| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prv0 | Structured version Visualization version GIF version | ||
| Description: Every wff encoded as 𝑈 is true in an "empty model" (𝑀 = ∅). Since ⊧ is defined in terms of the interpretations making the given formula true, it is not defined on the "empty model", since there are no interpretations. In particular, the empty set on the LHS of ⊧ should not be interpreted as the empty model, because ∃𝑥𝑥 = 𝑥 is not satisfied on the empty model. (Contributed by AV, 19-Nov-2023.) |
| Ref | Expression |
|---|---|
| prv0 | ⊢ (𝑈 ∈ (Fmla‘ω) → ∅⊧𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sate0 35480 | . . 3 ⊢ (𝑈 ∈ (Fmla‘ω) → (∅ Sat∈ 𝑈) = (((∅ Sat ∅)‘ω)‘𝑈)) | |
| 2 | peano1 7825 | . . . . . . . . . 10 ⊢ ∅ ∈ ω | |
| 3 | 2 | n0ii 4292 | . . . . . . . . 9 ⊢ ¬ ω = ∅ |
| 4 | 3 | intnan 486 | . . . . . . . 8 ⊢ ¬ (𝑥 = ∅ ∧ ω = ∅) |
| 5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝑈 ∈ (Fmla‘ω) → ¬ (𝑥 = ∅ ∧ ω = ∅)) |
| 6 | f00 6710 | . . . . . . 7 ⊢ (𝑥:ω⟶∅ ↔ (𝑥 = ∅ ∧ ω = ∅)) | |
| 7 | 5, 6 | sylnibr 329 | . . . . . 6 ⊢ (𝑈 ∈ (Fmla‘ω) → ¬ 𝑥:ω⟶∅) |
| 8 | 0ex 5247 | . . . . . . . 8 ⊢ ∅ ∈ V | |
| 9 | 8, 8 | pm3.2i 470 | . . . . . . 7 ⊢ (∅ ∈ V ∧ ∅ ∈ V) |
| 10 | satfvel 35477 | . . . . . . 7 ⊢ (((∅ ∈ V ∧ ∅ ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) → 𝑥:ω⟶∅) | |
| 11 | 9, 10 | mp3an1 1450 | . . . . . 6 ⊢ ((𝑈 ∈ (Fmla‘ω) ∧ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) → 𝑥:ω⟶∅) |
| 12 | 7, 11 | mtand 815 | . . . . 5 ⊢ (𝑈 ∈ (Fmla‘ω) → ¬ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) |
| 13 | 12 | alrimiv 1928 | . . . 4 ⊢ (𝑈 ∈ (Fmla‘ω) → ∀𝑥 ¬ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) |
| 14 | eq0 4299 | . . . 4 ⊢ ((((∅ Sat ∅)‘ω)‘𝑈) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) | |
| 15 | 13, 14 | sylibr 234 | . . 3 ⊢ (𝑈 ∈ (Fmla‘ω) → (((∅ Sat ∅)‘ω)‘𝑈) = ∅) |
| 16 | 1, 15 | eqtrd 2768 | . 2 ⊢ (𝑈 ∈ (Fmla‘ω) → (∅ Sat∈ 𝑈) = ∅) |
| 17 | prv 35493 | . . . 4 ⊢ ((∅ ∈ V ∧ 𝑈 ∈ (Fmla‘ω)) → (∅⊧𝑈 ↔ (∅ Sat∈ 𝑈) = (∅ ↑m ω))) | |
| 18 | 8, 17 | mpan 690 | . . 3 ⊢ (𝑈 ∈ (Fmla‘ω) → (∅⊧𝑈 ↔ (∅ Sat∈ 𝑈) = (∅ ↑m ω))) |
| 19 | 2 | ne0ii 4293 | . . . . 5 ⊢ ω ≠ ∅ |
| 20 | map0b 8813 | . . . . 5 ⊢ (ω ≠ ∅ → (∅ ↑m ω) = ∅) | |
| 21 | 19, 20 | mp1i 13 | . . . 4 ⊢ (𝑈 ∈ (Fmla‘ω) → (∅ ↑m ω) = ∅) |
| 22 | 21 | eqeq2d 2744 | . . 3 ⊢ (𝑈 ∈ (Fmla‘ω) → ((∅ Sat∈ 𝑈) = (∅ ↑m ω) ↔ (∅ Sat∈ 𝑈) = ∅)) |
| 23 | 18, 22 | bitrd 279 | . 2 ⊢ (𝑈 ∈ (Fmla‘ω) → (∅⊧𝑈 ↔ (∅ Sat∈ 𝑈) = ∅)) |
| 24 | 16, 23 | mpbird 257 | 1 ⊢ (𝑈 ∈ (Fmla‘ω) → ∅⊧𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 Vcvv 3437 ∅c0 4282 class class class wbr 5093 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ωcom 7802 ↑m cmap 8756 Sat csat 35401 Fmlacfmla 35402 Sat∈ csate 35403 ⊧cprv 35404 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-ac2 10361 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9839 df-ac 10014 df-goel 35405 df-gona 35406 df-goal 35407 df-sat 35408 df-sate 35409 df-fmla 35410 df-prv 35411 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |