Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prv0 Structured version   Visualization version   GIF version

Theorem prv0 35435
Description: Every wff encoded as 𝑈 is true in an "empty model" (𝑀 = ∅). Since is defined in terms of the interpretations making the given formula true, it is not defined on the "empty model", since there are no interpretations. In particular, the empty set on the LHS of should not be interpreted as the empty model, because 𝑥𝑥 = 𝑥 is not satisfied on the empty model. (Contributed by AV, 19-Nov-2023.)
Assertion
Ref Expression
prv0 (𝑈 ∈ (Fmla‘ω) → ∅⊧𝑈)

Proof of Theorem prv0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sate0 35420 . . 3 (𝑈 ∈ (Fmla‘ω) → (∅ Sat 𝑈) = (((∅ Sat ∅)‘ω)‘𝑈))
2 peano1 7910 . . . . . . . . . 10 ∅ ∈ ω
32n0ii 4343 . . . . . . . . 9 ¬ ω = ∅
43intnan 486 . . . . . . . 8 ¬ (𝑥 = ∅ ∧ ω = ∅)
54a1i 11 . . . . . . 7 (𝑈 ∈ (Fmla‘ω) → ¬ (𝑥 = ∅ ∧ ω = ∅))
6 f00 6790 . . . . . . 7 (𝑥:ω⟶∅ ↔ (𝑥 = ∅ ∧ ω = ∅))
75, 6sylnibr 329 . . . . . 6 (𝑈 ∈ (Fmla‘ω) → ¬ 𝑥:ω⟶∅)
8 0ex 5307 . . . . . . . 8 ∅ ∈ V
98, 8pm3.2i 470 . . . . . . 7 (∅ ∈ V ∧ ∅ ∈ V)
10 satfvel 35417 . . . . . . 7 (((∅ ∈ V ∧ ∅ ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) → 𝑥:ω⟶∅)
119, 10mp3an1 1450 . . . . . 6 ((𝑈 ∈ (Fmla‘ω) ∧ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈)) → 𝑥:ω⟶∅)
127, 11mtand 816 . . . . 5 (𝑈 ∈ (Fmla‘ω) → ¬ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈))
1312alrimiv 1927 . . . 4 (𝑈 ∈ (Fmla‘ω) → ∀𝑥 ¬ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈))
14 eq0 4350 . . . 4 ((((∅ Sat ∅)‘ω)‘𝑈) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (((∅ Sat ∅)‘ω)‘𝑈))
1513, 14sylibr 234 . . 3 (𝑈 ∈ (Fmla‘ω) → (((∅ Sat ∅)‘ω)‘𝑈) = ∅)
161, 15eqtrd 2777 . 2 (𝑈 ∈ (Fmla‘ω) → (∅ Sat 𝑈) = ∅)
17 prv 35433 . . . 4 ((∅ ∈ V ∧ 𝑈 ∈ (Fmla‘ω)) → (∅⊧𝑈 ↔ (∅ Sat 𝑈) = (∅ ↑m ω)))
188, 17mpan 690 . . 3 (𝑈 ∈ (Fmla‘ω) → (∅⊧𝑈 ↔ (∅ Sat 𝑈) = (∅ ↑m ω)))
192ne0ii 4344 . . . . 5 ω ≠ ∅
20 map0b 8923 . . . . 5 (ω ≠ ∅ → (∅ ↑m ω) = ∅)
2119, 20mp1i 13 . . . 4 (𝑈 ∈ (Fmla‘ω) → (∅ ↑m ω) = ∅)
2221eqeq2d 2748 . . 3 (𝑈 ∈ (Fmla‘ω) → ((∅ Sat 𝑈) = (∅ ↑m ω) ↔ (∅ Sat 𝑈) = ∅))
2318, 22bitrd 279 . 2 (𝑈 ∈ (Fmla‘ω) → (∅⊧𝑈 ↔ (∅ Sat 𝑈) = ∅))
2416, 23mpbird 257 1 (𝑈 ∈ (Fmla‘ω) → ∅⊧𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2108  wne 2940  Vcvv 3480  c0 4333   class class class wbr 5143  wf 6557  cfv 6561  (class class class)co 7431  ωcom 7887  m cmap 8866   Sat csat 35341  Fmlacfmla 35342   Sat csate 35343  cprv 35344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-ac2 10503
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-ac 10156  df-goel 35345  df-gona 35346  df-goal 35347  df-sat 35348  df-sate 35349  df-fmla 35350  df-prv 35351
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator