![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon2d | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 28-Dec-2008.) |
Ref | Expression |
---|---|
necon2d.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝐶 ≠ 𝐷)) |
Ref | Expression |
---|---|
necon2d | ⊢ (𝜑 → (𝐶 = 𝐷 → 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2d.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝐶 ≠ 𝐷)) | |
2 | df-ne 2976 | . . 3 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
3 | 1, 2 | syl6ib 243 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝐶 = 𝐷)) |
4 | 3 | necon2ad 2990 | 1 ⊢ (𝜑 → (𝐶 = 𝐷 → 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1653 ≠ wne 2975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-ne 2976 |
This theorem is referenced by: map0g 8140 cantnf 8844 hashprg 13436 bcthlem5 23458 deg1ldgn 24198 cxpeq0 24769 lfgrn1cycl 27060 uspgrn2crct 27063 poimirlem17 33919 poimirlem20 33922 poimirlem22 33924 poimirlem27 33929 islshpat 35042 cdleme18b 36317 cdlemh 36842 |
Copyright terms: Public domain | W3C validator |