MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashprg Structured version   Visualization version   GIF version

Theorem hashprg 13850
Description: The size of an unordered pair. (Contributed by Mario Carneiro, 27-Sep-2013.) (Revised by Mario Carneiro, 5-May-2016.) (Revised by AV, 18-Sep-2021.)
Assertion
Ref Expression
hashprg ((𝐴𝑉𝐵𝑊) → (𝐴𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2))

Proof of Theorem hashprg
StepHypRef Expression
1 simpr 488 . . . . 5 ((𝐴𝑉𝐵𝑊) → 𝐵𝑊)
2 elsni 4533 . . . . . . 7 (𝐵 ∈ {𝐴} → 𝐵 = 𝐴)
32eqcomd 2744 . . . . . 6 (𝐵 ∈ {𝐴} → 𝐴 = 𝐵)
43necon3ai 2959 . . . . 5 (𝐴𝐵 → ¬ 𝐵 ∈ {𝐴})
5 snfi 8644 . . . . . 6 {𝐴} ∈ Fin
6 hashunsng 13847 . . . . . . 7 (𝐵𝑊 → (({𝐴} ∈ Fin ∧ ¬ 𝐵 ∈ {𝐴}) → (♯‘({𝐴} ∪ {𝐵})) = ((♯‘{𝐴}) + 1)))
76imp 410 . . . . . 6 ((𝐵𝑊 ∧ ({𝐴} ∈ Fin ∧ ¬ 𝐵 ∈ {𝐴})) → (♯‘({𝐴} ∪ {𝐵})) = ((♯‘{𝐴}) + 1))
85, 7mpanr1 703 . . . . 5 ((𝐵𝑊 ∧ ¬ 𝐵 ∈ {𝐴}) → (♯‘({𝐴} ∪ {𝐵})) = ((♯‘{𝐴}) + 1))
91, 4, 8syl2an 599 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → (♯‘({𝐴} ∪ {𝐵})) = ((♯‘{𝐴}) + 1))
10 hashsng 13824 . . . . . . 7 (𝐴𝑉 → (♯‘{𝐴}) = 1)
1110adantr 484 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (♯‘{𝐴}) = 1)
1211adantr 484 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → (♯‘{𝐴}) = 1)
1312oveq1d 7187 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → ((♯‘{𝐴}) + 1) = (1 + 1))
149, 13eqtrd 2773 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → (♯‘({𝐴} ∪ {𝐵})) = (1 + 1))
15 df-pr 4519 . . . 4 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
1615fveq2i 6679 . . 3 (♯‘{𝐴, 𝐵}) = (♯‘({𝐴} ∪ {𝐵}))
17 df-2 11781 . . 3 2 = (1 + 1)
1814, 16, 173eqtr4g 2798 . 2 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → (♯‘{𝐴, 𝐵}) = 2)
19 1ne2 11926 . . . . . . 7 1 ≠ 2
2019a1i 11 . . . . . 6 ((𝐴𝑉𝐵𝑊) → 1 ≠ 2)
2111, 20eqnetrd 3001 . . . . 5 ((𝐴𝑉𝐵𝑊) → (♯‘{𝐴}) ≠ 2)
22 dfsn2 4529 . . . . . . . 8 {𝐴} = {𝐴, 𝐴}
23 preq2 4625 . . . . . . . 8 (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵})
2422, 23eqtr2id 2786 . . . . . . 7 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴})
2524fveq2d 6680 . . . . . 6 (𝐴 = 𝐵 → (♯‘{𝐴, 𝐵}) = (♯‘{𝐴}))
2625neeq1d 2993 . . . . 5 (𝐴 = 𝐵 → ((♯‘{𝐴, 𝐵}) ≠ 2 ↔ (♯‘{𝐴}) ≠ 2))
2721, 26syl5ibrcom 250 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐴 = 𝐵 → (♯‘{𝐴, 𝐵}) ≠ 2))
2827necon2d 2957 . . 3 ((𝐴𝑉𝐵𝑊) → ((♯‘{𝐴, 𝐵}) = 2 → 𝐴𝐵))
2928imp 410 . 2 (((𝐴𝑉𝐵𝑊) ∧ (♯‘{𝐴, 𝐵}) = 2) → 𝐴𝐵)
3018, 29impbida 801 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wne 2934  cun 3841  {csn 4516  {cpr 4518  cfv 6339  (class class class)co 7172  Fincfn 8557  1c1 10618   + caddc 10620  2c2 11773  chash 13784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7481  ax-cnex 10673  ax-resscn 10674  ax-1cn 10675  ax-icn 10676  ax-addcl 10677  ax-addrcl 10678  ax-mulcl 10679  ax-mulrcl 10680  ax-mulcom 10681  ax-addass 10682  ax-mulass 10683  ax-distr 10684  ax-i2m1 10685  ax-1ne0 10686  ax-1rid 10687  ax-rnegex 10688  ax-rrecex 10689  ax-cnre 10690  ax-pre-lttri 10691  ax-pre-lttrn 10692  ax-pre-ltadd 10693  ax-pre-mulgt0 10694
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7129  df-ov 7175  df-oprab 7176  df-mpo 7177  df-om 7602  df-1st 7716  df-2nd 7717  df-wrecs 7978  df-recs 8039  df-rdg 8077  df-1o 8133  df-oadd 8137  df-er 8322  df-en 8558  df-dom 8559  df-sdom 8560  df-fin 8561  df-dju 9405  df-card 9443  df-pnf 10757  df-mnf 10758  df-xr 10759  df-ltxr 10760  df-le 10761  df-sub 10952  df-neg 10953  df-nn 11719  df-2 11781  df-n0 11979  df-z 12065  df-uz 12327  df-fz 12984  df-hash 13785
This theorem is referenced by:  hashprb  13852  prhash2ex  13854  hashfun  13892  hash2exprb  13925  nehash2  13928  hashtpg  13939  elss2prb  13941  wrdlen2i  14395  isnzr2hash  20158  upgrex  27039  umgrbi  27048  usgr1e  27189  usgrexmplef  27203  cusgrexilem2  27386  cusgrfilem1  27399  umgr2v2e  27469  vdegp1bi  27481  eulerpathpr  28179  ccfldextdgrr  31316  coinflipprob  32018  cusgredgex  32656  subfacp1lem1  32714  poimirlem9  35431  fourierdlem54  43265  fourierdlem102  43313  fourierdlem103  43314  fourierdlem104  43315  fourierdlem114  43325  prpair  44516  prproropf1olem1  44518  paireqne  44526  prprspr2  44533  reuprpr  44538
  Copyright terms: Public domain W3C validator