Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prv0 | Structured version Visualization version GIF version |
Description: Every wff encoded as 𝑈 is true in an "empty model" (𝑀 = ∅). Since ⊧ is defined in terms of the interpretations making the given formula true, it is not defined on the "empty model", since there are no interpretations. In particular, the empty set on the LHS of ⊧ should not be interpreted as the empty model, because ∃𝑥𝑥 = 𝑥 is not satisfied on the empty model. (Contributed by AV, 19-Nov-2023.) |
Ref | Expression |
---|---|
prv0 | ⊢ (𝑈 ∈ (Fmla‘ω) → ∅⊧𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sate0 32893 | . . 3 ⊢ (𝑈 ∈ (Fmla‘ω) → (∅ Sat∈ 𝑈) = (((∅ Sat ∅)‘ω)‘𝑈)) | |
2 | peano1 7600 | . . . . . . . . . 10 ⊢ ∅ ∈ ω | |
3 | 2 | n0ii 4235 | . . . . . . . . 9 ⊢ ¬ ω = ∅ |
4 | 3 | intnan 490 | . . . . . . . 8 ⊢ ¬ (𝑥 = ∅ ∧ ω = ∅) |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝑈 ∈ (Fmla‘ω) → ¬ (𝑥 = ∅ ∧ ω = ∅)) |
6 | f00 6546 | . . . . . . 7 ⊢ (𝑥:ω⟶∅ ↔ (𝑥 = ∅ ∧ ω = ∅)) | |
7 | 5, 6 | sylnibr 332 | . . . . . 6 ⊢ (𝑈 ∈ (Fmla‘ω) → ¬ 𝑥:ω⟶∅) |
8 | 0ex 5177 | . . . . . . . 8 ⊢ ∅ ∈ V | |
9 | 8, 8 | pm3.2i 474 | . . . . . . 7 ⊢ (∅ ∈ V ∧ ∅ ∈ V) |
10 | satfvel 32890 | . . . . . . 7 ⊢ (((∅ ∈ V ∧ ∅ ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) → 𝑥:ω⟶∅) | |
11 | 9, 10 | mp3an1 1445 | . . . . . 6 ⊢ ((𝑈 ∈ (Fmla‘ω) ∧ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) → 𝑥:ω⟶∅) |
12 | 7, 11 | mtand 815 | . . . . 5 ⊢ (𝑈 ∈ (Fmla‘ω) → ¬ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) |
13 | 12 | alrimiv 1928 | . . . 4 ⊢ (𝑈 ∈ (Fmla‘ω) → ∀𝑥 ¬ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) |
14 | eq0 4242 | . . . 4 ⊢ ((((∅ Sat ∅)‘ω)‘𝑈) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) | |
15 | 13, 14 | sylibr 237 | . . 3 ⊢ (𝑈 ∈ (Fmla‘ω) → (((∅ Sat ∅)‘ω)‘𝑈) = ∅) |
16 | 1, 15 | eqtrd 2793 | . 2 ⊢ (𝑈 ∈ (Fmla‘ω) → (∅ Sat∈ 𝑈) = ∅) |
17 | prv 32906 | . . . 4 ⊢ ((∅ ∈ V ∧ 𝑈 ∈ (Fmla‘ω)) → (∅⊧𝑈 ↔ (∅ Sat∈ 𝑈) = (∅ ↑m ω))) | |
18 | 8, 17 | mpan 689 | . . 3 ⊢ (𝑈 ∈ (Fmla‘ω) → (∅⊧𝑈 ↔ (∅ Sat∈ 𝑈) = (∅ ↑m ω))) |
19 | 2 | ne0ii 4236 | . . . . 5 ⊢ ω ≠ ∅ |
20 | map0b 8465 | . . . . 5 ⊢ (ω ≠ ∅ → (∅ ↑m ω) = ∅) | |
21 | 19, 20 | mp1i 13 | . . . 4 ⊢ (𝑈 ∈ (Fmla‘ω) → (∅ ↑m ω) = ∅) |
22 | 21 | eqeq2d 2769 | . . 3 ⊢ (𝑈 ∈ (Fmla‘ω) → ((∅ Sat∈ 𝑈) = (∅ ↑m ω) ↔ (∅ Sat∈ 𝑈) = ∅)) |
23 | 18, 22 | bitrd 282 | . 2 ⊢ (𝑈 ∈ (Fmla‘ω) → (∅⊧𝑈 ↔ (∅ Sat∈ 𝑈) = ∅)) |
24 | 16, 23 | mpbird 260 | 1 ⊢ (𝑈 ∈ (Fmla‘ω) → ∅⊧𝑈) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∀wal 1536 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 Vcvv 3409 ∅c0 4225 class class class wbr 5032 ⟶wf 6331 ‘cfv 6335 (class class class)co 7150 ωcom 7579 ↑m cmap 8416 Sat csat 32814 Fmlacfmla 32815 Sat∈ csate 32816 ⊧cprv 32817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-inf2 9137 ax-ac2 9923 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-se 5484 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-isom 6344 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-2o 8113 df-er 8299 df-map 8418 df-en 8528 df-dom 8529 df-sdom 8530 df-card 9401 df-ac 9576 df-goel 32818 df-gona 32819 df-goal 32820 df-sat 32821 df-sate 32822 df-fmla 32823 df-prv 32824 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |