Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon2d | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 28-Dec-2008.) |
Ref | Expression |
---|---|
necon2d.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝐶 ≠ 𝐷)) |
Ref | Expression |
---|---|
necon2d | ⊢ (𝜑 → (𝐶 = 𝐷 → 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2d.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝐶 ≠ 𝐷)) | |
2 | df-ne 2943 | . . 3 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
3 | 1, 2 | syl6ib 250 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝐶 = 𝐷)) |
4 | 3 | necon2ad 2957 | 1 ⊢ (𝜑 → (𝐶 = 𝐷 → 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2943 |
This theorem is referenced by: map0g 8630 cantnf 9381 hashprg 14038 bcthlem5 24397 deg1ldgn 25163 cxpeq0 25738 lfgrn1cycl 28071 uspgrn2crct 28074 poimirlem17 35721 poimirlem20 35724 poimirlem22 35726 poimirlem27 35731 islshpat 36958 cdleme18b 38233 cdlemh 38758 prjspner1 40384 |
Copyright terms: Public domain | W3C validator |