| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prv0 | Structured version Visualization version GIF version | ||
| Description: Every wff encoded as 𝑈 is true in an "empty model" (𝑀 = ∅). Since ⊧ is defined in terms of the interpretations making the given formula true, it is not defined on the "empty model", since there are no interpretations. In particular, the empty set on the LHS of ⊧ should not be interpreted as the empty model, because ∃𝑥𝑥 = 𝑥 is not satisfied on the empty model. (Contributed by AV, 19-Nov-2023.) |
| Ref | Expression |
|---|---|
| prv0 | ⊢ (𝑈 ∈ (Fmla‘ω) → ∅⊧𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sate0 35420 | . . 3 ⊢ (𝑈 ∈ (Fmla‘ω) → (∅ Sat∈ 𝑈) = (((∅ Sat ∅)‘ω)‘𝑈)) | |
| 2 | peano1 7910 | . . . . . . . . . 10 ⊢ ∅ ∈ ω | |
| 3 | 2 | n0ii 4343 | . . . . . . . . 9 ⊢ ¬ ω = ∅ |
| 4 | 3 | intnan 486 | . . . . . . . 8 ⊢ ¬ (𝑥 = ∅ ∧ ω = ∅) |
| 5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝑈 ∈ (Fmla‘ω) → ¬ (𝑥 = ∅ ∧ ω = ∅)) |
| 6 | f00 6790 | . . . . . . 7 ⊢ (𝑥:ω⟶∅ ↔ (𝑥 = ∅ ∧ ω = ∅)) | |
| 7 | 5, 6 | sylnibr 329 | . . . . . 6 ⊢ (𝑈 ∈ (Fmla‘ω) → ¬ 𝑥:ω⟶∅) |
| 8 | 0ex 5307 | . . . . . . . 8 ⊢ ∅ ∈ V | |
| 9 | 8, 8 | pm3.2i 470 | . . . . . . 7 ⊢ (∅ ∈ V ∧ ∅ ∈ V) |
| 10 | satfvel 35417 | . . . . . . 7 ⊢ (((∅ ∈ V ∧ ∅ ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) → 𝑥:ω⟶∅) | |
| 11 | 9, 10 | mp3an1 1450 | . . . . . 6 ⊢ ((𝑈 ∈ (Fmla‘ω) ∧ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) → 𝑥:ω⟶∅) |
| 12 | 7, 11 | mtand 816 | . . . . 5 ⊢ (𝑈 ∈ (Fmla‘ω) → ¬ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) |
| 13 | 12 | alrimiv 1927 | . . . 4 ⊢ (𝑈 ∈ (Fmla‘ω) → ∀𝑥 ¬ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) |
| 14 | eq0 4350 | . . . 4 ⊢ ((((∅ Sat ∅)‘ω)‘𝑈) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) | |
| 15 | 13, 14 | sylibr 234 | . . 3 ⊢ (𝑈 ∈ (Fmla‘ω) → (((∅ Sat ∅)‘ω)‘𝑈) = ∅) |
| 16 | 1, 15 | eqtrd 2777 | . 2 ⊢ (𝑈 ∈ (Fmla‘ω) → (∅ Sat∈ 𝑈) = ∅) |
| 17 | prv 35433 | . . . 4 ⊢ ((∅ ∈ V ∧ 𝑈 ∈ (Fmla‘ω)) → (∅⊧𝑈 ↔ (∅ Sat∈ 𝑈) = (∅ ↑m ω))) | |
| 18 | 8, 17 | mpan 690 | . . 3 ⊢ (𝑈 ∈ (Fmla‘ω) → (∅⊧𝑈 ↔ (∅ Sat∈ 𝑈) = (∅ ↑m ω))) |
| 19 | 2 | ne0ii 4344 | . . . . 5 ⊢ ω ≠ ∅ |
| 20 | map0b 8923 | . . . . 5 ⊢ (ω ≠ ∅ → (∅ ↑m ω) = ∅) | |
| 21 | 19, 20 | mp1i 13 | . . . 4 ⊢ (𝑈 ∈ (Fmla‘ω) → (∅ ↑m ω) = ∅) |
| 22 | 21 | eqeq2d 2748 | . . 3 ⊢ (𝑈 ∈ (Fmla‘ω) → ((∅ Sat∈ 𝑈) = (∅ ↑m ω) ↔ (∅ Sat∈ 𝑈) = ∅)) |
| 23 | 18, 22 | bitrd 279 | . 2 ⊢ (𝑈 ∈ (Fmla‘ω) → (∅⊧𝑈 ↔ (∅ Sat∈ 𝑈) = ∅)) |
| 24 | 16, 23 | mpbird 257 | 1 ⊢ (𝑈 ∈ (Fmla‘ω) → ∅⊧𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 Vcvv 3480 ∅c0 4333 class class class wbr 5143 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ωcom 7887 ↑m cmap 8866 Sat csat 35341 Fmlacfmla 35342 Sat∈ csate 35343 ⊧cprv 35344 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-ac2 10503 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-card 9979 df-ac 10156 df-goel 35345 df-gona 35346 df-goal 35347 df-sat 35348 df-sate 35349 df-fmla 35350 df-prv 35351 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |