| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2d | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 28-Dec-2008.) |
| Ref | Expression |
|---|---|
| necon2d.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝐶 ≠ 𝐷)) |
| Ref | Expression |
|---|---|
| necon2d | ⊢ (𝜑 → (𝐶 = 𝐷 → 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2d.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝐶 ≠ 𝐷)) | |
| 2 | df-ne 2934 | . . 3 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
| 3 | 1, 2 | imbitrdi 251 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝐶 = 𝐷)) |
| 4 | 3 | necon2ad 2948 | 1 ⊢ (𝜑 → (𝐶 = 𝐷 → 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2934 |
| This theorem is referenced by: map0g 8903 cantnf 9712 hashprg 14418 bcthlem5 25285 deg1ldgn 26055 cxpeq0 26644 lfgrn1cycl 29792 uspgrn2crct 29795 poimirlem17 37666 poimirlem20 37669 poimirlem22 37671 poimirlem27 37676 islshpat 39040 cdleme18b 40316 cdlemh 40841 prjspner1 42616 |
| Copyright terms: Public domain | W3C validator |