Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prv0 Structured version   Visualization version   GIF version

Theorem prv0 35398
Description: Every wff encoded as 𝑈 is true in an "empty model" (𝑀 = ∅). Since is defined in terms of the interpretations making the given formula true, it is not defined on the "empty model", since there are no interpretations. In particular, the empty set on the LHS of should not be interpreted as the empty model, because 𝑥𝑥 = 𝑥 is not satisfied on the empty model. (Contributed by AV, 19-Nov-2023.)
Assertion
Ref Expression
prv0 (𝑈 ∈ (Fmla‘ω) → ∅⊧𝑈)

Proof of Theorem prv0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sate0 35383 . . 3 (𝑈 ∈ (Fmla‘ω) → (∅ Sat 𝑈) = (((∅ Sat ∅)‘ω)‘𝑈))
2 peano1 7927 . . . . . . . . . 10 ∅ ∈ ω
32n0ii 4366 . . . . . . . . 9 ¬ ω = ∅
43intnan 486 . . . . . . . 8 ¬ (𝑥 = ∅ ∧ ω = ∅)
54a1i 11 . . . . . . 7 (𝑈 ∈ (Fmla‘ω) → ¬ (𝑥 = ∅ ∧ ω = ∅))
6 f00 6803 . . . . . . 7 (𝑥:ω⟶∅ ↔ (𝑥 = ∅ ∧ ω = ∅))
75, 6sylnibr 329 . . . . . 6 (𝑈 ∈ (Fmla‘ω) → ¬ 𝑥:ω⟶∅)
8 0ex 5325 . . . . . . . 8 ∅ ∈ V
98, 8pm3.2i 470 . . . . . . 7 (∅ ∈ V ∧ ∅ ∈ V)
10 satfvel 35380 . . . . . . 7 (((∅ ∈ V ∧ ∅ ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) → 𝑥:ω⟶∅)
119, 10mp3an1 1448 . . . . . 6 ((𝑈 ∈ (Fmla‘ω) ∧ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) → 𝑥:ω⟶∅)
127, 11mtand 815 . . . . 5 (𝑈 ∈ (Fmla‘ω) → ¬ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈))
1312alrimiv 1926 . . . 4 (𝑈 ∈ (Fmla‘ω) → ∀𝑥 ¬ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈))
14 eq0 4373 . . . 4 ((((∅ Sat ∅)‘ω)‘𝑈) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈))
1513, 14sylibr 234 . . 3 (𝑈 ∈ (Fmla‘ω) → (((∅ Sat ∅)‘ω)‘𝑈) = ∅)
161, 15eqtrd 2780 . 2 (𝑈 ∈ (Fmla‘ω) → (∅ Sat 𝑈) = ∅)
17 prv 35396 . . . 4 ((∅ ∈ V ∧ 𝑈 ∈ (Fmla‘ω)) → (∅⊧𝑈 ↔ (∅ Sat 𝑈) = (∅ ↑m ω)))
188, 17mpan 689 . . 3 (𝑈 ∈ (Fmla‘ω) → (∅⊧𝑈 ↔ (∅ Sat 𝑈) = (∅ ↑m ω)))
192ne0ii 4367 . . . . 5 ω ≠ ∅
20 map0b 8941 . . . . 5 (ω ≠ ∅ → (∅ ↑m ω) = ∅)
2119, 20mp1i 13 . . . 4 (𝑈 ∈ (Fmla‘ω) → (∅ ↑m ω) = ∅)
2221eqeq2d 2751 . . 3 (𝑈 ∈ (Fmla‘ω) → ((∅ Sat 𝑈) = (∅ ↑m ω) ↔ (∅ Sat 𝑈) = ∅))
2318, 22bitrd 279 . 2 (𝑈 ∈ (Fmla‘ω) → (∅⊧𝑈 ↔ (∅ Sat 𝑈) = ∅))
2416, 23mpbird 257 1 (𝑈 ∈ (Fmla‘ω) → ∅⊧𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  c0 4352   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  ωcom 7903  m cmap 8884   Sat csat 35304  Fmlacfmla 35305   Sat csate 35306  cprv 35307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-ac2 10532
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-ac 10185  df-goel 35308  df-gona 35309  df-goal 35310  df-sat 35311  df-sate 35312  df-fmla 35313  df-prv 35314
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator