . . 18
⊢
∏𝑡 ∈
∅ (!‘(𝑐‘𝑡)) = 1 | 
| 178 | 177 | oveq2i 7442 | . . . . . . . . . . . . . . . . 17
⊢ (1 /
∏𝑡 ∈ ∅
(!‘(𝑐‘𝑡))) = (1 / 1) | 
| 179 |  | 1div1e1 11958 | . . . . . . . . . . . . . . . . 17
⊢ (1 / 1) =
1 | 
| 180 | 178, 179 | eqtri 2765 | . . . . . . . . . . . . . . . 16
⊢ (1 /
∏𝑡 ∈ ∅
(!‘(𝑐‘𝑡))) = 1 | 
| 181 | 176, 180 | eqtrdi 2793 | . . . . . . . . . . . . . . 15
⊢ (𝑘 = 0 → ((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) = 1) | 
| 182 |  | prod0 15979 | . . . . . . . . . . . . . . . 16
⊢
∏𝑡 ∈
∅ (((𝑆
D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) = 1 | 
| 183 | 182 | a1i 11 | . . . . . . . . . . . . . . 15
⊢ (𝑘 = 0 → ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) = 1) | 
| 184 | 181, 183 | oveq12d 7449 | . . . . . . . . . . . . . 14
⊢ (𝑘 = 0 → (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = (1 · 1)) | 
| 185 | 184 | ad2antlr 727 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 = 0) ∧ 𝑐 ∈ {∅}) → (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = (1 · 1)) | 
| 186 |  | 1t1e1 12428 | . . . . . . . . . . . . . 14
⊢ (1
· 1) = 1 | 
| 187 | 186 | a1i 11 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 = 0) ∧ 𝑐 ∈ {∅}) → (1 · 1) =
1) | 
| 188 | 185, 187 | eqtrd 2777 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 = 0) ∧ 𝑐 ∈ {∅}) → (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = 1) | 
| 189 | 188 | sumeq2dv 15738 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 = 0) → Σ𝑐 ∈ {∅} (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ {∅}1) | 
| 190 |  | ax-1cn 11213 | . . . . . . . . . . . . 13
⊢ 1 ∈
ℂ | 
| 191 |  | eqidd 2738 | . . . . . . . . . . . . . 14
⊢ (𝑐 = ∅ → 1 =
1) | 
| 192 | 191 | sumsn 15782 | . . . . . . . . . . . . 13
⊢ ((∅
∈ V ∧ 1 ∈ ℂ) → Σ𝑐 ∈ {∅}1 = 1) | 
| 193 | 116, 190,
192 | mp2an 692 | . . . . . . . . . . . 12
⊢
Σ𝑐 ∈
{∅}1 = 1 | 
| 194 | 193 | a1i 11 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 = 0) → Σ𝑐 ∈ {∅}1 = 1) | 
| 195 | 171, 189,
194 | 3eqtrd 2781 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 = 0) → Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = 1) | 
| 196 | 195 | mpteq2dv 5244 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 = 0) → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) = (𝑥 ∈ 𝑋 ↦ 1)) | 
| 197 | 196 | eqcomd 2743 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 = 0) → (𝑥 ∈ 𝑋 ↦ 1) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) | 
| 198 | 75, 102, 197 | 3eqtrd 2781 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 = 0) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) | 
| 199 | 198 | a1d 25 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 = 0) → (𝑘 ∈ (0...𝑁) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) | 
| 200 | 71 | fveq1i 6907 | . . . . . . . . 9
⊢ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 1))‘𝑘) | 
| 201 | 200 | a1i 11 | . . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 1))‘𝑘)) | 
| 202 | 76 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝑘 = 0) → 𝑆 ∈ {ℝ, ℂ}) | 
| 203 | 202 | adantr 480 | . . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑆 ∈ {ℝ, ℂ}) | 
| 204 | 89 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝑘 = 0) → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) | 
| 205 | 204 | adantr 480 | . . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) | 
| 206 | 190 | a1i 11 | . . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → 1 ∈ ℂ) | 
| 207 |  | elfznn0 13660 | . . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) | 
| 208 | 207 | adantl 481 | . . . . . . . . . . . 12
⊢ ((¬
𝑘 = 0 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) | 
| 209 |  | neqne 2948 | . . . . . . . . . . . . 13
⊢ (¬
𝑘 = 0 → 𝑘 ≠ 0) | 
| 210 | 209 | adantr 480 | . . . . . . . . . . . 12
⊢ ((¬
𝑘 = 0 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ≠ 0) | 
| 211 | 208, 210 | jca 511 | . . . . . . . . . . 11
⊢ ((¬
𝑘 = 0 ∧ 𝑘 ∈ (0...𝑁)) → (𝑘 ∈ ℕ0 ∧ 𝑘 ≠ 0)) | 
| 212 |  | elnnne0 12540 | . . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℕ0
∧ 𝑘 ≠
0)) | 
| 213 | 211, 212 | sylibr 234 | . . . . . . . . . 10
⊢ ((¬
𝑘 = 0 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ) | 
| 214 | 213 | adantll 714 | . . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ) | 
| 215 | 203, 205,
206, 214 | dvnmptconst 45956 | . . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 1))‘𝑘) = (𝑥 ∈ 𝑋 ↦ 0)) | 
| 216 | 140 | ad2antrr 726 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → (𝐷‘∅) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ {∅} ∣
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 𝑛})) | 
| 217 |  | eqeq2 2749 | . . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑘 → (Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑛 ↔ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑘)) | 
| 218 | 217 | rabbidv 3444 | . . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑘 → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑘}) | 
| 219 | 218 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ ((¬
𝑘 = 0 ∧ 𝑛 = 𝑘) → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑘}) | 
| 220 |  | eqidd 2738 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(Σ𝑡 ∈
∅ (𝑐‘𝑡) = 𝑘 → 𝑘 = 𝑘) | 
| 221 |  | id 22 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
(Σ𝑡 ∈
∅ (𝑐‘𝑡) = 𝑘 → Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑘) | 
| 222 | 221 | eqcomd 2743 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(Σ𝑡 ∈
∅ (𝑐‘𝑡) = 𝑘 → 𝑘 = Σ𝑡 ∈ ∅ (𝑐‘𝑡)) | 
| 223 | 155 | a1i 11 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(Σ𝑡 ∈
∅ (𝑐‘𝑡) = 𝑘 → Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 0) | 
| 224 | 220, 222,
223 | 3eqtrd 2781 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(Σ𝑡 ∈
∅ (𝑐‘𝑡) = 𝑘 → 𝑘 = 0) | 
| 225 | 224 | adantl 481 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑐 ∈ {∅} ∧
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 𝑘) → 𝑘 = 0) | 
| 226 | 225 | adantll 714 | . . . . . . . . . . . . . . . . . . 19
⊢ (((¬
𝑘 = 0 ∧ 𝑐 ∈ {∅}) ∧
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 𝑘) → 𝑘 = 0) | 
| 227 |  | simpll 767 | . . . . . . . . . . . . . . . . . . 19
⊢ (((¬
𝑘 = 0 ∧ 𝑐 ∈ {∅}) ∧
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 𝑘) → ¬ 𝑘 = 0) | 
| 228 | 226, 227 | pm2.65da 817 | . . . . . . . . . . . . . . . . . 18
⊢ ((¬
𝑘 = 0 ∧ 𝑐 ∈ {∅}) → ¬
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 𝑘) | 
| 229 | 228 | ralrimiva 3146 | . . . . . . . . . . . . . . . . 17
⊢ (¬
𝑘 = 0 → ∀𝑐 ∈ {∅} ¬
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 𝑘) | 
| 230 |  | rabeq0 4388 | . . . . . . . . . . . . . . . . 17
⊢ ({𝑐 ∈ {∅} ∣
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 𝑘} = ∅ ↔ ∀𝑐 ∈ {∅} ¬ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑘) | 
| 231 | 229, 230 | sylibr 234 | . . . . . . . . . . . . . . . 16
⊢ (¬
𝑘 = 0 → {𝑐 ∈ {∅} ∣
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 𝑘} = ∅) | 
| 232 | 231 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((¬
𝑘 = 0 ∧ 𝑛 = 𝑘) → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑘} = ∅) | 
| 233 | 219, 232 | eqtrd 2777 | . . . . . . . . . . . . . 14
⊢ ((¬
𝑘 = 0 ∧ 𝑛 = 𝑘) → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑛} = ∅) | 
| 234 | 233 | adantll 714 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑛 = 𝑘) → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑛} = ∅) | 
| 235 | 234 | adantlr 715 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑛 = 𝑘) → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑛} = ∅) | 
| 236 | 207 | adantl 481 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) | 
