![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prv0 | Structured version Visualization version GIF version |
Description: Every wff encoded as π is true in an "empty model" (π = β ). Since β§ is defined in terms of the interpretations making the given formula true, it is not defined on the "empty model", since there are no interpretations. In particular, the empty set on the LHS of β§ should not be interpreted as the empty model, because βπ₯π₯ = π₯ is not satisfied on the empty model. (Contributed by AV, 19-Nov-2023.) |
Ref | Expression |
---|---|
prv0 | β’ (π β (FmlaβΟ) β β β§π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sate0 34961 | . . 3 β’ (π β (FmlaβΟ) β (β Satβ π) = (((β Sat β )βΟ)βπ)) | |
2 | peano1 7888 | . . . . . . . . . 10 β’ β β Ο | |
3 | 2 | n0ii 4332 | . . . . . . . . 9 β’ Β¬ Ο = β |
4 | 3 | intnan 486 | . . . . . . . 8 β’ Β¬ (π₯ = β β§ Ο = β ) |
5 | 4 | a1i 11 | . . . . . . 7 β’ (π β (FmlaβΟ) β Β¬ (π₯ = β β§ Ο = β )) |
6 | f00 6773 | . . . . . . 7 β’ (π₯:ΟβΆβ β (π₯ = β β§ Ο = β )) | |
7 | 5, 6 | sylnibr 329 | . . . . . 6 β’ (π β (FmlaβΟ) β Β¬ π₯:ΟβΆβ ) |
8 | 0ex 5301 | . . . . . . . 8 β’ β β V | |
9 | 8, 8 | pm3.2i 470 | . . . . . . 7 β’ (β β V β§ β β V) |
10 | satfvel 34958 | . . . . . . 7 β’ (((β β V β§ β β V) β§ π β (FmlaβΟ) β§ π₯ β (((β Sat β )βΟ)βπ)) β π₯:ΟβΆβ ) | |
11 | 9, 10 | mp3an1 1445 | . . . . . 6 β’ ((π β (FmlaβΟ) β§ π₯ β (((β Sat β )βΟ)βπ)) β π₯:ΟβΆβ ) |
12 | 7, 11 | mtand 815 | . . . . 5 β’ (π β (FmlaβΟ) β Β¬ π₯ β (((β Sat β )βΟ)βπ)) |
13 | 12 | alrimiv 1923 | . . . 4 β’ (π β (FmlaβΟ) β βπ₯ Β¬ π₯ β (((β Sat β )βΟ)βπ)) |
14 | eq0 4339 | . . . 4 β’ ((((β Sat β )βΟ)βπ) = β β βπ₯ Β¬ π₯ β (((β Sat β )βΟ)βπ)) | |
15 | 13, 14 | sylibr 233 | . . 3 β’ (π β (FmlaβΟ) β (((β Sat β )βΟ)βπ) = β ) |
16 | 1, 15 | eqtrd 2767 | . 2 β’ (π β (FmlaβΟ) β (β Satβ π) = β ) |
17 | prv 34974 | . . . 4 β’ ((β β V β§ π β (FmlaβΟ)) β (β β§π β (β Satβ π) = (β βm Ο))) | |
18 | 8, 17 | mpan 689 | . . 3 β’ (π β (FmlaβΟ) β (β β§π β (β Satβ π) = (β βm Ο))) |
19 | 2 | ne0ii 4333 | . . . . 5 β’ Ο β β |
20 | map0b 8893 | . . . . 5 β’ (Ο β β β (β βm Ο) = β ) | |
21 | 19, 20 | mp1i 13 | . . . 4 β’ (π β (FmlaβΟ) β (β βm Ο) = β ) |
22 | 21 | eqeq2d 2738 | . . 3 β’ (π β (FmlaβΟ) β ((β Satβ π) = (β βm Ο) β (β Satβ π) = β )) |
23 | 18, 22 | bitrd 279 | . 2 β’ (π β (FmlaβΟ) β (β β§π β (β Satβ π) = β )) |
24 | 16, 23 | mpbird 257 | 1 β’ (π β (FmlaβΟ) β β β§π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 395 βwal 1532 = wceq 1534 β wcel 2099 β wne 2935 Vcvv 3469 β c0 4318 class class class wbr 5142 βΆwf 6538 βcfv 6542 (class class class)co 7414 Οcom 7864 βm cmap 8836 Sat csat 34882 Fmlacfmla 34883 Satβ csate 34884 β§cprv 34885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9656 ax-ac2 10478 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-map 8838 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-card 9954 df-ac 10131 df-goel 34886 df-gona 34887 df-goal 34888 df-sat 34889 df-sate 34890 df-fmla 34891 df-prv 34892 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |