Step | Hyp | Ref
| Expression |
1 | | prodeq1 15547 |
. . . . . . . . 9
⊢ (𝑠 = ∅ → ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥) = ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥)) |
2 | 1 | mpteq2dv 5172 |
. . . . . . . 8
⊢ (𝑠 = ∅ → (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)) = (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥))) |
3 | 2 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑠 = ∅ → (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥))) = (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥)))) |
4 | 3 | fveq1d 6758 |
. . . . . 6
⊢ (𝑠 = ∅ → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥)))‘𝑘)) |
5 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑠 = ∅ → (𝐷‘𝑠) = (𝐷‘∅)) |
6 | 5 | fveq1d 6758 |
. . . . . . . . 9
⊢ (𝑠 = ∅ → ((𝐷‘𝑠)‘𝑘) = ((𝐷‘∅)‘𝑘)) |
7 | 6 | sumeq1d 15341 |
. . . . . . . 8
⊢ (𝑠 = ∅ → Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
8 | | prodeq1 15547 |
. . . . . . . . . . 11
⊢ (𝑠 = ∅ → ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡)) = ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) |
9 | 8 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (𝑠 = ∅ →
((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) = ((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡)))) |
10 | | prodeq1 15547 |
. . . . . . . . . 10
⊢ (𝑠 = ∅ → ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) = ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) |
11 | 9, 10 | oveq12d 7273 |
. . . . . . . . 9
⊢ (𝑠 = ∅ →
(((!‘𝑘) /
∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
12 | 11 | sumeq2sdv 15344 |
. . . . . . . 8
⊢ (𝑠 = ∅ → Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
13 | 7, 12 | eqtrd 2778 |
. . . . . . 7
⊢ (𝑠 = ∅ → Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
14 | 13 | mpteq2dv 5172 |
. . . . . 6
⊢ (𝑠 = ∅ → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
15 | 4, 14 | eqeq12d 2754 |
. . . . 5
⊢ (𝑠 = ∅ → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) |
16 | 15 | ralbidv 3120 |
. . . 4
⊢ (𝑠 = ∅ → (∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ↔ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) |
17 | | prodeq1 15547 |
. . . . . . . . 9
⊢ (𝑠 = 𝑟 → ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥) = ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)) |
18 | 17 | mpteq2dv 5172 |
. . . . . . . 8
⊢ (𝑠 = 𝑟 → (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)) = (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥))) |
19 | 18 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑠 = 𝑟 → (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥))) = (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))) |
20 | 19 | fveq1d 6758 |
. . . . . 6
⊢ (𝑠 = 𝑟 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑘)) |
21 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑟 → (𝐷‘𝑠) = (𝐷‘𝑟)) |
22 | 21 | fveq1d 6758 |
. . . . . . . . 9
⊢ (𝑠 = 𝑟 → ((𝐷‘𝑠)‘𝑘) = ((𝐷‘𝑟)‘𝑘)) |
23 | 22 | sumeq1d 15341 |
. . . . . . . 8
⊢ (𝑠 = 𝑟 → Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
24 | | prodeq1 15547 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑟 → ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡)) = ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) |
25 | 24 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑟 → ((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) = ((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡)))) |
26 | | prodeq1 15547 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑟 → ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) = ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) |
27 | 25, 26 | oveq12d 7273 |
. . . . . . . . 9
⊢ (𝑠 = 𝑟 → (((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = (((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
28 | 27 | sumeq2sdv 15344 |
. . . . . . . 8
⊢ (𝑠 = 𝑟 → Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
29 | 23, 28 | eqtrd 2778 |
. . . . . . 7
⊢ (𝑠 = 𝑟 → Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
30 | 29 | mpteq2dv 5172 |
. . . . . 6
⊢ (𝑠 = 𝑟 → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
31 | 20, 30 | eqeq12d 2754 |
. . . . 5
⊢ (𝑠 = 𝑟 → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) |
32 | 31 | ralbidv 3120 |
. . . 4
⊢ (𝑠 = 𝑟 → (∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ↔ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) |
33 | | prodeq1 15547 |
. . . . . . . . 9
⊢ (𝑠 = (𝑟 ∪ {𝑧}) → ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥) = ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥)) |
34 | 33 | mpteq2dv 5172 |
. . . . . . . 8
⊢ (𝑠 = (𝑟 ∪ {𝑧}) → (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)) = (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥))) |
35 | 34 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑠 = (𝑟 ∪ {𝑧}) → (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥))) = (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥)))) |
36 | 35 | fveq1d 6758 |
. . . . . 6
⊢ (𝑠 = (𝑟 ∪ {𝑧}) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥)))‘𝑘)) |
37 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑠 = (𝑟 ∪ {𝑧}) → (𝐷‘𝑠) = (𝐷‘(𝑟 ∪ {𝑧}))) |
38 | 37 | fveq1d 6758 |
. . . . . . . . 9
⊢ (𝑠 = (𝑟 ∪ {𝑧}) → ((𝐷‘𝑠)‘𝑘) = ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)) |
39 | 38 | sumeq1d 15341 |
. . . . . . . 8
⊢ (𝑠 = (𝑟 ∪ {𝑧}) → Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
40 | | prodeq1 15547 |
. . . . . . . . . . 11
⊢ (𝑠 = (𝑟 ∪ {𝑧}) → ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡)) = ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) |
41 | 40 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (𝑠 = (𝑟 ∪ {𝑧}) → ((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) = ((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡)))) |
42 | | prodeq1 15547 |
. . . . . . . . . 10
⊢ (𝑠 = (𝑟 ∪ {𝑧}) → ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) = ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) |
43 | 41, 42 | oveq12d 7273 |
. . . . . . . . 9
⊢ (𝑠 = (𝑟 ∪ {𝑧}) → (((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = (((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
44 | 43 | sumeq2sdv 15344 |
. . . . . . . 8
⊢ (𝑠 = (𝑟 ∪ {𝑧}) → Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
45 | 39, 44 | eqtrd 2778 |
. . . . . . 7
⊢ (𝑠 = (𝑟 ∪ {𝑧}) → Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
46 | 45 | mpteq2dv 5172 |
. . . . . 6
⊢ (𝑠 = (𝑟 ∪ {𝑧}) → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
47 | 36, 46 | eqeq12d 2754 |
. . . . 5