| 237 | 116 | a1i 11 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → ∅ ∈ V) | 
| 238 | 216, 235,
236, 237 | fvmptd 7023 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐷‘∅)‘𝑘) = ∅) | 
| 239 | 238 | sumeq1d 15736 | . . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ∅ (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 240 |  | sum0 15757 | . . . . . . . . . . 11
⊢
Σ𝑐 ∈
∅ (((!‘𝑘) /
∏𝑡 ∈ ∅
(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = 0 | 
| 241 | 240 | a1i 11 | . . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → Σ𝑐 ∈ ∅ (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = 0) | 
| 242 | 239, 241 | eqtr2d 2778 | . . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → 0 = Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 243 | 242 | mpteq2dv 5244 | . . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑥 ∈ 𝑋 ↦ 0) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) | 
| 244 | 201, 215,
243 | 3eqtrd 2781 | . . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) | 
| 245 | 244 | ex 412 | . . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑘 = 0) → (𝑘 ∈ (0...𝑁) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) | 
| 246 | 199, 245 | pm2.61dan 813 | . . . . 5
⊢ (𝜑 → (𝑘 ∈ (0...𝑁) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) | 
| 247 | 246 | ralrimiv 3145 | . . . 4
⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) | 
| 248 |  | simpll 767 | . . . . . . . 8
⊢ ((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) ∧ 𝑗 ∈ (0...𝑁)) → (𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟)))) | 
| 249 |  | fveq2 6906 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → ((𝐻‘𝑡)‘𝑥) = ((𝐻‘𝑡)‘𝑦)) | 
| 250 | 249 | prodeq2ad 45607 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥) = ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑦)) | 
| 251 |  | fveq2 6906 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝑢 → (𝐻‘𝑡) = (𝐻‘𝑢)) | 
| 252 | 251 | fveq1d 6908 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 𝑢 → ((𝐻‘𝑡)‘𝑦) = ((𝐻‘𝑢)‘𝑦)) | 
| 253 | 252 | cbvprodv 15950 | . . . . . . . . . . . . . . . . 17
⊢
∏𝑡 ∈
𝑟 ((𝐻‘𝑡)‘𝑦) = ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦) | 
| 254 | 253 | a1i 11 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑦) = ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)) | 
| 255 | 250, 254 | eqtrd 2777 | . . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥) = ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)) | 
| 256 | 255 | cbvmptv 5255 | . . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)) = (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)) | 
| 257 | 256 | oveq2i 7442 | . . . . . . . . . . . . 13
⊢ (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥))) = (𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦))) | 
| 258 | 257 | fveq1i 6907 | . . . . . . . . . . . 12
⊢ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) | 
| 259 |  | fveq2 6906 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑢 → (𝑐‘𝑡) = (𝑐‘𝑢)) | 
| 260 | 259 | fveq2d 6910 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝑢 → (!‘(𝑐‘𝑡)) = (!‘(𝑐‘𝑢))) | 
| 261 | 260 | cbvprodv 15950 | . . . . . . . . . . . . . . . . . 18
⊢
∏𝑡 ∈
𝑟 (!‘(𝑐‘𝑡)) = ∏𝑢 ∈ 𝑟 (!‘(𝑐‘𝑢)) | 
| 262 | 261 | oveq2i 7442 | . . . . . . . . . . . . . . . . 17
⊢
((!‘𝑘) /
∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) = ((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑐‘𝑢))) | 
| 263 | 262 | a1i 11 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → ((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) = ((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑐‘𝑢)))) | 
| 264 |  | fveq2 6906 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) = (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑦)) | 
