| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prv0 | Structured version Visualization version GIF version | ||
| Description: Every wff encoded as 𝑈 is true in an "empty model" (𝑀 = ∅). Since ⊧ is defined in terms of the interpretations making the given formula true, it is not defined on the "empty model", since there are no interpretations. In particular, the empty set on the LHS of ⊧ should not be interpreted as the empty model, because ∃𝑥𝑥 = 𝑥 is not satisfied on the empty model. (Contributed by AV, 19-Nov-2023.) |
| Ref | Expression |
|---|---|
| prv0 | ⊢ (𝑈 ∈ (Fmla‘ω) → ∅⊧𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sate0 35402 | . . 3 ⊢ (𝑈 ∈ (Fmla‘ω) → (∅ Sat∈ 𝑈) = (((∅ Sat ∅)‘ω)‘𝑈)) | |
| 2 | peano1 7867 | . . . . . . . . . 10 ⊢ ∅ ∈ ω | |
| 3 | 2 | n0ii 4308 | . . . . . . . . 9 ⊢ ¬ ω = ∅ |
| 4 | 3 | intnan 486 | . . . . . . . 8 ⊢ ¬ (𝑥 = ∅ ∧ ω = ∅) |
| 5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝑈 ∈ (Fmla‘ω) → ¬ (𝑥 = ∅ ∧ ω = ∅)) |
| 6 | f00 6744 | . . . . . . 7 ⊢ (𝑥:ω⟶∅ ↔ (𝑥 = ∅ ∧ ω = ∅)) | |
| 7 | 5, 6 | sylnibr 329 | . . . . . 6 ⊢ (𝑈 ∈ (Fmla‘ω) → ¬ 𝑥:ω⟶∅) |
| 8 | 0ex 5264 | . . . . . . . 8 ⊢ ∅ ∈ V | |
| 9 | 8, 8 | pm3.2i 470 | . . . . . . 7 ⊢ (∅ ∈ V ∧ ∅ ∈ V) |
| 10 | satfvel 35399 | . . . . . . 7 ⊢ (((∅ ∈ V ∧ ∅ ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) → 𝑥:ω⟶∅) | |
| 11 | 9, 10 | mp3an1 1450 | . . . . . 6 ⊢ ((𝑈 ∈ (Fmla‘ω) ∧ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) → 𝑥:ω⟶∅) |
| 12 | 7, 11 | mtand 815 | . . . . 5 ⊢ (𝑈 ∈ (Fmla‘ω) → ¬ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) |
| 13 | 12 | alrimiv 1927 | . . . 4 ⊢ (𝑈 ∈ (Fmla‘ω) → ∀𝑥 ¬ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) |
| 14 | eq0 4315 | . . . 4 ⊢ ((((∅ Sat ∅)‘ω)‘𝑈) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) | |
| 15 | 13, 14 | sylibr 234 | . . 3 ⊢ (𝑈 ∈ (Fmla‘ω) → (((∅ Sat ∅)‘ω)‘𝑈) = ∅) |
| 16 | 1, 15 | eqtrd 2765 | . 2 ⊢ (𝑈 ∈ (Fmla‘ω) → (∅ Sat∈ 𝑈) = ∅) |
| 17 | prv 35415 | . . . 4 ⊢ ((∅ ∈ V ∧ 𝑈 ∈ (Fmla‘ω)) → (∅⊧𝑈 ↔ (∅ Sat∈ 𝑈) = (∅ ↑m ω))) | |
| 18 | 8, 17 | mpan 690 | . . 3 ⊢ (𝑈 ∈ (Fmla‘ω) → (∅⊧𝑈 ↔ (∅ Sat∈ 𝑈) = (∅ ↑m ω))) |
| 19 | 2 | ne0ii 4309 | . . . . 5 ⊢ ω ≠ ∅ |
| 20 | map0b 8858 | . . . . 5 ⊢ (ω ≠ ∅ → (∅ ↑m ω) = ∅) | |
| 21 | 19, 20 | mp1i 13 | . . . 4 ⊢ (𝑈 ∈ (Fmla‘ω) → (∅ ↑m ω) = ∅) |
| 22 | 21 | eqeq2d 2741 | . . 3 ⊢ (𝑈 ∈ (Fmla‘ω) → ((∅ Sat∈ 𝑈) = (∅ ↑m ω) ↔ (∅ Sat∈ 𝑈) = ∅)) |
| 23 | 18, 22 | bitrd 279 | . 2 ⊢ (𝑈 ∈ (Fmla‘ω) → (∅⊧𝑈 ↔ (∅ Sat∈ 𝑈) = ∅)) |
| 24 | 16, 23 | mpbird 257 | 1 ⊢ (𝑈 ∈ (Fmla‘ω) → ∅⊧𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ∅c0 4298 class class class wbr 5109 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 ωcom 7844 ↑m cmap 8801 Sat csat 35323 Fmlacfmla 35324 Sat∈ csate 35325 ⊧cprv 35326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-inf2 9600 ax-ac2 10422 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-card 9898 df-ac 10075 df-goel 35327 df-gona 35328 df-goal 35329 df-sat 35330 df-sate 35331 df-fmla 35332 df-prv 35333 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |