MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2d Structured version   Visualization version   GIF version

Theorem necon2d 2948
Description: Contrapositive inference for inequality. (Contributed by NM, 28-Dec-2008.)
Hypothesis
Ref Expression
necon2d.1 (𝜑 → (𝐴 = 𝐵𝐶𝐷))
Assertion
Ref Expression
necon2d (𝜑 → (𝐶 = 𝐷𝐴𝐵))

Proof of Theorem necon2d
StepHypRef Expression
1 necon2d.1 . . 3 (𝜑 → (𝐴 = 𝐵𝐶𝐷))
2 df-ne 2926 . . 3 (𝐶𝐷 ↔ ¬ 𝐶 = 𝐷)
31, 2imbitrdi 251 . 2 (𝜑 → (𝐴 = 𝐵 → ¬ 𝐶 = 𝐷))
43necon2ad 2940 1 (𝜑 → (𝐶 = 𝐷𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wne 2925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2926
This theorem is referenced by:  map0g  8818  cantnf  9608  hashprg  14320  bcthlem5  25244  deg1ldgn  26014  cxpeq0  26603  lfgrn1cycl  29768  uspgrn2crct  29771  poimirlem17  37616  poimirlem20  37619  poimirlem22  37621  poimirlem27  37626  islshpat  38995  cdleme18b  40271  cdlemh  40796  prjspner1  42599
  Copyright terms: Public domain W3C validator