MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2d Structured version   Visualization version   GIF version

Theorem necon2d 2957
Description: Contrapositive inference for inequality. (Contributed by NM, 28-Dec-2008.)
Hypothesis
Ref Expression
necon2d.1 (𝜑 → (𝐴 = 𝐵𝐶𝐷))
Assertion
Ref Expression
necon2d (𝜑 → (𝐶 = 𝐷𝐴𝐵))

Proof of Theorem necon2d
StepHypRef Expression
1 necon2d.1 . . 3 (𝜑 → (𝐴 = 𝐵𝐶𝐷))
2 df-ne 2935 . . 3 (𝐶𝐷 ↔ ¬ 𝐶 = 𝐷)
31, 2syl6ib 254 . 2 (𝜑 → (𝐴 = 𝐵 → ¬ 𝐶 = 𝐷))
43necon2ad 2949 1 (𝜑 → (𝐶 = 𝐷𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1542  wne 2934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-ne 2935
This theorem is referenced by:  map0g  8494  cantnf  9229  hashprg  13848  bcthlem5  24080  deg1ldgn  24846  cxpeq0  25421  lfgrn1cycl  27743  uspgrn2crct  27746  poimirlem17  35417  poimirlem20  35420  poimirlem22  35422  poimirlem27  35427  islshpat  36654  cdleme18b  37929  cdlemh  38454  prjspner1  40040
  Copyright terms: Public domain W3C validator