Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prv0 Structured version   Visualization version   GIF version

Theorem prv0 35417
Description: Every wff encoded as 𝑈 is true in an "empty model" (𝑀 = ∅). Since is defined in terms of the interpretations making the given formula true, it is not defined on the "empty model", since there are no interpretations. In particular, the empty set on the LHS of should not be interpreted as the empty model, because 𝑥𝑥 = 𝑥 is not satisfied on the empty model. (Contributed by AV, 19-Nov-2023.)
Assertion
Ref Expression
prv0 (𝑈 ∈ (Fmla‘ω) → ∅⊧𝑈)

Proof of Theorem prv0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sate0 35402 . . 3 (𝑈 ∈ (Fmla‘ω) → (∅ Sat 𝑈) = (((∅ Sat ∅)‘ω)‘𝑈))
2 peano1 7865 . . . . . . . . . 10 ∅ ∈ ω
32n0ii 4306 . . . . . . . . 9 ¬ ω = ∅
43intnan 486 . . . . . . . 8 ¬ (𝑥 = ∅ ∧ ω = ∅)
54a1i 11 . . . . . . 7 (𝑈 ∈ (Fmla‘ω) → ¬ (𝑥 = ∅ ∧ ω = ∅))
6 f00 6742 . . . . . . 7 (𝑥:ω⟶∅ ↔ (𝑥 = ∅ ∧ ω = ∅))
75, 6sylnibr 329 . . . . . 6 (𝑈 ∈ (Fmla‘ω) → ¬ 𝑥:ω⟶∅)
8 0ex 5262 . . . . . . . 8 ∅ ∈ V
98, 8pm3.2i 470 . . . . . . 7 (∅ ∈ V ∧ ∅ ∈ V)
10 satfvel 35399 . . . . . . 7 (((∅ ∈ V ∧ ∅ ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) → 𝑥:ω⟶∅)
119, 10mp3an1 1450 . . . . . 6 ((𝑈 ∈ (Fmla‘ω) ∧ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) → 𝑥:ω⟶∅)
127, 11mtand 815 . . . . 5 (𝑈 ∈ (Fmla‘ω) → ¬ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈))
1312alrimiv 1927 . . . 4 (𝑈 ∈ (Fmla‘ω) → ∀𝑥 ¬ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈))
14 eq0 4313 . . . 4 ((((∅ Sat ∅)‘ω)‘𝑈) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈))
1513, 14sylibr 234 . . 3 (𝑈 ∈ (Fmla‘ω) → (((∅ Sat ∅)‘ω)‘𝑈) = ∅)
161, 15eqtrd 2764 . 2 (𝑈 ∈ (Fmla‘ω) → (∅ Sat 𝑈) = ∅)
17 prv 35415 . . . 4 ((∅ ∈ V ∧ 𝑈 ∈ (Fmla‘ω)) → (∅⊧𝑈 ↔ (∅ Sat 𝑈) = (∅ ↑m ω)))
188, 17mpan 690 . . 3 (𝑈 ∈ (Fmla‘ω) → (∅⊧𝑈 ↔ (∅ Sat 𝑈) = (∅ ↑m ω)))
192ne0ii 4307 . . . . 5 ω ≠ ∅
20 map0b 8856 . . . . 5 (ω ≠ ∅ → (∅ ↑m ω) = ∅)
2119, 20mp1i 13 . . . 4 (𝑈 ∈ (Fmla‘ω) → (∅ ↑m ω) = ∅)
2221eqeq2d 2740 . . 3 (𝑈 ∈ (Fmla‘ω) → ((∅ Sat 𝑈) = (∅ ↑m ω) ↔ (∅ Sat 𝑈) = ∅))
2318, 22bitrd 279 . 2 (𝑈 ∈ (Fmla‘ω) → (∅⊧𝑈 ↔ (∅ Sat 𝑈) = ∅))
2416, 23mpbird 257 1 (𝑈 ∈ (Fmla‘ω) → ∅⊧𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wne 2925  Vcvv 3447  c0 4296   class class class wbr 5107  wf 6507  cfv 6511  (class class class)co 7387  ωcom 7842  m cmap 8799   Sat csat 35323  Fmlacfmla 35324   Sat csate 35325  cprv 35326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-ac2 10416
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-ac 10069  df-goel 35327  df-gona 35328  df-goal 35329  df-sat 35330  df-sate 35331  df-fmla 35332  df-prv 35333
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator