MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashprg Structured version   Visualization version   GIF version

Theorem hashprg 14223
Description: The size of an unordered pair. (Contributed by Mario Carneiro, 27-Sep-2013.) (Revised by Mario Carneiro, 5-May-2016.) (Revised by AV, 18-Sep-2021.)
Assertion
Ref Expression
hashprg ((𝐴𝑉𝐵𝑊) → (𝐴𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2))

Proof of Theorem hashprg
StepHypRef Expression
1 simpr 486 . . . . 5 ((𝐴𝑉𝐵𝑊) → 𝐵𝑊)
2 elsni 4602 . . . . . . 7 (𝐵 ∈ {𝐴} → 𝐵 = 𝐴)
32eqcomd 2744 . . . . . 6 (𝐵 ∈ {𝐴} → 𝐴 = 𝐵)
43necon3ai 2967 . . . . 5 (𝐴𝐵 → ¬ 𝐵 ∈ {𝐴})
5 snfi 8922 . . . . . 6 {𝐴} ∈ Fin
6 hashunsng 14220 . . . . . . 7 (𝐵𝑊 → (({𝐴} ∈ Fin ∧ ¬ 𝐵 ∈ {𝐴}) → (♯‘({𝐴} ∪ {𝐵})) = ((♯‘{𝐴}) + 1)))
76imp 408 . . . . . 6 ((𝐵𝑊 ∧ ({𝐴} ∈ Fin ∧ ¬ 𝐵 ∈ {𝐴})) → (♯‘({𝐴} ∪ {𝐵})) = ((♯‘{𝐴}) + 1))
85, 7mpanr1 702 . . . . 5 ((𝐵𝑊 ∧ ¬ 𝐵 ∈ {𝐴}) → (♯‘({𝐴} ∪ {𝐵})) = ((♯‘{𝐴}) + 1))
91, 4, 8syl2an 597 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → (♯‘({𝐴} ∪ {𝐵})) = ((♯‘{𝐴}) + 1))
10 hashsng 14197 . . . . . . 7 (𝐴𝑉 → (♯‘{𝐴}) = 1)
1110adantr 482 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (♯‘{𝐴}) = 1)
1211adantr 482 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → (♯‘{𝐴}) = 1)
1312oveq1d 7365 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → ((♯‘{𝐴}) + 1) = (1 + 1))
149, 13eqtrd 2778 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → (♯‘({𝐴} ∪ {𝐵})) = (1 + 1))
15 df-pr 4588 . . . 4 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
1615fveq2i 6841 . . 3 (♯‘{𝐴, 𝐵}) = (♯‘({𝐴} ∪ {𝐵}))
17 df-2 12150 . . 3 2 = (1 + 1)
1814, 16, 173eqtr4g 2803 . 2 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → (♯‘{𝐴, 𝐵}) = 2)
19 1ne2 12295 . . . . . . 7 1 ≠ 2
2019a1i 11 . . . . . 6 ((𝐴𝑉𝐵𝑊) → 1 ≠ 2)
2111, 20eqnetrd 3010 . . . . 5 ((𝐴𝑉𝐵𝑊) → (♯‘{𝐴}) ≠ 2)
22 dfsn2 4598 . . . . . . . 8 {𝐴} = {𝐴, 𝐴}
23 preq2 4694 . . . . . . . 8 (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵})
2422, 23eqtr2id 2791 . . . . . . 7 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴})
2524fveq2d 6842 . . . . . 6 (𝐴 = 𝐵 → (♯‘{𝐴, 𝐵}) = (♯‘{𝐴}))
2625neeq1d 3002 . . . . 5 (𝐴 = 𝐵 → ((♯‘{𝐴, 𝐵}) ≠ 2 ↔ (♯‘{𝐴}) ≠ 2))
2721, 26syl5ibrcom 247 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐴 = 𝐵 → (♯‘{𝐴, 𝐵}) ≠ 2))
2827necon2d 2965 . . 3 ((𝐴𝑉𝐵𝑊) → ((♯‘{𝐴, 𝐵}) = 2 → 𝐴𝐵))
2928imp 408 . 2 (((𝐴𝑉𝐵𝑊) ∧ (♯‘{𝐴, 𝐵}) = 2) → 𝐴𝐵)
3018, 29impbida 800 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2942  cun 3907  {csn 4585  {cpr 4587  cfv 6492  (class class class)co 7350  Fincfn 8817  1c1 10986   + caddc 10988  2c2 12142  chash 14158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7663  ax-cnex 11041  ax-resscn 11042  ax-1cn 11043  ax-icn 11044  ax-addcl 11045  ax-addrcl 11046  ax-mulcl 11047  ax-mulrcl 11048  ax-mulcom 11049  ax-addass 11050  ax-mulass 11051  ax-distr 11052  ax-i2m1 11053  ax-1ne0 11054  ax-1rid 11055  ax-rnegex 11056  ax-rrecex 11057  ax-cnre 11058  ax-pre-lttri 11059  ax-pre-lttrn 11060  ax-pre-ltadd 11061  ax-pre-mulgt0 11062
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-int 4907  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6250  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6444  df-fun 6494  df-fn 6495  df-f 6496  df-f1 6497  df-fo 6498  df-f1o 6499  df-fv 6500  df-riota 7306  df-ov 7353  df-oprab 7354  df-mpo 7355  df-om 7794  df-1st 7912  df-2nd 7913  df-frecs 8180  df-wrecs 8211  df-recs 8285  df-rdg 8324  df-1o 8380  df-oadd 8384  df-er 8582  df-en 8818  df-dom 8819  df-sdom 8820  df-fin 8821  df-dju 9771  df-card 9809  df-pnf 11125  df-mnf 11126  df-xr 11127  df-ltxr 11128  df-le 11129  df-sub 11321  df-neg 11322  df-nn 12088  df-2 12150  df-n0 12348  df-z 12434  df-uz 12697  df-fz 13354  df-hash 14159
This theorem is referenced by:  hashprb  14225  prhash2ex  14227  hashfun  14265  hash2exprb  14298  nehash2  14301  hashtpg  14312  elss2prb  14314  wrdlen2i  14763  isnzr2hash  20657  upgrex  27829  umgrbi  27838  usgr1e  27979  usgrexmplef  27993  cusgrexilem2  28176  cusgrfilem1  28189  umgr2v2e  28259  vdegp1bi  28271  eulerpathpr  28970  ccfldextdgrr  32127  coinflipprob  32840  cusgredgex  33476  subfacp1lem1  33534  poimirlem9  35973  fourierdlem54  44111  fourierdlem102  44159  fourierdlem103  44160  fourierdlem104  44161  fourierdlem114  44171  prpair  45393  prproropf1olem1  45395  paireqne  45403  prprspr2  45410  reuprpr  45415
  Copyright terms: Public domain W3C validator