| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2d | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 28-Dec-2008.) |
| Ref | Expression |
|---|---|
| necon2d.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝐶 ≠ 𝐷)) |
| Ref | Expression |
|---|---|
| necon2d | ⊢ (𝜑 → (𝐶 = 𝐷 → 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2d.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝐶 ≠ 𝐷)) | |
| 2 | df-ne 2929 | . . 3 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
| 3 | 1, 2 | imbitrdi 251 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝐶 = 𝐷)) |
| 4 | 3 | necon2ad 2943 | 1 ⊢ (𝜑 → (𝐶 = 𝐷 → 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2929 |
| This theorem is referenced by: map0g 8808 cantnf 9583 hashprg 14299 bcthlem5 25253 deg1ldgn 26023 cxpeq0 26612 lfgrn1cycl 29781 uspgrn2crct 29784 poimirlem17 37676 poimirlem20 37679 poimirlem22 37681 poimirlem27 37686 islshpat 39055 cdleme18b 40330 cdlemh 40855 prjspner1 42658 |
| Copyright terms: Public domain | W3C validator |