| 265 | 264 | prodeq2ad 45607 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) = ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑦)) | 
| 266 | 251 | oveq2d 7447 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 = 𝑢 → (𝑆 D𝑛 (𝐻‘𝑡)) = (𝑆 D𝑛 (𝐻‘𝑢))) | 
| 267 | 266, 259 | fveq12d 6913 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑢 → ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡)) = ((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑐‘𝑢))) | 
| 268 | 267 | fveq1d 6908 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝑢 → (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑦) = (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑐‘𝑢))‘𝑦)) | 
| 269 | 268 | cbvprodv 15950 | . . . . . . . . . . . . . . . . . 18
⊢
∏𝑡 ∈
𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑦) = ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑐‘𝑢))‘𝑦) | 
| 270 | 269 | a1i 11 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑦) = ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑐‘𝑢))‘𝑦)) | 
| 271 | 265, 270 | eqtrd 2777 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) = ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑐‘𝑢))‘𝑦)) | 
| 272 | 263, 271 | oveq12d 7449 | . . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = (((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑐‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑐‘𝑢))‘𝑦))) | 
| 273 | 272 | sumeq2sdv 15739 | . . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑐‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑐‘𝑢))‘𝑦))) | 
| 274 |  | fveq1 6905 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 = 𝑑 → (𝑐‘𝑢) = (𝑑‘𝑢)) | 
| 275 | 274 | fveq2d 6910 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 = 𝑑 → (!‘(𝑐‘𝑢)) = (!‘(𝑑‘𝑢))) | 
| 276 | 275 | prodeq2ad 45607 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 𝑑 → ∏𝑢 ∈ 𝑟 (!‘(𝑐‘𝑢)) = ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) | 
| 277 | 276 | oveq2d 7447 | . . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 𝑑 → ((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑐‘𝑢))) = ((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢)))) | 
| 278 | 274 | fveq2d 6910 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 = 𝑑 → ((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑐‘𝑢)) = ((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))) | 
| 279 | 278 | fveq1d 6908 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 𝑑 → (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑐‘𝑢))‘𝑦) = (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)) | 
| 280 | 279 | prodeq2ad 45607 | . . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 𝑑 → ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑐‘𝑢))‘𝑦) = ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)) | 
| 281 | 277, 280 | oveq12d 7449 | . . . . . . . . . . . . . . . 16
⊢ (𝑐 = 𝑑 → (((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑐‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑐‘𝑢))‘𝑦)) = (((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦))) | 
| 282 | 281 | cbvsumv 15732 | . . . . . . . . . . . . . . 15
⊢
Σ𝑐 ∈
((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑐‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑐‘𝑢))‘𝑦)) = Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)) | 
| 283 | 282 | a1i 11 | . . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑐‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑐‘𝑢))‘𝑦)) = Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦))) | 
| 284 | 273, 283 | eqtrd 2777 | . . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦))) | 
| 285 | 284 | cbvmptv 5255 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦))) | 
| 286 | 258, 285 | eqeq12i 2755 | . . . . . . . . . . 11
