MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2d Structured version   Visualization version   GIF version

Theorem necon2d 2948
Description: Contrapositive inference for inequality. (Contributed by NM, 28-Dec-2008.)
Hypothesis
Ref Expression
necon2d.1 (𝜑 → (𝐴 = 𝐵𝐶𝐷))
Assertion
Ref Expression
necon2d (𝜑 → (𝐶 = 𝐷𝐴𝐵))

Proof of Theorem necon2d
StepHypRef Expression
1 necon2d.1 . . 3 (𝜑 → (𝐴 = 𝐵𝐶𝐷))
2 df-ne 2926 . . 3 (𝐶𝐷 ↔ ¬ 𝐶 = 𝐷)
31, 2imbitrdi 251 . 2 (𝜑 → (𝐴 = 𝐵 → ¬ 𝐶 = 𝐷))
43necon2ad 2940 1 (𝜑 → (𝐶 = 𝐷𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wne 2925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2926
This theorem is referenced by:  map0g  8857  cantnf  9646  hashprg  14360  bcthlem5  25228  deg1ldgn  25998  cxpeq0  26587  lfgrn1cycl  29735  uspgrn2crct  29738  poimirlem17  37631  poimirlem20  37634  poimirlem22  37636  poimirlem27  37641  islshpat  39010  cdleme18b  40286  cdlemh  40811  prjspner1  42614
  Copyright terms: Public domain W3C validator