MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2d Structured version   Visualization version   GIF version

Theorem necon2d 2965
Description: Contrapositive inference for inequality. (Contributed by NM, 28-Dec-2008.)
Hypothesis
Ref Expression
necon2d.1 (𝜑 → (𝐴 = 𝐵𝐶𝐷))
Assertion
Ref Expression
necon2d (𝜑 → (𝐶 = 𝐷𝐴𝐵))

Proof of Theorem necon2d
StepHypRef Expression
1 necon2d.1 . . 3 (𝜑 → (𝐴 = 𝐵𝐶𝐷))
2 df-ne 2943 . . 3 (𝐶𝐷 ↔ ¬ 𝐶 = 𝐷)
31, 2syl6ib 250 . 2 (𝜑 → (𝐴 = 𝐵 → ¬ 𝐶 = 𝐷))
43necon2ad 2957 1 (𝜑 → (𝐶 = 𝐷𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wne 2942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2943
This theorem is referenced by:  map0g  8630  cantnf  9381  hashprg  14038  bcthlem5  24397  deg1ldgn  25163  cxpeq0  25738  lfgrn1cycl  28071  uspgrn2crct  28074  poimirlem17  35721  poimirlem20  35724  poimirlem22  35726  poimirlem27  35731  islshpat  36958  cdleme18b  38233  cdlemh  38758  prjspner1  40384
  Copyright terms: Public domain W3C validator