⊢ (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ↔ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) | 
| 287 | 286 | ralbii 3093 | . . . . . . . . . 10
⊢
(∀𝑘 ∈
(0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ↔ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) | 
| 288 | 287 | biimpi 216 | . . . . . . . . 9
⊢
(∀𝑘 ∈
(0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) → ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) | 
| 289 | 288 | ad2antlr 727 | . . . . . . . 8
⊢ ((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) ∧ 𝑗 ∈ (0...𝑁)) → ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) | 
| 290 |  | simpr 484 | . . . . . . . 8
⊢ ((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑗 ∈ (0...𝑁)) | 
| 291 | 76 | ad3antrrr 730 | . . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑆 ∈ {ℝ, ℂ}) | 
| 292 | 89 | ad3antrrr 730 | . . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) | 
| 293 |  | dvnprodlem3.t | . . . . . . . . . 10
⊢ (𝜑 → 𝑇 ∈ Fin) | 
| 294 | 293 | ad3antrrr 730 | . . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑇 ∈ Fin) | 
| 295 |  | simp-4l 783 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) → 𝜑) | 
| 296 |  | simpr 484 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ 𝑇) | 
| 297 |  | dvnprodlem3.h | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐻‘𝑡):𝑋⟶ℂ) | 
| 298 | 295, 296,
297 | syl2anc 584 | . . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) → (𝐻‘𝑡):𝑋⟶ℂ) | 
| 299 |  | dvnprodlem3.n | . . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈
ℕ0) | 
| 300 | 299 | ad3antrrr 730 | . . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑁 ∈
ℕ0) | 
| 301 |  | simplll 775 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝜑) | 
| 302 | 301 | 3ad2ant1 1134 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇 ∧ ℎ ∈ (0...𝑁)) → 𝜑) | 
| 303 |  | simp2 1138 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇 ∧ ℎ ∈ (0...𝑁)) → 𝑡 ∈ 𝑇) | 
| 304 |  | simp3 1139 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇 ∧ ℎ ∈ (0...𝑁)) → ℎ ∈ (0...𝑁)) | 
| 305 |  | eleq1w 2824 | . . . . . . . . . . . . 13
⊢ (𝑗 = ℎ → (𝑗 ∈ (0...𝑁) ↔ ℎ ∈ (0...𝑁))) | 
| 306 | 305 | 3anbi3d 1444 | . . . . . . . . . . . 12
⊢ (𝑗 = ℎ → ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) ↔ (𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ℎ ∈ (0...𝑁)))) | 
| 307 |  | fveq2 6906 | . . . . . . . . . . . . 13
⊢ (𝑗 = ℎ → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗) = ((𝑆 D𝑛 (𝐻‘𝑡))‘ℎ)) | 
| 308 | 307 | feq1d 6720 | . . . . . . . . . . . 12
⊢ (𝑗 = ℎ → (((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻‘𝑡))‘ℎ):𝑋⟶ℂ)) | 
| 309 | 306, 308 | imbi12d 344 | . . . . . . . . . . 11
⊢ (𝑗 = ℎ → (((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ℎ ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘ℎ):𝑋⟶ℂ))) | 
| 310 |  | dvnprodlem3.dvnh | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ) | 
| 311 | 309, 310 | chvarvv 1998 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ℎ ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘ℎ):𝑋⟶ℂ) | 
| 312 | 302, 303,
304, 311 | syl3anc 1373 | . . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇 ∧ ℎ ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘ℎ):𝑋⟶ℂ) | 
| 313 |  | simprl 771 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) → 𝑟 ⊆ 𝑇) | 
| 314 | 313 | ad2antrr 726 | . . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑟 ⊆ 𝑇) | 
| 315 |  | simprr 773 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) → 𝑧 ∈ (𝑇 ∖ 𝑟)) | 
| 316 | 315 | ad2antrr 726 | . . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑧 ∈ (𝑇 ∖ 𝑟)) | 
| 317 | 257 | eqcomi 2746 | . . . . . . . . . . . . . . 15
⊢ (𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦))) = (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥))) | 
