MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2d Structured version   Visualization version   GIF version

Theorem necon2d 2966
Description: Contrapositive inference for inequality. (Contributed by NM, 28-Dec-2008.)
Hypothesis
Ref Expression
necon2d.1 (𝜑 → (𝐴 = 𝐵𝐶𝐷))
Assertion
Ref Expression
necon2d (𝜑 → (𝐶 = 𝐷𝐴𝐵))

Proof of Theorem necon2d
StepHypRef Expression
1 necon2d.1 . . 3 (𝜑 → (𝐴 = 𝐵𝐶𝐷))
2 df-ne 2944 . . 3 (𝐶𝐷 ↔ ¬ 𝐶 = 𝐷)
31, 2syl6ib 250 . 2 (𝜑 → (𝐴 = 𝐵 → ¬ 𝐶 = 𝐷))
43necon2ad 2958 1 (𝜑 → (𝐶 = 𝐷𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wne 2943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2944
This theorem is referenced by:  map0g  8672  cantnf  9451  hashprg  14110  bcthlem5  24492  deg1ldgn  25258  cxpeq0  25833  lfgrn1cycl  28170  uspgrn2crct  28173  poimirlem17  35794  poimirlem20  35797  poimirlem22  35799  poimirlem27  35804  islshpat  37031  cdleme18b  38306  cdlemh  38831  prjspner1  40463
  Copyright terms: Public domain W3C validator