⊢ (𝑠 = (𝑟 ∪ {𝑧}) → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) |
48 | 47 | ralbidv 3120 |
. . . 4
⊢ (𝑠 = (𝑟 ∪ {𝑧}) → (∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ↔ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) |
49 | | prodeq1 15547 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑇 → ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥) = ∏𝑡 ∈ 𝑇 ((𝐻‘𝑡)‘𝑥)) |
50 | 49 | mpteq2dv 5172 |
. . . . . . . . 9
⊢ (𝑠 = 𝑇 → (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)) = (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑇 ((𝐻‘𝑡)‘𝑥))) |
51 | | dvnprodlem3.f |
. . . . . . . . . . 11
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑇 ((𝐻‘𝑡)‘𝑥)) |
52 | 51 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑇 → 𝐹 = (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑇 ((𝐻‘𝑡)‘𝑥))) |
53 | 52 | eqcomd 2744 |
. . . . . . . . 9
⊢ (𝑠 = 𝑇 → (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑇 ((𝐻‘𝑡)‘𝑥)) = 𝐹) |
54 | 50, 53 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝑠 = 𝑇 → (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)) = 𝐹) |
55 | 54 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑠 = 𝑇 → (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥))) = (𝑆 D𝑛 𝐹)) |
56 | 55 | fveq1d 6758 |
. . . . . 6
⊢ (𝑠 = 𝑇 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 𝐹)‘𝑘)) |
57 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑇 → (𝐷‘𝑠) = (𝐷‘𝑇)) |
58 | 57 | fveq1d 6758 |
. . . . . . . . 9
⊢ (𝑠 = 𝑇 → ((𝐷‘𝑠)‘𝑘) = ((𝐷‘𝑇)‘𝑘)) |
59 | 58 | sumeq1d 15341 |
. . . . . . . 8
⊢ (𝑠 = 𝑇 → Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
60 | | prodeq1 15547 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑇 → ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡)) = ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) |
61 | 60 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑇 → ((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) = ((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡)))) |
62 | | prodeq1 15547 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑇 → ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) = ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) |
63 | 61, 62 | oveq12d 7273 |
. . . . . . . . 9
⊢ (𝑠 = 𝑇 → (((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = (((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
64 | 63 | sumeq2sdv 15344 |
. . . . . . . 8
⊢ (𝑠 = 𝑇 → Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
65 | 59, 64 | eqtrd 2778 |
. . . . . . 7
⊢ (𝑠 = 𝑇 → Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
66 | 65 | mpteq2dv 5172 |
. . . . . 6
⊢ (𝑠 = 𝑇 → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
67 | 56, 66 | eqeq12d 2754 |
. . . . 5
⊢ (𝑠 = 𝑇 → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ↔ ((𝑆 D𝑛 𝐹)‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) |
68 | 67 | ralbidv 3120 |
. . . 4
⊢ (𝑠 = 𝑇 → (∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑠 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑠)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑠 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑠 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ↔ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 𝐹)‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) |
69 | | prod0 15581 |
. . . . . . . . . . . . 13
⊢
∏𝑡 ∈
∅ ((𝐻‘𝑡)‘𝑥) = 1 |
70 | 69 | mpteq2i 5175 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥)) = (𝑥 ∈ 𝑋 ↦ 1) |
71 | 70 | oveq2i 7266 |
. . . . . . . . . . 11
⊢ (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥))) = (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 1)) |
72 | 71 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑘 = 0 → (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥))) = (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 1))) |
73 | | id 22 |
. . . . . . . . . 10
⊢ (𝑘 = 0 → 𝑘 = 0) |
74 | 72, 73 | fveq12d 6763 |
. . . . . . . . 9
⊢ (𝑘 = 0 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 1))‘0)) |
75 | 74 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 = 0) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 1))‘0)) |
76 | | dvnprodlem3.s |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
77 | | recnprss 24973 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ {ℝ, ℂ}
→ 𝑆 ⊆
ℂ) |
78 | 76, 77 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
79 | | 1cnd 10901 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 1 ∈ ℂ) |
80 | 79 | fmpttd 6971 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 1):𝑋⟶ℂ) |
81 | | 1re 10906 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℝ |
82 | 81 | rgenw 3075 |
. . . . . . . . . . . . . . . 16
⊢
∀𝑥 ∈
𝑋 1 ∈
ℝ |
83 | | dmmptg 6134 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑥 ∈
𝑋 1 ∈ ℝ →
dom (𝑥 ∈ 𝑋 ↦ 1) = 𝑋) |
84 | 82, 83 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ dom
(𝑥 ∈ 𝑋 ↦ 1) = 𝑋 |
85 | 84 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom (𝑥 ∈ 𝑋 ↦ 1) = 𝑋) |
86 | 85 | feq2d 6570 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 1):dom (𝑥 ∈ 𝑋 ↦ 1)⟶ℂ ↔ (𝑥 ∈ 𝑋 ↦ 1):𝑋⟶ℂ)) |
87 | 80, 86 | mpbird 256 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 1):dom (𝑥 ∈ 𝑋 ↦ 1)⟶ℂ) |
88 | | restsspw 17059 |
. . . . . . . . . . . . . . 15
⊢
((TopOpen‘ℂfld) ↾t 𝑆) ⊆ 𝒫 𝑆 |
89 | | dvnprodlem3.x |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) |
90 | 88, 89 | sselid 3915 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑋 ∈ 𝒫 𝑆) |
91 | | elpwi 4539 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ 𝒫 𝑆 → 𝑋 ⊆ 𝑆) |
92 | 90, 91 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
93 | 85, 92 | eqsstrd 3955 |
. . . . . . . . . . . 12
⊢ (𝜑 → dom (𝑥 ∈ 𝑋 ↦ 1) ⊆ 𝑆) |
94 | 87, 93 | jca 511 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 1):dom (𝑥 ∈ 𝑋 ↦ 1)⟶ℂ ∧ dom (𝑥 ∈ 𝑋 ↦ 1) ⊆ 𝑆)) |
95 | | cnex 10883 |
. . . . . . . . . . . . 13
⊢ ℂ
∈ V |
96 | 95 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℂ ∈
V) |
97 | | elpm2g 8590 |
. . . . . . . . . . . 12
⊢ ((ℂ
∈ V ∧ 𝑆 ∈
{ℝ, ℂ}) → ((𝑥 ∈ 𝑋 ↦ 1) ∈ (ℂ
↑pm 𝑆)
↔ ((𝑥 ∈ 𝑋 ↦ 1):dom (𝑥 ∈ 𝑋 ↦ 1)⟶ℂ ∧ dom (𝑥 ∈ 𝑋 ↦ 1) ⊆ 𝑆))) |
98 | 96, 76, 97 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 1) ∈ (ℂ
↑pm 𝑆)
↔ ((𝑥 ∈ 𝑋 ↦ 1):dom (𝑥 ∈ 𝑋 ↦ 1)⟶ℂ ∧ dom (𝑥 ∈ 𝑋 ↦ 1) ⊆ 𝑆))) |
99 | 94, 98 | mpbird 256 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 1) ∈ (ℂ
↑pm 𝑆)) |
100 | | dvn0 24993 |
. . . . . . . . . 10
⊢ ((𝑆 ⊆ ℂ ∧ (𝑥 ∈ 𝑋 ↦ 1) ∈ (ℂ
↑pm 𝑆))
→ ((𝑆
D𝑛 (𝑥
∈ 𝑋 ↦
1))‘0) = (𝑥 ∈
𝑋 ↦
1)) |
101 | 78, 99, 100 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 1))‘0) = (𝑥 ∈ 𝑋 ↦ 1)) |
102 | 101 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 = 0) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 1))‘0) = (𝑥 ∈ 𝑋 ↦ 1)) |
103 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 0 → ((𝐷‘∅)‘𝑘) = ((𝐷‘∅)‘0)) |
104 | 103 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 = 0) → ((𝐷‘∅)‘𝑘) = ((𝐷‘∅)‘0)) |
105 | | dvnprodlem3.d |
. . . . . . . . . . . . . . . . 17
⊢ 𝐷 = (𝑠 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛})) |
106 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 = ∅ → ((0...𝑛) ↑m 𝑠) = ((0...𝑛) ↑m
∅)) |
107 | | elmapfn 8611 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 ∈ ((0...𝑛) ↑m ∅) → 𝑥 Fn ∅) |
108 | | fn0 6548 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 Fn ∅ ↔ 𝑥 = ∅) |
109 | 107, 108 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 ∈ ((0...𝑛) ↑m ∅) → 𝑥 = ∅) |
110 | | velsn 4574 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) |
111 | 109, 110 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ ((0...𝑛) ↑m ∅) → 𝑥 ∈
{∅}) |
112 | 110 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 ∈ {∅} → 𝑥 = ∅) |
113 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 = ∅ → 𝑥 = ∅) |
114 | | f0 6639 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
∅:∅⟶(0...𝑛) |
115 | | ovex 7288 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(0...𝑛) ∈
V |
116 | | 0ex 5226 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ∅
∈ V |
117 | 115, 116 | elmap 8617 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (∅
∈ ((0...𝑛)
↑m ∅) ↔ ∅:∅⟶(0...𝑛)) |
118 | 114, 117 | mpbir 230 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ∅
∈ ((0...𝑛)
↑m ∅) |
119 | 118 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 = ∅ → ∅ ∈
((0...𝑛) ↑m
∅)) |
120 | 113, 119 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 = ∅ → 𝑥 ∈ ((0...𝑛) ↑m
∅)) |
121 | 112, 120 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ {∅} → 𝑥 ∈ ((0...𝑛) ↑m
∅)) |
122 | 111, 121 | impbii 208 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 ∈ ((0...𝑛) ↑m ∅) ↔ 𝑥 ∈
{∅}) |
123 | 122 | ax-gen 1799 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
∀𝑥(𝑥 ∈ ((0...𝑛) ↑m ∅) ↔ 𝑥 ∈
{∅}) |
124 | | dfcleq 2731 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((0...𝑛)
↑m ∅) = {∅} ↔ ∀𝑥(𝑥 ∈ ((0...𝑛) ↑m ∅) ↔ 𝑥 ∈
{∅})) |
125 | 123, 124 | mpbir 230 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((0...𝑛)
↑m ∅) = {∅} |
126 | 125 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 = ∅ → ((0...𝑛) ↑m ∅) =
{∅}) |
127 | 106, 126 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 = ∅ → ((0...𝑛) ↑m 𝑠) = {∅}) |
128 | | rabeq 3408 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((0...𝑛)
↑m 𝑠) =
{∅} → {𝑐 ∈
((0...𝑛) ↑m
𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) |
129 | 127, 128 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 = ∅ → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) |
130 | | sumeq1 15328 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 = ∅ → Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = Σ𝑡 ∈ ∅ (𝑐‘𝑡)) |
131 | 130 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 = ∅ → (Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛 ↔ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑛)) |
132 | 131 | rabbidv 3404 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 = ∅ → {𝑐 ∈ {∅} ∣
Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑛}) |
133 | 129, 132 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 = ∅ → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑛}) |
134 | 133 | mpteq2dv 5172 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 = ∅ → (𝑛 ∈ ℕ0
↦ {𝑐 ∈
((0...𝑛) ↑m
𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ {∅} ∣
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 𝑛})) |
135 | | 0elpw 5273 |
. . . . . . . . . . . . . . . . . 18
⊢ ∅
∈ 𝒫 𝑇 |
136 | 135 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∅ ∈ 𝒫
𝑇) |
137 | | nn0ex 12169 |
. . . . . . . . . . . . . . . . . . 19
⊢
ℕ0 ∈ V |
138 | 137 | mptex 7081 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ0
↦ {𝑐 ∈ {∅}
∣ Σ𝑡 ∈
∅ (𝑐‘𝑡) = 𝑛}) ∈ V |
139 | 138 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ {∅} ∣
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 𝑛}) ∈ V) |
140 | 105, 134,
136, 139 | fvmptd3 6880 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐷‘∅) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ {∅} ∣
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 𝑛})) |
141 | | eqeq2 2750 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 0 → (Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑛 ↔ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 0)) |
142 | 141 | rabbidv 3404 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 0 → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 0}) |
143 | 142 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 = 0) → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 0}) |
144 | | 0nn0 12178 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
ℕ0 |
145 | 144 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 ∈
ℕ0) |
146 | | p0ex 5302 |
. . . . . . . . . . . . . . . . . 18
⊢ {∅}
∈ V |
147 | 146 | rabex 5251 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑐 ∈ {∅} ∣
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 0} ∈ V |
148 | 147 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 0} ∈ V) |
149 | 140, 143,
145, 148 | fvmptd 6864 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐷‘∅)‘0) = {𝑐 ∈ {∅} ∣
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 0}) |
150 | 149 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 = 0) → ((𝐷‘∅)‘0) = {𝑐 ∈ {∅} ∣
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 0}) |
151 | | snidg 4592 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (∅
∈ V → ∅ ∈ {∅}) |
152 | 116, 151 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ∅
∈ {∅} |
153 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 0 =
0 |
154 | 152, 153 | pm3.2i 470 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∅
∈ {∅} ∧ 0 = 0) |
155 | | sum0 15361 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Σ𝑡 ∈
∅ (𝑐‘𝑡) = 0 |
156 | 155 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 = ∅ → Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 0) |
157 | 156 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 = ∅ → (Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 0 ↔ 0 = 0)) |
158 | 157 | elrab 3617 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∅
∈ {𝑐 ∈ {∅}
∣ Σ𝑡 ∈
∅ (𝑐‘𝑡) = 0} ↔ (∅ ∈
{∅} ∧ 0 = 0)) |
159 | 154, 158 | mpbir 230 |
. . . . . . . . . . . . . . . . . 18
⊢ ∅
∈ {𝑐 ∈ {∅}
∣ Σ𝑡 ∈
∅ (𝑐‘𝑡) = 0} |
