| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2d | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 28-Dec-2008.) |
| Ref | Expression |
|---|---|
| necon2d.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝐶 ≠ 𝐷)) |
| Ref | Expression |
|---|---|
| necon2d | ⊢ (𝜑 → (𝐶 = 𝐷 → 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2d.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝐶 ≠ 𝐷)) | |
| 2 | df-ne 2927 | . . 3 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
| 3 | 1, 2 | imbitrdi 251 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝐶 = 𝐷)) |
| 4 | 3 | necon2ad 2941 | 1 ⊢ (𝜑 → (𝐶 = 𝐷 → 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2927 |
| This theorem is referenced by: map0g 8860 cantnf 9653 hashprg 14367 bcthlem5 25235 deg1ldgn 26005 cxpeq0 26594 lfgrn1cycl 29742 uspgrn2crct 29745 poimirlem17 37638 poimirlem20 37641 poimirlem22 37643 poimirlem27 37648 islshpat 39017 cdleme18b 40293 cdlemh 40818 prjspner1 42621 |
| Copyright terms: Public domain | W3C validator |