| 318 | 317 | a1i 11 | . . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑙 → (𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦))) = (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))) | 
| 319 |  | id 22 | . . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑙 → 𝑘 = 𝑙) | 
| 320 | 318, 319 | fveq12d 6913 | . . . . . . . . . . . . 13
⊢ (𝑘 = 𝑙 → ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑙)) | 
| 321 | 285 | eqcomi 2746 | . . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦))) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 322 | 321 | a1i 11 | . . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑙 → (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦))) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) | 
| 323 |  | fveq2 6906 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑙 → (!‘𝑘) = (!‘𝑙)) | 
| 324 | 323 | oveq1d 7446 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑙 → ((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) = ((!‘𝑙) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡)))) | 
| 325 | 324 | oveq1d 7446 | . . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑙 → (((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = (((!‘𝑙) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 326 | 325 | sumeq2sdv 15739 | . . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑙 → Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑙) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 327 |  | fveq2 6906 | . . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑙 → ((𝐷‘𝑟)‘𝑘) = ((𝐷‘𝑟)‘𝑙)) | 
| 328 | 327 | sumeq1d 15736 | . . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑙 → Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑙) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑙)(((!‘𝑙) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 329 | 326, 328 | eqtrd 2777 | . . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑙 → Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑙)(((!‘𝑙) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 330 | 329 | mpteq2dv 5244 | . . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑙 → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑙)(((!‘𝑙) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) | 
| 331 | 322, 330 | eqtrd 2777 | . . . . . . . . . . . . 13
⊢ (𝑘 = 𝑙 → (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦))) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑙)(((!‘𝑙) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) | 
| 332 | 320, 331 | eqeq12d 2753 | . . . . . . . . . . . 12
⊢ (𝑘 = 𝑙 → (((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦))) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑙) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑙)(((!‘𝑙) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) | 
| 333 | 332 | cbvralvw 3237 | . . . . . . . . . . 11
⊢
(∀𝑘 ∈
(0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦))) ↔ ∀𝑙 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑙) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑙)(((!‘𝑙) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) | 
| 334 | 333 | biimpi 216 | . . . . . . . . . 10
⊢
(∀𝑘 ∈
(0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦))) → ∀𝑙 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑙) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑙)(((!‘𝑙) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) | 
| 335 | 334 | ad2antlr 727 | . . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → ∀𝑙 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑙) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑙)(((!‘𝑙) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) | 
| 336 |  | simpr 484 | . . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑗 ∈ (0...𝑁)) | 
| 337 |  | fveq1 6905 | . . . . . . . . . . . 12