160 | 159 | n0ii 4267 |
. . . . . . . . . . . . . . . . 17
⊢ ¬
{𝑐 ∈ {∅} ∣
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 0} = ∅ |
161 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑐 ∈ {∅} ∣
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 0} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 0} |
162 | | rabrsn 4657 |
. . . . . . . . . . . . . . . . . 18
⊢ ({𝑐 ∈ {∅} ∣
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 0} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 0} → ({𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 0} = ∅ ∨ {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 0} = {∅})) |
163 | 161, 162 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ ({𝑐 ∈ {∅} ∣
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 0} = ∅ ∨ {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 0} = {∅}) |
164 | 160, 163 | mtpor 1774 |
. . . . . . . . . . . . . . . 16
⊢ {𝑐 ∈ {∅} ∣
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 0} = {∅} |
165 | 164 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 = 0) → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 0} = {∅}) |
166 | | iftrue 4462 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 0 → if(𝑘 = 0, {∅}, ∅) =
{∅}) |
167 | 166 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 = 0) → if(𝑘 = 0, {∅}, ∅) =
{∅}) |
168 | 165, 167 | eqtr4d 2781 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 = 0) → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 0} = if(𝑘 = 0, {∅}, ∅)) |
169 | 104, 150,
168 | 3eqtrd 2782 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 = 0) → ((𝐷‘∅)‘𝑘) = if(𝑘 = 0, {∅}, ∅)) |
170 | 169, 167 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 = 0) → ((𝐷‘∅)‘𝑘) = {∅}) |
171 | 170 | sumeq1d 15341 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 = 0) → Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ {∅} (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
172 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 0 → (!‘𝑘) =
(!‘0)) |
173 | | fac0 13918 |
. . . . . . . . . . . . . . . . . . 19
⊢
(!‘0) = 1 |
174 | 173 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 0 → (!‘0) =
1) |
175 | 172, 174 | eqtrd 2778 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 0 → (!‘𝑘) = 1) |
176 | 175 | oveq1d 7270 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 0 → ((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) = (1 / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡)))) |
177 | | prod0 15581 |
. . . . . . . . . . . . . . . . . 18
⊢
∏𝑡 ∈
∅ (!‘(𝑐‘𝑡)) = 1 |
178 | 177 | oveq2i 7266 |
. . . . . . . . . . . . . . . . 17
⊢ (1 /
∏𝑡 ∈ ∅
(!‘(𝑐‘𝑡))) = (1 / 1) |
179 | | 1div1e1 11595 |
. . . . . . . . . . . . . . . . 17
⊢ (1 / 1) =
1 |
180 | 178, 179 | eqtri 2766 |
. . . . . . . . . . . . . . . 16
⊢ (1 /
∏𝑡 ∈ ∅
(!‘(𝑐‘𝑡))) = 1 |
181 | 176, 180 | eqtrdi 2795 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 0 → ((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) = 1) |
182 | | prod0 15581 |
. . . . . . . . . . . . . . . 16
⊢
∏𝑡 ∈
∅ (((𝑆
D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) = 1 |
183 | 182 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 0 → ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) = 1) |
184 | 181, 183 | oveq12d 7273 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 0 → (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = (1 · 1)) |
185 | 184 | ad2antlr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 = 0) ∧ 𝑐 ∈ {∅}) → (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = (1 · 1)) |
186 | | 1t1e1 12065 |
. . . . . . . . . . . . . 14
⊢ (1
· 1) = 1 |
187 | 186 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 = 0) ∧ 𝑐 ∈ {∅}) → (1 · 1) =
1) |
188 | 185, 187 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 = 0) ∧ 𝑐 ∈ {∅}) → (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = 1) |
189 | 188 | sumeq2dv 15343 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 = 0) → Σ𝑐 ∈ {∅} (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ {∅}1) |
190 | | ax-1cn 10860 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℂ |
191 | | eqidd 2739 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = ∅ → 1 =
1) |
192 | 191 | sumsn 15386 |
. . . . . . . . . . . . 13
⊢ ((∅
∈ V ∧ 1 ∈ ℂ) → Σ𝑐 ∈ {∅}1 = 1) |
193 | 116, 190,
192 | mp2an 688 |
. . . . . . . . . . . 12
⊢
Σ𝑐 ∈
{∅}1 = 1 |
194 | 193 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 = 0) → Σ𝑐 ∈ {∅}1 = 1) |
195 | 171, 189,
194 | 3eqtrd 2782 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 = 0) → Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = 1) |
196 | 195 | mpteq2dv 5172 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 = 0) → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) = (𝑥 ∈ 𝑋 ↦ 1)) |
197 | 196 | eqcomd 2744 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 = 0) → (𝑥 ∈ 𝑋 ↦ 1) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
198 | 75, 102, 197 | 3eqtrd 2782 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 = 0) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
199 | 198 | a1d 25 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 = 0) → (𝑘 ∈ (0...𝑁) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) |
200 | 71 | fveq1i 6757 |
. . . . . . . . 9
⊢ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 1))‘𝑘) |
201 | 200 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 1))‘𝑘)) |
202 | 76 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝑘 = 0) → 𝑆 ∈ {ℝ, ℂ}) |
203 | 202 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑆 ∈ {ℝ, ℂ}) |
204 | 89 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝑘 = 0) → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) |
205 | 204 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) |
206 | 190 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → 1 ∈ ℂ) |
207 | | elfznn0 13278 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) |
208 | 207 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((¬
𝑘 = 0 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
209 | | neqne 2950 |
. . . . . . . . . . . . 13
⊢ (¬
𝑘 = 0 → 𝑘 ≠ 0) |
210 | 209 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((¬
𝑘 = 0 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ≠ 0) |
211 | 208, 210 | jca 511 |
. . . . . . . . . . 11
⊢ ((¬
𝑘 = 0 ∧ 𝑘 ∈ (0...𝑁)) → (𝑘 ∈ ℕ0 ∧ 𝑘 ≠ 0)) |
212 | | elnnne0 12177 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℕ0
∧ 𝑘 ≠
0)) |
213 | 211, 212 | sylibr 233 |
. . . . . . . . . 10
⊢ ((¬
𝑘 = 0 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ) |
