MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2d Structured version   Visualization version   GIF version

Theorem necon2d 2951
Description: Contrapositive inference for inequality. (Contributed by NM, 28-Dec-2008.)
Hypothesis
Ref Expression
necon2d.1 (𝜑 → (𝐴 = 𝐵𝐶𝐷))
Assertion
Ref Expression
necon2d (𝜑 → (𝐶 = 𝐷𝐴𝐵))

Proof of Theorem necon2d
StepHypRef Expression
1 necon2d.1 . . 3 (𝜑 → (𝐴 = 𝐵𝐶𝐷))
2 df-ne 2929 . . 3 (𝐶𝐷 ↔ ¬ 𝐶 = 𝐷)
31, 2imbitrdi 251 . 2 (𝜑 → (𝐴 = 𝐵 → ¬ 𝐶 = 𝐷))
43necon2ad 2943 1 (𝜑 → (𝐶 = 𝐷𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wne 2928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2929
This theorem is referenced by:  map0g  8808  cantnf  9583  hashprg  14299  bcthlem5  25253  deg1ldgn  26023  cxpeq0  26612  lfgrn1cycl  29781  uspgrn2crct  29784  poimirlem17  37676  poimirlem20  37679  poimirlem22  37681  poimirlem27  37686  islshpat  39055  cdleme18b  40330  cdlemh  40855  prjspner1  42658
  Copyright terms: Public domain W3C validator