⊢ (𝑑 = 𝑐 → (𝑑‘𝑧) = (𝑐‘𝑧)) | 
| 338 | 337 | oveq2d 7447 | . . . . . . . . . . 11
⊢ (𝑑 = 𝑐 → (𝑗 − (𝑑‘𝑧)) = (𝑗 − (𝑐‘𝑧))) | 
| 339 |  | reseq1 5991 | . . . . . . . . . . 11
⊢ (𝑑 = 𝑐 → (𝑑 ↾ 𝑟) = (𝑐 ↾ 𝑟)) | 
| 340 | 338, 339 | opeq12d 4881 | . . . . . . . . . 10
⊢ (𝑑 = 𝑐 → 〈(𝑗 − (𝑑‘𝑧)), (𝑑 ↾ 𝑟)〉 = 〈(𝑗 − (𝑐‘𝑧)), (𝑐 ↾ 𝑟)〉) | 
| 341 | 340 | cbvmptv 5255 | . . . . . . . . 9
⊢ (𝑑 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗) ↦ 〈(𝑗 − (𝑑‘𝑧)), (𝑑 ↾ 𝑟)〉) = (𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗) ↦ 〈(𝑗 − (𝑐‘𝑧)), (𝑐 ↾ 𝑟)〉) | 
| 342 | 291, 292,
294, 298, 300, 312, 105, 314, 316, 335, 336, 341 | dvnprodlem2 45962 | . . . . . . . 8
⊢ ((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) | 
| 343 | 248, 289,
290, 342 | syl21anc 838 | . . . . . . 7
⊢ ((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) | 
| 344 | 343 | ralrimiva 3146 | . . . . . 6
⊢ (((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) → ∀𝑗 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) | 
| 345 |  | fveq2 6906 | . . . . . . . 8
⊢ (𝑗 = 𝑘 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥)))‘𝑗) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥)))‘𝑘)) | 
| 346 |  | fveq2 6906 | . . . . . . . . . . . . 13
⊢ (𝑗 = 𝑘 → (!‘𝑗) = (!‘𝑘)) | 
| 347 | 346 | oveq1d 7446 | . . . . . . . . . . . 12
⊢ (𝑗 = 𝑘 → ((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) = ((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡)))) | 
| 348 | 347 | oveq1d 7446 | . . . . . . . . . . 11
⊢ (𝑗 = 𝑘 → (((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = (((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 349 | 348 | sumeq2sdv 15739 | . . . . . . . . . 10
⊢ (𝑗 = 𝑘 → Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 350 |  | fveq2 6906 | . . . . . . . . . . 11
⊢ (𝑗 = 𝑘 → ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗) = ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)) | 
| 351 | 350 | sumeq1d 15736 | . . . . . . . . . 10
⊢ (𝑗 = 𝑘 → Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 352 | 349, 351 | eqtrd 2777 | . . . . . . . . 9
⊢ (𝑗 = 𝑘 → Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 353 | 352 | mpteq2dv 5244 | . . . . . . . 8
⊢ (𝑗 = 𝑘 → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) | 
| 354 | 345, 353 | eqeq12d 2753 | . . . . . . 7
⊢ (𝑗 = 𝑘 → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) | 
| 355 | 354 | cbvralvw 3237 | . . . . . 6
⊢
(∀𝑗 ∈
(0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ↔ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) | 
| 356 | 344, 355 | sylib 218 | . . . . 5
⊢ (((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) → ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) | 
| 357 | 356 | ex 412 | . . . 4
⊢ ((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) → (∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) → ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) | 
| 358 | 16, 32, 48, 68, 247, 357, 293 | findcard2d 9206 | . . 3
⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 𝐹)‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) | 
| 359 |  | nn0uz 12920 | . . . . 5
⊢
ℕ0 = (ℤ≥‘0) | 
| 360 | 299, 359 | eleqtrdi 2851 | . . . 4
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘0)) | 
| 361 |  | eluzfz2 13572 | . . . 4
⊢ (𝑁 ∈
(ℤ≥‘0) → 𝑁 ∈ (0...𝑁)) | 
| 362 | 360, 361 | syl 17 | . . 3
⊢ (𝜑 → 𝑁 ∈ (0...𝑁)) | 
| 363 |  | fveq2 6906 | . . . . 5
⊢ (𝑘 = 𝑁 → ((𝑆 D𝑛 𝐹)‘𝑘) = ((𝑆 D𝑛 𝐹)‘𝑁)) | 
| 364 |  | fveq2 6906 | . . . . . . . 8
⊢ (𝑘 = 𝑁 → ((𝐷‘𝑇)‘𝑘) = ((𝐷‘𝑇)‘𝑁)) | 
| 365 | 364 | sumeq1d 15736 | . . . . . . 7
⊢ (𝑘 = 𝑁 → Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑁)(((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 366 |  | fveq2 6906 | . . . . . . . . . 10
⊢ (𝑘 = 𝑁 → (!‘𝑘) = (!‘𝑁)) | 
| 367 | 366 | oveq1d 7446 | . . . . . . . . 9