214 | 213 | adantll 710 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ) |
215 | 203, 205,
206, 214 | dvnmptconst 43372 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 1))‘𝑘) = (𝑥 ∈ 𝑋 ↦ 0)) |
216 | 140 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → (𝐷‘∅) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ {∅} ∣
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 𝑛})) |
217 | | eqeq2 2750 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑘 → (Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑛 ↔ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑘)) |
218 | 217 | rabbidv 3404 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑘 → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑘}) |
219 | 218 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((¬
𝑘 = 0 ∧ 𝑛 = 𝑘) → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑘}) |
220 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(Σ𝑡 ∈
∅ (𝑐‘𝑡) = 𝑘 → 𝑘 = 𝑘) |
221 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(Σ𝑡 ∈
∅ (𝑐‘𝑡) = 𝑘 → Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑘) |
222 | 221 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(Σ𝑡 ∈
∅ (𝑐‘𝑡) = 𝑘 → 𝑘 = Σ𝑡 ∈ ∅ (𝑐‘𝑡)) |
223 | 155 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(Σ𝑡 ∈
∅ (𝑐‘𝑡) = 𝑘 → Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 0) |
224 | 220, 222,
223 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(Σ𝑡 ∈
∅ (𝑐‘𝑡) = 𝑘 → 𝑘 = 0) |
225 | 224 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑐 ∈ {∅} ∧
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 𝑘) → 𝑘 = 0) |
226 | 225 | adantll 710 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((¬
𝑘 = 0 ∧ 𝑐 ∈ {∅}) ∧
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 𝑘) → 𝑘 = 0) |
227 | | simpll 763 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((¬
𝑘 = 0 ∧ 𝑐 ∈ {∅}) ∧
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 𝑘) → ¬ 𝑘 = 0) |
228 | 226, 227 | pm2.65da 813 |
. . . . . . . . . . . . . . . . . 18
⊢ ((¬
𝑘 = 0 ∧ 𝑐 ∈ {∅}) → ¬
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 𝑘) |
229 | 228 | ralrimiva 3107 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝑘 = 0 → ∀𝑐 ∈ {∅} ¬
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 𝑘) |
230 | | rabeq0 4315 |
. . . . . . . . . . . . . . . . 17
⊢ ({𝑐 ∈ {∅} ∣
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 𝑘} = ∅ ↔ ∀𝑐 ∈ {∅} ¬ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑘) |
231 | 229, 230 | sylibr 233 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑘 = 0 → {𝑐 ∈ {∅} ∣
Σ𝑡 ∈ ∅
(𝑐‘𝑡) = 𝑘} = ∅) |
232 | 231 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((¬
𝑘 = 0 ∧ 𝑛 = 𝑘) → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑘} = ∅) |
233 | 219, 232 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ ((¬
𝑘 = 0 ∧ 𝑛 = 𝑘) → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑛} = ∅) |
234 | 233 | adantll 710 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑛 = 𝑘) → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑛} = ∅) |
235 | 234 | adantlr 711 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑛 = 𝑘) → {𝑐 ∈ {∅} ∣ Σ𝑡 ∈ ∅ (𝑐‘𝑡) = 𝑛} = ∅) |
236 | 207 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
237 | 116 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → ∅ ∈ V) |
238 | 216, 235,
236, 237 | fvmptd 6864 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐷‘∅)‘𝑘) = ∅) |
239 | 238 | sumeq1d 15341 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ∅ (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
240 | | sum0 15361 |
. . . . . . . . . . 11
⊢
Σ𝑐 ∈
∅ (((!‘𝑘) /
∏𝑡 ∈ ∅
(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = 0 |
241 | 240 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → Σ𝑐 ∈ ∅ (((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = 0) |
242 | 239, 241 | eqtr2d 2779 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → 0 = Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
243 | 242 | mpteq2dv 5172 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑥 ∈ 𝑋 ↦ 0) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
244 | 201, 215,
243 | 3eqtrd 2782 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝑘 = 0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
245 | 244 | ex 412 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑘 = 0) → (𝑘 ∈ (0...𝑁) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) |
246 | 199, 245 | pm2.61dan 809 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ (0...𝑁) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) |
247 | 246 | ralrimiv 3106 |
. . . 4
⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ ∅ ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘∅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ ∅ (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ ∅ (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
248 | | simpll 763 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) ∧ 𝑗 ∈ (0...𝑁)) → (𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟)))) |
249 | | fveq2 6756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → ((𝐻‘𝑡)‘𝑥) = ((𝐻‘𝑡)‘𝑦)) |
250 | 249 | prodeq2ad 43023 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥) = ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑦)) |
251 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝑢 → (𝐻‘𝑡) = (𝐻‘𝑢)) |
252 | 251 | fveq1d 6758 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 𝑢 → ((𝐻‘𝑡)‘𝑦) = ((𝐻‘𝑢)‘𝑦)) |
253 | 252 | cbvprodv 15554 |
. . . . . . . . . . . . . . . . 17
⊢
∏𝑡 ∈
𝑟 ((𝐻‘𝑡)‘𝑦) = ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦) |
254 | 253 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑦) = ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)) |
255 | 250, 254 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥) = ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)) |
256 | 255 | cbvmptv 5183 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)) = (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)) |
257 | 256 | oveq2i 7266 |
. . . . . . . . . . . . 13
⊢ (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥))) = (𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦))) |
258 | 257 | fveq1i 6757 |
. . . . . . . . . . . 12
⊢ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) |
259 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑢 → (𝑐‘𝑡) = (𝑐‘𝑢)) |
260 | 259 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝑢 → (!‘(𝑐‘𝑡)) = (!‘(𝑐‘𝑢))) |
261 | 260 | cbvprodv 15554 |
. . . . . . . . . . . . . . . . . 18
⊢
∏𝑡 ∈
𝑟 (!‘(𝑐‘𝑡)) = ∏𝑢 ∈ 𝑟 (!‘(𝑐‘𝑢)) |
262 | 261 | oveq2i 7266 |
. . . . . . . . . . . . . . . . 17
