MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2d Structured version   Visualization version   GIF version

Theorem necon2d 2952
Description: Contrapositive inference for inequality. (Contributed by NM, 28-Dec-2008.)
Hypothesis
Ref Expression
necon2d.1 (𝜑 → (𝐴 = 𝐵𝐶𝐷))
Assertion
Ref Expression
necon2d (𝜑 → (𝐶 = 𝐷𝐴𝐵))

Proof of Theorem necon2d
StepHypRef Expression
1 necon2d.1 . . 3 (𝜑 → (𝐴 = 𝐵𝐶𝐷))
2 df-ne 2930 . . 3 (𝐶𝐷 ↔ ¬ 𝐶 = 𝐷)
31, 2imbitrdi 251 . 2 (𝜑 → (𝐴 = 𝐵 → ¬ 𝐶 = 𝐷))
43necon2ad 2944 1 (𝜑 → (𝐶 = 𝐷𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wne 2929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2930
This theorem is referenced by:  map0g  8814  cantnf  9590  hashprg  14304  bcthlem5  25256  deg1ldgn  26026  cxpeq0  26615  lfgrn1cycl  29785  uspgrn2crct  29788  poimirlem17  37697  poimirlem20  37700  poimirlem22  37702  poimirlem27  37707  islshpat  39136  cdleme18b  40411  cdlemh  40936  prjspner1  42744
  Copyright terms: Public domain W3C validator