⊢ (𝑘 = 𝑁 → ((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) = ((!‘𝑁) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡)))) | 
| 368 | 367 | oveq1d 7446 | . . . . . . . 8
⊢ (𝑘 = 𝑁 → (((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = (((!‘𝑁) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 369 | 368 | sumeq2sdv 15739 | . . . . . . 7
⊢ (𝑘 = 𝑁 → Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑁)(((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑁)(((!‘𝑁) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 370 | 365, 369 | eqtrd 2777 | . . . . . 6
⊢ (𝑘 = 𝑁 → Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑁)(((!‘𝑁) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 371 | 370 | mpteq2dv 5244 | . . . . 5
⊢ (𝑘 = 𝑁 → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑁)(((!‘𝑁) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) | 
| 372 | 363, 371 | eqeq12d 2753 | . . . 4
⊢ (𝑘 = 𝑁 → (((𝑆 D𝑛 𝐹)‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ↔ ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑁)(((!‘𝑁) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) | 
| 373 | 372 | rspccva 3621 | . . 3
⊢
((∀𝑘 ∈
(0...𝑁)((𝑆 D𝑛 𝐹)‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ∧ 𝑁 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑁)(((!‘𝑁) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) | 
| 374 | 358, 362,
373 | syl2anc 584 | . 2
⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑁)(((!‘𝑁) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) | 
| 375 |  | oveq2 7439 | . . . . . . . . . 10
⊢ (𝑠 = 𝑇 → ((0...𝑛) ↑m 𝑠) = ((0...𝑛) ↑m 𝑇)) | 
| 376 |  | rabeq 3451 | . . . . . . . . . 10
⊢
(((0...𝑛)
↑m 𝑠) =
((0...𝑛) ↑m
𝑇) → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) | 
| 377 | 375, 376 | syl 17 | . . . . . . . . 9
⊢ (𝑠 = 𝑇 → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) | 
| 378 |  | sumeq1 15725 | . . . . . . . . . . 11
⊢ (𝑠 = 𝑇 → Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = Σ𝑡 ∈ 𝑇 (𝑐‘𝑡)) | 
| 379 | 378 | eqeq1d 2739 | . . . . . . . . . 10
⊢ (𝑠 = 𝑇 → (Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛 ↔ Σ𝑡 ∈ 𝑇 (𝑐‘𝑡) = 𝑛)) | 
| 380 | 379 | rabbidv 3444 | . . . . . . . . 9
⊢ (𝑠 = 𝑇 → {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡 ∈ 𝑇 (𝑐‘𝑡) = 𝑛}) | 
| 381 | 377, 380 | eqtrd 2777 | . . . . . . . 8
⊢ (𝑠 = 𝑇 → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡 ∈ 𝑇 (𝑐‘𝑡) = 𝑛}) | 
| 382 | 381 | mpteq2dv 5244 | . . . . . . 7
⊢ (𝑠 = 𝑇 → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡 ∈ 𝑇 (𝑐‘𝑡) = 𝑛})) | 
| 383 |  | pwidg 4620 | . . . . . . . 8
⊢ (𝑇 ∈ Fin → 𝑇 ∈ 𝒫 𝑇) | 
| 384 | 293, 383 | syl 17 | . . . . . . 7
⊢ (𝜑 → 𝑇 ∈ 𝒫 𝑇) | 
| 385 | 137 | mptex 7243 | . . . . . . . 8
⊢ (𝑛 ∈ ℕ0
↦ {𝑐 ∈
((0...𝑛) ↑m
𝑇) ∣ Σ𝑡 ∈ 𝑇 (𝑐‘𝑡) = 𝑛}) ∈ V | 
| 386 | 385 | a1i 11 | . . . . . . 7
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡 ∈ 𝑇 (𝑐‘𝑡) = 𝑛}) ∈ V) | 
| 387 | 105, 382,
384, 386 | fvmptd3 7039 | . . . . . 6
⊢ (𝜑 → (𝐷‘𝑇) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡 ∈ 𝑇 (𝑐‘𝑡) = 𝑛})) | 
| 388 |  | dvnprodlem3.c | . . . . . . 7
⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡 ∈ 𝑇 (𝑐‘𝑡) = 𝑛}) | 
| 389 | 388 | a1i 11 | . . . . . 6
⊢ (𝜑 → 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡 ∈ 𝑇 (𝑐‘𝑡) = 𝑛})) | 
| 390 | 387, 389 | eqtr4d 2780 | . . . . 5
⊢ (𝜑 → (𝐷‘𝑇) = 𝐶) | 
| 391 | 390 | fveq1d 6908 | . . . 4
⊢ (𝜑 → ((𝐷‘𝑇)‘𝑁) = (𝐶‘𝑁)) | 
| 392 | 391 | sumeq1d 15736 | . . 3
⊢ (𝜑 → Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑁)(((!‘𝑁) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) | 
| 393 | 392 | mpteq2dv 5244 | . 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑁)(((!‘𝑁) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) | 
| 394 | 374, 393 | eqtrd 2777 | 1
⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |