MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashprg Structured version   Visualization version   GIF version

Theorem hashprg 14294
Description: The size of an unordered pair. (Contributed by Mario Carneiro, 27-Sep-2013.) (Revised by Mario Carneiro, 5-May-2016.) (Revised by AV, 18-Sep-2021.)
Assertion
Ref Expression
hashprg ((𝐴𝑉𝐵𝑊) → (𝐴𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2))

Proof of Theorem hashprg
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝐴𝑉𝐵𝑊) → 𝐵𝑊)
2 elsni 4591 . . . . . . 7 (𝐵 ∈ {𝐴} → 𝐵 = 𝐴)
32eqcomd 2736 . . . . . 6 (𝐵 ∈ {𝐴} → 𝐴 = 𝐵)
43necon3ai 2951 . . . . 5 (𝐴𝐵 → ¬ 𝐵 ∈ {𝐴})
5 snfi 8960 . . . . . 6 {𝐴} ∈ Fin
6 hashunsng 14291 . . . . . . 7 (𝐵𝑊 → (({𝐴} ∈ Fin ∧ ¬ 𝐵 ∈ {𝐴}) → (♯‘({𝐴} ∪ {𝐵})) = ((♯‘{𝐴}) + 1)))
76imp 406 . . . . . 6 ((𝐵𝑊 ∧ ({𝐴} ∈ Fin ∧ ¬ 𝐵 ∈ {𝐴})) → (♯‘({𝐴} ∪ {𝐵})) = ((♯‘{𝐴}) + 1))
85, 7mpanr1 703 . . . . 5 ((𝐵𝑊 ∧ ¬ 𝐵 ∈ {𝐴}) → (♯‘({𝐴} ∪ {𝐵})) = ((♯‘{𝐴}) + 1))
91, 4, 8syl2an 596 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → (♯‘({𝐴} ∪ {𝐵})) = ((♯‘{𝐴}) + 1))
10 hashsng 14268 . . . . . . 7 (𝐴𝑉 → (♯‘{𝐴}) = 1)
1110adantr 480 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (♯‘{𝐴}) = 1)
1211adantr 480 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → (♯‘{𝐴}) = 1)
1312oveq1d 7356 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → ((♯‘{𝐴}) + 1) = (1 + 1))
149, 13eqtrd 2765 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → (♯‘({𝐴} ∪ {𝐵})) = (1 + 1))
15 df-pr 4577 . . . 4 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
1615fveq2i 6820 . . 3 (♯‘{𝐴, 𝐵}) = (♯‘({𝐴} ∪ {𝐵}))
17 df-2 12180 . . 3 2 = (1 + 1)
1814, 16, 173eqtr4g 2790 . 2 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → (♯‘{𝐴, 𝐵}) = 2)
19 1ne2 12320 . . . . . . 7 1 ≠ 2
2019a1i 11 . . . . . 6 ((𝐴𝑉𝐵𝑊) → 1 ≠ 2)
2111, 20eqnetrd 2993 . . . . 5 ((𝐴𝑉𝐵𝑊) → (♯‘{𝐴}) ≠ 2)
22 dfsn2 4587 . . . . . . . 8 {𝐴} = {𝐴, 𝐴}
23 preq2 4685 . . . . . . . 8 (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵})
2422, 23eqtr2id 2778 . . . . . . 7 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴})
2524fveq2d 6821 . . . . . 6 (𝐴 = 𝐵 → (♯‘{𝐴, 𝐵}) = (♯‘{𝐴}))
2625neeq1d 2985 . . . . 5 (𝐴 = 𝐵 → ((♯‘{𝐴, 𝐵}) ≠ 2 ↔ (♯‘{𝐴}) ≠ 2))
2721, 26syl5ibrcom 247 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐴 = 𝐵 → (♯‘{𝐴, 𝐵}) ≠ 2))
2827necon2d 2949 . . 3 ((𝐴𝑉𝐵𝑊) → ((♯‘{𝐴, 𝐵}) = 2 → 𝐴𝐵))
2928imp 406 . 2 (((𝐴𝑉𝐵𝑊) ∧ (♯‘{𝐴, 𝐵}) = 2) → 𝐴𝐵)
3018, 29impbida 800 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wne 2926  cun 3898  {csn 4574  {cpr 4576  cfv 6477  (class class class)co 7341  Fincfn 8864  1c1 10999   + caddc 11001  2c2 12172  chash 14229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-oadd 8384  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-dju 9786  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-n0 12374  df-z 12461  df-uz 12725  df-fz 13400  df-hash 14230
This theorem is referenced by:  hashprb  14296  prhash2ex  14298  hashfun  14336  hash2exprb  14370  nehash2  14373  hashtpg  14384  elss2prb  14387  hash3tpexb  14393  wrdlen2i  14841  isnzr2hash  20427  upgrex  29063  umgrbi  29072  usgr1e  29216  usgrexmplef  29230  cusgrexilem2  29413  cusgrfilem1  29427  umgr2v2e  29497  vdegp1bi  29509  eulerpathpr  30210  drngidlhash  33389  ccfldextdgrr  33675  coinflipprob  34483  cusgredgex  35134  subfacp1lem1  35191  poimirlem9  37648  fourierdlem54  46177  fourierdlem102  46225  fourierdlem103  46226  fourierdlem104  46227  fourierdlem114  46237  prpair  47511  prproropf1olem1  47513  paireqne  47521  prprspr2  47528  reuprpr  47533  stgrusgra  47969  gpgusgralem  48066
  Copyright terms: Public domain W3C validator