⊢
((!‘𝑘) /
∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) = ((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑐‘𝑢))) |
263 | 262 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → ((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) = ((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑐‘𝑢)))) |
264 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) = (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑦)) |
265 | 264 | prodeq2ad 43023 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) = ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑦)) |
266 | 251 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 = 𝑢 → (𝑆 D𝑛 (𝐻‘𝑡)) = (𝑆 D𝑛 (𝐻‘𝑢))) |
267 | 266, 259 | fveq12d 6763 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑢 → ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡)) = ((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑐‘𝑢))) |
268 | 267 | fveq1d 6758 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝑢 → (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑦) = (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑐‘𝑢))‘𝑦)) |
269 | 268 | cbvprodv 15554 |
. . . . . . . . . . . . . . . . . 18
⊢
∏𝑡 ∈
𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑦) = ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑐‘𝑢))‘𝑦) |
270 | 269 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑦) = ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑐‘𝑢))‘𝑦)) |
271 | 265, 270 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) = ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑐‘𝑢))‘𝑦)) |
272 | 263, 271 | oveq12d 7273 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = (((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑐‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑐‘𝑢))‘𝑦))) |
273 | 272 | sumeq2sdv 15344 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑐‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑐‘𝑢))‘𝑦))) |
274 | | fveq1 6755 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 = 𝑑 → (𝑐‘𝑢) = (𝑑‘𝑢)) |
275 | 274 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 = 𝑑 → (!‘(𝑐‘𝑢)) = (!‘(𝑑‘𝑢))) |
276 | 275 | prodeq2ad 43023 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 𝑑 → ∏𝑢 ∈ 𝑟 (!‘(𝑐‘𝑢)) = ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) |
277 | 276 | oveq2d 7271 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 𝑑 → ((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑐‘𝑢))) = ((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢)))) |
278 | 274 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 = 𝑑 → ((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑐‘𝑢)) = ((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))) |
279 | 278 | fveq1d 6758 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 𝑑 → (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑐‘𝑢))‘𝑦) = (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)) |
280 | 279 | prodeq2ad 43023 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 𝑑 → ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑐‘𝑢))‘𝑦) = ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)) |
281 | 277, 280 | oveq12d 7273 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = 𝑑 → (((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑐‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑐‘𝑢))‘𝑦)) = (((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦))) |
282 | 281 | cbvsumv 15336 |
. . . . . . . . . . . . . . 15
⊢
Σ𝑐 ∈
((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑐‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑐‘𝑢))‘𝑦)) = Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)) |
283 | 282 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑐‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑐‘𝑢))‘𝑦)) = Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦))) |
284 | 273, 283 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦))) |
285 | 284 | cbvmptv 5183 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦))) |
286 | 258, 285 | eqeq12i 2756 |
. . . . . . . . . . 11
⊢ (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ↔ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) |
287 | 286 | ralbii 3090 |
. . . . . . . . . 10
⊢
(∀𝑘 ∈
(0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ↔ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) |
288 | 287 | biimpi 215 |
. . . . . . . . 9
⊢
(∀𝑘 ∈
(0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) → ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) |
289 | 288 | ad2antlr 723 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) ∧ 𝑗 ∈ (0...𝑁)) → ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) |
290 | | simpr 484 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑗 ∈ (0...𝑁)) |
291 | 76 | ad3antrrr 726 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑆 ∈ {ℝ, ℂ}) |
292 | 89 | ad3antrrr 726 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) |
293 | | dvnprodlem3.t |
. . . . . . . . . 10
⊢ (𝜑 → 𝑇 ∈ Fin) |
294 | 293 | ad3antrrr 726 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑇 ∈ Fin) |
295 | | simp-4l 779 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) → 𝜑) |
296 | | simpr 484 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ 𝑇) |
297 | | dvnprodlem3.h |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐻‘𝑡):𝑋⟶ℂ) |
298 | 295, 296,
297 | syl2anc 583 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) → (𝐻‘𝑡):𝑋⟶ℂ) |
299 | | dvnprodlem3.n |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
300 | 299 | ad3antrrr 726 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑁 ∈
ℕ0) |
301 | | simplll 771 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝜑) |
302 | 301 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇 ∧ ℎ ∈ (0...𝑁)) → 𝜑) |
303 | | simp2 1135 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇 ∧ ℎ ∈ (0...𝑁)) → 𝑡 ∈ 𝑇) |
304 | | simp3 1136 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇 ∧ ℎ ∈ (0...𝑁)) → ℎ ∈ (0...𝑁)) |
305 | | eleq1w 2821 |
. . . . . . . . . . . . 13
⊢ (𝑗 = ℎ → (𝑗 ∈ (0...𝑁) ↔ ℎ ∈ (0...𝑁))) |
306 | 305 | 3anbi3d 1440 |
. . . . . . . . . . . 12
⊢ (𝑗 = ℎ → ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) ↔ (𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ℎ ∈ (0...𝑁)))) |
307 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑗 = ℎ → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗) = ((𝑆 D𝑛 (𝐻‘𝑡))‘ℎ)) |
308 | 307 | feq1d 6569 |
. . . . . . . . . . . 12
⊢ (𝑗 = ℎ → (((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻‘𝑡))‘ℎ):𝑋⟶ℂ)) |
309 | 306, 308 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑗 = ℎ → (((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ℎ ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘ℎ):𝑋⟶ℂ))) |
310 | | dvnprodlem3.dvnh |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ) |
311 | 309, 310 | chvarvv 2003 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ℎ ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘ℎ):𝑋⟶ℂ) |
312 | 302, 303,
304, 311 | syl3anc 1369 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇 ∧ ℎ ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘ℎ):𝑋⟶ℂ) |
313 | | simprl 767 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) → 𝑟 ⊆ 𝑇) |
314 | 313 | ad2antrr 722 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑟 ⊆ 𝑇) |
315 | | simprr 769 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) → 𝑧 ∈ (𝑇 ∖ 𝑟)) |
316 | 315 | ad2antrr 722 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑧 ∈ (𝑇 ∖ 𝑟)) |
317 | 257 | eqcomi 2747 |
. . . . . . . . . . . . . . 15
⊢ (𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦))) = (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥))) |
318 | 317 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑙 → (𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦))) = (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))) |
319 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑙 → 𝑘 = 𝑙) |
320 | 318, 319 | fveq12d 6763 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑙 → ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑙)) |
321 | 285 | eqcomi 2747 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦))) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
322 | 321 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑙 → (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦))) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
323 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑙 → (!‘𝑘) = (!‘𝑙)) |
324 | 323 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑙 → ((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) = ((!‘𝑙) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡)))) |
325 | 324 | oveq1d 7270 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑙 → (((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = (((!‘𝑙) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
326 | 325 | sumeq2sdv 15344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑙 → Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑙) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
327 | | fveq2 6756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑙 → ((𝐷‘𝑟)‘𝑘) = ((𝐷‘𝑟)‘𝑙)) |
328 | 327 | sumeq1d 15341 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑙 → Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑙) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑙)(((!‘𝑙) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
329 | 326, 328 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑙 → Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑙)(((!‘𝑙) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
330 | 329 | mpteq2dv 5172 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑙 → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑙)(((!‘𝑙) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
331 | 322, 330 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑙 → (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦))) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑙)(((!‘𝑙) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
332 | 320, 331 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑙 → (((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦))) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑙) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑙)(((!‘𝑙) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) |
333 | 332 | cbvralvw 3372 |
. . . . . . . . . . 11
⊢
(∀𝑘 ∈
(0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦))) ↔ ∀𝑙 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑙) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑙)(((!‘𝑙) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
334 | 333 | biimpi 215 |
. . . . . . . . . 10
⊢
(∀𝑘 ∈
(0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦))) → ∀𝑙 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑙) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑙)(((!‘𝑙) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
335 | 334 | ad2antlr 723 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → ∀𝑙 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑙) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑙)(((!‘𝑙) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
336 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑗 ∈ (0...𝑁)) |
337 | | fveq1 6755 |
. . . . . . . . . . . 12
⊢ (𝑑 = 𝑐 → (𝑑‘𝑧) = (𝑐‘𝑧)) |
338 | 337 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (𝑑 = 𝑐 → (𝑗 − (𝑑‘𝑧)) = (𝑗 − (𝑐‘𝑧))) |
339 | | reseq1 5874 |
. . . . . . . . . . 11
⊢ (𝑑 = 𝑐 → (𝑑 ↾ 𝑟) = (𝑐 ↾ 𝑟)) |
340 | 338, 339 | opeq12d 4809 |
. . . . . . . . . 10
⊢ (𝑑 = 𝑐 → 〈(𝑗 − (𝑑‘𝑧)), (𝑑 ↾ 𝑟)〉 = 〈(𝑗 − (𝑐‘𝑧)), (𝑐 ↾ 𝑟)〉) |
341 | 340 | cbvmptv 5183 |
. . . . . . . . 9
⊢ (𝑑 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗) ↦ 〈(𝑗 − (𝑑‘𝑧)), (𝑑 ↾ 𝑟)〉) = (𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗) ↦ 〈(𝑗 − (𝑐‘𝑧)), (𝑐 ↾ 𝑟)〉) |
342 | 291, 292,
294, 298, 300, 312, 105, 314, 316, 335, 336, 341 | dvnprodlem2 43378 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑢 ∈ 𝑟 ((𝐻‘𝑢)‘𝑦)))‘𝑘) = (𝑦 ∈ 𝑋 ↦ Σ𝑑 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑢 ∈ 𝑟 (!‘(𝑑‘𝑢))) · ∏𝑢 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑢))‘(𝑑‘𝑢))‘𝑦)))) ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
343 | 248, 289,
290, 342 | syl21anc 834 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
344 | 343 | ralrimiva 3107 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) → ∀𝑗 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
345 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥)))‘𝑗) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥)))‘𝑘)) |
346 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑘 → (!‘𝑗) = (!‘𝑘)) |
347 | 346 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑘 → ((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) = ((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡)))) |
348 | 347 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑘 → (((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = (((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
349 | 348 | sumeq2sdv 15344 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑘 → Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
350 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑘 → ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗) = ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)) |
351 | 350 | sumeq1d 15341 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑘 → Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
352 | 349, 351 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
353 | 352 | mpteq2dv 5172 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
354 | 345, 353 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) |
355 | 354 | cbvralvw 3372 |
. . . . . 6
⊢
(∀𝑗 ∈
(0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥)))‘𝑗) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑗)(((!‘𝑗) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ↔ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
356 | 344, 355 | sylib 217 |
. . . . 5
⊢ (((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) ∧ ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) → ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
357 | 356 | ex 412 |
. . . 4
⊢ ((𝜑 ∧ (𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ (𝑇 ∖ 𝑟))) → (∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑟 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑟)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑟 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑟 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) → ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑟 ∪ {𝑧})((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘(𝑟 ∪ {𝑧}))‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ (𝑟 ∪ {𝑧})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑟 ∪ {𝑧})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) |
358 | 16, 32, 48, 68, 247, 357, 293 | findcard2d 8911 |
. . 3
⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 𝐹)‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
359 | | nn0uz 12549 |
. . . . 5
⊢
ℕ0 = (ℤ≥‘0) |
360 | 299, 359 | eleqtrdi 2849 |
. . . 4
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘0)) |
361 | | eluzfz2 13193 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘0) → 𝑁 ∈ (0...𝑁)) |
362 | 360, 361 | syl 17 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (0...𝑁)) |
363 | | fveq2 6756 |
. . . . 5
⊢ (𝑘 = 𝑁 → ((𝑆 D𝑛 𝐹)‘𝑘) = ((𝑆 D𝑛 𝐹)‘𝑁)) |
364 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑘 = 𝑁 → ((𝐷‘𝑇)‘𝑘) = ((𝐷‘𝑇)‘𝑁)) |
365 | 364 | sumeq1d 15341 |
. . . . . . 7
⊢ (𝑘 = 𝑁 → Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑁)(((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
366 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑁 → (!‘𝑘) = (!‘𝑁)) |
367 | 366 | oveq1d 7270 |
. . . . . . . . 9
⊢ (𝑘 = 𝑁 → ((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) = ((!‘𝑁) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡)))) |
368 | 367 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝑘 = 𝑁 → (((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = (((!‘𝑁) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
369 | 368 | sumeq2sdv 15344 |
. . . . . . 7
⊢ (𝑘 = 𝑁 → Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑁)(((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑁)(((!‘𝑁) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
370 | 365, 369 | eqtrd 2778 |
. . . . . 6
⊢ (𝑘 = 𝑁 → Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑁)(((!‘𝑁) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
371 | 370 | mpteq2dv 5172 |
. . . . 5
⊢ (𝑘 = 𝑁 → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑁)(((!‘𝑁) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
372 | 363, 371 | eqeq12d 2754 |
. . . 4
⊢ (𝑘 = 𝑁 → (((𝑆 D𝑛 𝐹)‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ↔ ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑁)(((!‘𝑁) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) |
373 | 372 | rspccva 3551 |
. . 3
⊢
((∀𝑘 ∈
(0...𝑁)((𝑆 D𝑛 𝐹)‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ∧ 𝑁 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑁)(((!‘𝑁) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
374 | 358, 362,
373 | syl2anc 583 |
. 2
⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑁)(((!‘𝑁) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
375 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑇 → ((0...𝑛) ↑m 𝑠) = ((0...𝑛) ↑m 𝑇)) |
376 | | rabeq 3408 |
. . . . . . . . . 10
⊢
(((0...𝑛)
↑m 𝑠) =
((0...𝑛) ↑m
𝑇) → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) |
377 | 375, 376 | syl 17 |
. . . . . . . . 9
⊢ (𝑠 = 𝑇 → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) |
378 | | sumeq1 15328 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑇 → Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = Σ𝑡 ∈ 𝑇 (𝑐‘𝑡)) |
379 | 378 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑇 → (Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛 ↔ Σ𝑡 ∈ 𝑇 (𝑐‘𝑡) = 𝑛)) |
380 | 379 | rabbidv 3404 |
. . . . . . . . 9
⊢ (𝑠 = 𝑇 → {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡 ∈ 𝑇 (𝑐‘𝑡) = 𝑛}) |
381 | 377, 380 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝑠 = 𝑇 → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡 ∈ 𝑇 (𝑐‘𝑡) = 𝑛}) |
382 | 381 | mpteq2dv 5172 |
. . . . . . 7
⊢ (𝑠 = 𝑇 → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡 ∈ 𝑇 (𝑐‘𝑡) = 𝑛})) |
383 | | pwidg 4552 |
. . . . . . . 8
⊢ (𝑇 ∈ Fin → 𝑇 ∈ 𝒫 𝑇) |
384 | 293, 383 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑇 ∈ 𝒫 𝑇) |
385 | 137 | mptex 7081 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
↦ {𝑐 ∈
((0...𝑛) ↑m
𝑇) ∣ Σ𝑡 ∈ 𝑇 (𝑐‘𝑡) = 𝑛}) ∈ V |
386 | 385 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡 ∈ 𝑇 (𝑐‘𝑡) = 𝑛}) ∈ V) |
387 | 105, 382,
384, 386 | fvmptd3 6880 |
. . . . . 6
⊢ (𝜑 → (𝐷‘𝑇) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡 ∈ 𝑇 (𝑐‘𝑡) = 𝑛})) |
388 | | dvnprodlem3.c |
. . . . . . 7
⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡 ∈ 𝑇 (𝑐‘𝑡) = 𝑛}) |
389 | 388 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡 ∈ 𝑇 (𝑐‘𝑡) = 𝑛})) |
390 | 387, 389 | eqtr4d 2781 |
. . . . 5
⊢ (𝜑 → (𝐷‘𝑇) = 𝐶) |
391 | 390 | fveq1d 6758 |
. . . 4
⊢ (𝜑 → ((𝐷‘𝑇)‘𝑁) = (𝐶‘𝑁)) |
392 | 391 | sumeq1d 15341 |
. . 3
⊢ (𝜑 → Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑁)(((!‘𝑁) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
393 | 392 | mpteq2dv 5172 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐷‘𝑇)‘𝑁)(((!‘𝑁) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
394 | 374, 393 | eqtrd 2778 |
1
⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |