| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prv0 | Structured version Visualization version GIF version | ||
| Description: Every wff encoded as 𝑈 is true in an "empty model" (𝑀 = ∅). Since ⊧ is defined in terms of the interpretations making the given formula true, it is not defined on the "empty model", since there are no interpretations. In particular, the empty set on the LHS of ⊧ should not be interpreted as the empty model, because ∃𝑥𝑥 = 𝑥 is not satisfied on the empty model. (Contributed by AV, 19-Nov-2023.) |
| Ref | Expression |
|---|---|
| prv0 | ⊢ (𝑈 ∈ (Fmla‘ω) → ∅⊧𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sate0 35437 | . . 3 ⊢ (𝑈 ∈ (Fmla‘ω) → (∅ Sat∈ 𝑈) = (((∅ Sat ∅)‘ω)‘𝑈)) | |
| 2 | peano1 7884 | . . . . . . . . . 10 ⊢ ∅ ∈ ω | |
| 3 | 2 | n0ii 4318 | . . . . . . . . 9 ⊢ ¬ ω = ∅ |
| 4 | 3 | intnan 486 | . . . . . . . 8 ⊢ ¬ (𝑥 = ∅ ∧ ω = ∅) |
| 5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝑈 ∈ (Fmla‘ω) → ¬ (𝑥 = ∅ ∧ ω = ∅)) |
| 6 | f00 6760 | . . . . . . 7 ⊢ (𝑥:ω⟶∅ ↔ (𝑥 = ∅ ∧ ω = ∅)) | |
| 7 | 5, 6 | sylnibr 329 | . . . . . 6 ⊢ (𝑈 ∈ (Fmla‘ω) → ¬ 𝑥:ω⟶∅) |
| 8 | 0ex 5277 | . . . . . . . 8 ⊢ ∅ ∈ V | |
| 9 | 8, 8 | pm3.2i 470 | . . . . . . 7 ⊢ (∅ ∈ V ∧ ∅ ∈ V) |
| 10 | satfvel 35434 | . . . . . . 7 ⊢ (((∅ ∈ V ∧ ∅ ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) → 𝑥:ω⟶∅) | |
| 11 | 9, 10 | mp3an1 1450 | . . . . . 6 ⊢ ((𝑈 ∈ (Fmla‘ω) ∧ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) → 𝑥:ω⟶∅) |
| 12 | 7, 11 | mtand 815 | . . . . 5 ⊢ (𝑈 ∈ (Fmla‘ω) → ¬ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) |
| 13 | 12 | alrimiv 1927 | . . . 4 ⊢ (𝑈 ∈ (Fmla‘ω) → ∀𝑥 ¬ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) |
| 14 | eq0 4325 | . . . 4 ⊢ ((((∅ Sat ∅)‘ω)‘𝑈) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) | |
| 15 | 13, 14 | sylibr 234 | . . 3 ⊢ (𝑈 ∈ (Fmla‘ω) → (((∅ Sat ∅)‘ω)‘𝑈) = ∅) |
| 16 | 1, 15 | eqtrd 2770 | . 2 ⊢ (𝑈 ∈ (Fmla‘ω) → (∅ Sat∈ 𝑈) = ∅) |
| 17 | prv 35450 | . . . 4 ⊢ ((∅ ∈ V ∧ 𝑈 ∈ (Fmla‘ω)) → (∅⊧𝑈 ↔ (∅ Sat∈ 𝑈) = (∅ ↑m ω))) | |
| 18 | 8, 17 | mpan 690 | . . 3 ⊢ (𝑈 ∈ (Fmla‘ω) → (∅⊧𝑈 ↔ (∅ Sat∈ 𝑈) = (∅ ↑m ω))) |
| 19 | 2 | ne0ii 4319 | . . . . 5 ⊢ ω ≠ ∅ |
| 20 | map0b 8897 | . . . . 5 ⊢ (ω ≠ ∅ → (∅ ↑m ω) = ∅) | |
| 21 | 19, 20 | mp1i 13 | . . . 4 ⊢ (𝑈 ∈ (Fmla‘ω) → (∅ ↑m ω) = ∅) |
| 22 | 21 | eqeq2d 2746 | . . 3 ⊢ (𝑈 ∈ (Fmla‘ω) → ((∅ Sat∈ 𝑈) = (∅ ↑m ω) ↔ (∅ Sat∈ 𝑈) = ∅)) |
| 23 | 18, 22 | bitrd 279 | . 2 ⊢ (𝑈 ∈ (Fmla‘ω) → (∅⊧𝑈 ↔ (∅ Sat∈ 𝑈) = ∅)) |
| 24 | 16, 23 | mpbird 257 | 1 ⊢ (𝑈 ∈ (Fmla‘ω) → ∅⊧𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 Vcvv 3459 ∅c0 4308 class class class wbr 5119 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ωcom 7861 ↑m cmap 8840 Sat csat 35358 Fmlacfmla 35359 Sat∈ csate 35360 ⊧cprv 35361 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-ac2 10477 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-ac 10130 df-goel 35362 df-gona 35363 df-goal 35364 df-sat 35365 df-sate 35366 df-fmla 35367 df-prv 35368 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |