Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prv0 Structured version   Visualization version   GIF version

Theorem prv0 32908
Description: Every wff encoded as 𝑈 is true in an "empty model" (𝑀 = ∅). Since is defined in terms of the interpretations making the given formula true, it is not defined on the "empty model", since there are no interpretations. In particular, the empty set on the LHS of should not be interpreted as the empty model, because 𝑥𝑥 = 𝑥 is not satisfied on the empty model. (Contributed by AV, 19-Nov-2023.)
Assertion
Ref Expression
prv0 (𝑈 ∈ (Fmla‘ω) → ∅⊧𝑈)

Proof of Theorem prv0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sate0 32893 . . 3 (𝑈 ∈ (Fmla‘ω) → (∅ Sat 𝑈) = (((∅ Sat ∅)‘ω)‘𝑈))
2 peano1 7600 . . . . . . . . . 10 ∅ ∈ ω
32n0ii 4235 . . . . . . . . 9 ¬ ω = ∅
43intnan 490 . . . . . . . 8 ¬ (𝑥 = ∅ ∧ ω = ∅)
54a1i 11 . . . . . . 7 (𝑈 ∈ (Fmla‘ω) → ¬ (𝑥 = ∅ ∧ ω = ∅))
6 f00 6546 . . . . . . 7 (𝑥:ω⟶∅ ↔ (𝑥 = ∅ ∧ ω = ∅))
75, 6sylnibr 332 . . . . . 6 (𝑈 ∈ (Fmla‘ω) → ¬ 𝑥:ω⟶∅)
8 0ex 5177 . . . . . . . 8 ∅ ∈ V
98, 8pm3.2i 474 . . . . . . 7 (∅ ∈ V ∧ ∅ ∈ V)
10 satfvel 32890 . . . . . . 7 (((∅ ∈ V ∧ ∅ ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) → 𝑥:ω⟶∅)
119, 10mp3an1 1445 . . . . . 6 ((𝑈 ∈ (Fmla‘ω) ∧ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) → 𝑥:ω⟶∅)
127, 11mtand 815 . . . . 5 (𝑈 ∈ (Fmla‘ω) → ¬ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈))
1312alrimiv 1928 . . . 4 (𝑈 ∈ (Fmla‘ω) → ∀𝑥 ¬ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈))
14 eq0 4242 . . . 4 ((((∅ Sat ∅)‘ω)‘𝑈) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈))
1513, 14sylibr 237 . . 3 (𝑈 ∈ (Fmla‘ω) → (((∅ Sat ∅)‘ω)‘𝑈) = ∅)
161, 15eqtrd 2793 . 2 (𝑈 ∈ (Fmla‘ω) → (∅ Sat 𝑈) = ∅)
17 prv 32906 . . . 4 ((∅ ∈ V ∧ 𝑈 ∈ (Fmla‘ω)) → (∅⊧𝑈 ↔ (∅ Sat 𝑈) = (∅ ↑m ω)))
188, 17mpan 689 . . 3 (𝑈 ∈ (Fmla‘ω) → (∅⊧𝑈 ↔ (∅ Sat 𝑈) = (∅ ↑m ω)))
192ne0ii 4236 . . . . 5 ω ≠ ∅
20 map0b 8465 . . . . 5 (ω ≠ ∅ → (∅ ↑m ω) = ∅)
2119, 20mp1i 13 . . . 4 (𝑈 ∈ (Fmla‘ω) → (∅ ↑m ω) = ∅)
2221eqeq2d 2769 . . 3 (𝑈 ∈ (Fmla‘ω) → ((∅ Sat 𝑈) = (∅ ↑m ω) ↔ (∅ Sat 𝑈) = ∅))
2318, 22bitrd 282 . 2 (𝑈 ∈ (Fmla‘ω) → (∅⊧𝑈 ↔ (∅ Sat 𝑈) = ∅))
2416, 23mpbird 260 1 (𝑈 ∈ (Fmla‘ω) → ∅⊧𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wcel 2111  wne 2951  Vcvv 3409  c0 4225   class class class wbr 5032  wf 6331  cfv 6335  (class class class)co 7150  ωcom 7579  m cmap 8416   Sat csat 32814  Fmlacfmla 32815   Sat csate 32816  cprv 32817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-ac2 9923
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-card 9401  df-ac 9576  df-goel 32818  df-gona 32819  df-goal 32820  df-sat 32821  df-sate 32822  df-fmla 32823  df-prv 32824
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator