![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prv0 | Structured version Visualization version GIF version |
Description: Every wff encoded as π is true in an "empty model" (π = β ). Since β§ is defined in terms of the interpretations making the given formula true, it is not defined on the "empty model", since there are no interpretations. In particular, the empty set on the LHS of β§ should not be interpreted as the empty model, because βπ₯π₯ = π₯ is not satisfied on the empty model. (Contributed by AV, 19-Nov-2023.) |
Ref | Expression |
---|---|
prv0 | β’ (π β (FmlaβΟ) β β β§π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sate0 35095 | . . 3 β’ (π β (FmlaβΟ) β (β Satβ π) = (((β Sat β )βΟ)βπ)) | |
2 | peano1 7893 | . . . . . . . . . 10 β’ β β Ο | |
3 | 2 | n0ii 4337 | . . . . . . . . 9 β’ Β¬ Ο = β |
4 | 3 | intnan 485 | . . . . . . . 8 β’ Β¬ (π₯ = β β§ Ο = β ) |
5 | 4 | a1i 11 | . . . . . . 7 β’ (π β (FmlaβΟ) β Β¬ (π₯ = β β§ Ο = β )) |
6 | f00 6777 | . . . . . . 7 β’ (π₯:ΟβΆβ β (π₯ = β β§ Ο = β )) | |
7 | 5, 6 | sylnibr 328 | . . . . . 6 β’ (π β (FmlaβΟ) β Β¬ π₯:ΟβΆβ ) |
8 | 0ex 5307 | . . . . . . . 8 β’ β β V | |
9 | 8, 8 | pm3.2i 469 | . . . . . . 7 β’ (β β V β§ β β V) |
10 | satfvel 35092 | . . . . . . 7 β’ (((β β V β§ β β V) β§ π β (FmlaβΟ) β§ π₯ β (((β Sat β )βΟ)βπ)) β π₯:ΟβΆβ ) | |
11 | 9, 10 | mp3an1 1444 | . . . . . 6 β’ ((π β (FmlaβΟ) β§ π₯ β (((β Sat β )βΟ)βπ)) β π₯:ΟβΆβ ) |
12 | 7, 11 | mtand 814 | . . . . 5 β’ (π β (FmlaβΟ) β Β¬ π₯ β (((β Sat β )βΟ)βπ)) |
13 | 12 | alrimiv 1922 | . . . 4 β’ (π β (FmlaβΟ) β βπ₯ Β¬ π₯ β (((β Sat β )βΟ)βπ)) |
14 | eq0 4344 | . . . 4 β’ ((((β Sat β )βΟ)βπ) = β β βπ₯ Β¬ π₯ β (((β Sat β )βΟ)βπ)) | |
15 | 13, 14 | sylibr 233 | . . 3 β’ (π β (FmlaβΟ) β (((β Sat β )βΟ)βπ) = β ) |
16 | 1, 15 | eqtrd 2765 | . 2 β’ (π β (FmlaβΟ) β (β Satβ π) = β ) |
17 | prv 35108 | . . . 4 β’ ((β β V β§ π β (FmlaβΟ)) β (β β§π β (β Satβ π) = (β βm Ο))) | |
18 | 8, 17 | mpan 688 | . . 3 β’ (π β (FmlaβΟ) β (β β§π β (β Satβ π) = (β βm Ο))) |
19 | 2 | ne0ii 4338 | . . . . 5 β’ Ο β β |
20 | map0b 8900 | . . . . 5 β’ (Ο β β β (β βm Ο) = β ) | |
21 | 19, 20 | mp1i 13 | . . . 4 β’ (π β (FmlaβΟ) β (β βm Ο) = β ) |
22 | 21 | eqeq2d 2736 | . . 3 β’ (π β (FmlaβΟ) β ((β Satβ π) = (β βm Ο) β (β Satβ π) = β )) |
23 | 18, 22 | bitrd 278 | . 2 β’ (π β (FmlaβΟ) β (β β§π β (β Satβ π) = β )) |
24 | 16, 23 | mpbird 256 | 1 β’ (π β (FmlaβΟ) β β β§π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 394 βwal 1531 = wceq 1533 β wcel 2098 β wne 2930 Vcvv 3463 β c0 4323 class class class wbr 5148 βΆwf 6543 βcfv 6547 (class class class)co 7417 Οcom 7869 βm cmap 8843 Sat csat 35016 Fmlacfmla 35017 Satβ csate 35018 β§cprv 35019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-inf2 9664 ax-ac2 10486 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-isom 6556 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8723 df-map 8845 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-card 9962 df-ac 10139 df-goel 35020 df-gona 35021 df-goal 35022 df-sat 35023 df-sate 35024 df-fmla 35025 df-prv 35026 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |