Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem22 Structured version   Visualization version   GIF version

Theorem poimirlem22 36498
Description: Lemma for poimir 36509, that a given face belongs to exactly two simplices, provided it's not on the boundary of the cube. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (πœ‘ β†’ 𝑁 ∈ β„•)
poimirlem22.s 𝑆 = {𝑑 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘‘), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))}
poimirlem22.1 (πœ‘ β†’ 𝐹:(0...(𝑁 βˆ’ 1))⟢((0...𝐾) ↑m (1...𝑁)))
poimirlem22.2 (πœ‘ β†’ 𝑇 ∈ 𝑆)
poimirlem22.3 ((πœ‘ ∧ 𝑛 ∈ (1...𝑁)) β†’ βˆƒπ‘ ∈ ran 𝐹(π‘β€˜π‘›) β‰  0)
poimirlem22.4 ((πœ‘ ∧ 𝑛 ∈ (1...𝑁)) β†’ βˆƒπ‘ ∈ ran 𝐹(π‘β€˜π‘›) β‰  𝐾)
Assertion
Ref Expression
poimirlem22 (πœ‘ β†’ βˆƒ!𝑧 ∈ 𝑆 𝑧 β‰  𝑇)
Distinct variable groups:   𝑓,𝑗,𝑛,𝑝,𝑑,𝑦,𝑧   πœ‘,𝑗,𝑛,𝑦   𝑗,𝐹,𝑛,𝑦   𝑗,𝑁,𝑛,𝑦   𝑇,𝑗,𝑛,𝑦   πœ‘,𝑝,𝑑   𝑓,𝐾,𝑗,𝑛,𝑝,𝑑   𝑓,𝑁,𝑝,𝑑   𝑇,𝑓,𝑝   πœ‘,𝑧   𝑓,𝐹,𝑝,𝑑,𝑧   𝑧,𝐾   𝑧,𝑁   𝑑,𝑇,𝑧   𝑆,𝑗,𝑛,𝑝,𝑑,𝑦,𝑧
Allowed substitution hints:   πœ‘(𝑓)   𝑆(𝑓)   𝐾(𝑦)

Proof of Theorem poimirlem22
StepHypRef Expression
1 poimir.0 . . . . 5 (πœ‘ β†’ 𝑁 ∈ β„•)
21adantr 481 . . . 4 ((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ 𝑁 ∈ β„•)
3 poimirlem22.s . . . 4 𝑆 = {𝑑 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘‘), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))}
4 poimirlem22.1 . . . . 5 (πœ‘ β†’ 𝐹:(0...(𝑁 βˆ’ 1))⟢((0...𝐾) ↑m (1...𝑁)))
54adantr 481 . . . 4 ((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ 𝐹:(0...(𝑁 βˆ’ 1))⟢((0...𝐾) ↑m (1...𝑁)))
6 poimirlem22.2 . . . . 5 (πœ‘ β†’ 𝑇 ∈ 𝑆)
76adantr 481 . . . 4 ((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ 𝑇 ∈ 𝑆)
8 simpr 485 . . . 4 ((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1)))
92, 3, 5, 7, 8poimirlem15 36491 . . 3 ((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ ⟨⟨(1st β€˜(1st β€˜π‘‡)), ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))⟩, (2nd β€˜π‘‡)⟩ ∈ 𝑆)
10 fveq2 6888 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑 = 𝑇 β†’ (2nd β€˜π‘‘) = (2nd β€˜π‘‡))
1110breq2d 5159 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 = 𝑇 β†’ (𝑦 < (2nd β€˜π‘‘) ↔ 𝑦 < (2nd β€˜π‘‡)))
1211ifbid 4550 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 = 𝑇 β†’ if(𝑦 < (2nd β€˜π‘‘), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd β€˜π‘‡), 𝑦, (𝑦 + 1)))
1312csbeq1d 3896 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 = 𝑇 β†’ ⦋if(𝑦 < (2nd β€˜π‘‘), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))) = ⦋if(𝑦 < (2nd β€˜π‘‡), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))
14 2fveq3 6893 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 = 𝑇 β†’ (1st β€˜(1st β€˜π‘‘)) = (1st β€˜(1st β€˜π‘‡)))
15 2fveq3 6893 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑑 = 𝑇 β†’ (2nd β€˜(1st β€˜π‘‘)) = (2nd β€˜(1st β€˜π‘‡)))
1615imaeq1d 6056 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑑 = 𝑇 β†’ ((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) = ((2nd β€˜(1st β€˜π‘‡)) β€œ (1...𝑗)))
1716xpeq1d 5704 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑 = 𝑇 β†’ (((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) = (((2nd β€˜(1st β€˜π‘‡)) β€œ (1...𝑗)) Γ— {1}))
1815imaeq1d 6056 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑑 = 𝑇 β†’ ((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) = ((2nd β€˜(1st β€˜π‘‡)) β€œ ((𝑗 + 1)...𝑁)))
1918xpeq1d 5704 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑 = 𝑇 β†’ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}) = (((2nd β€˜(1st β€˜π‘‡)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))
2017, 19uneq12d 4163 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 = 𝑇 β†’ ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})) = ((((2nd β€˜(1st β€˜π‘‡)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‡)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})))
2114, 20oveq12d 7423 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 = 𝑇 β†’ ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))) = ((1st β€˜(1st β€˜π‘‡)) ∘f + ((((2nd β€˜(1st β€˜π‘‡)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‡)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))
2221csbeq2dv 3899 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 = 𝑇 β†’ ⦋if(𝑦 < (2nd β€˜π‘‡), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))) = ⦋if(𝑦 < (2nd β€˜π‘‡), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‡)) ∘f + ((((2nd β€˜(1st β€˜π‘‡)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‡)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))
2313, 22eqtrd 2772 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = 𝑇 β†’ ⦋if(𝑦 < (2nd β€˜π‘‘), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))) = ⦋if(𝑦 < (2nd β€˜π‘‡), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‡)) ∘f + ((((2nd β€˜(1st β€˜π‘‡)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‡)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))
2423mpteq2dv 5249 . . . . . . . . . . . . . . . . . . 19 (𝑑 = 𝑇 β†’ (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘‘), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})))) = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘‡), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‡)) ∘f + ((((2nd β€˜(1st β€˜π‘‡)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‡)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})))))
2524eqeq2d 2743 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑇 β†’ (𝐹 = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘‘), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘‡), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‡)) ∘f + ((((2nd β€˜(1st β€˜π‘‡)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‡)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))))
2625, 3elrab2 3685 . . . . . . . . . . . . . . . . 17 (𝑇 ∈ 𝑆 ↔ (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘‡), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‡)) ∘f + ((((2nd β€˜(1st β€˜π‘‡)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‡)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))))
2726simprbi 497 . . . . . . . . . . . . . . . 16 (𝑇 ∈ 𝑆 β†’ 𝐹 = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘‡), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‡)) ∘f + ((((2nd β€˜(1st β€˜π‘‡)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‡)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})))))
286, 27syl 17 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝐹 = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘‡), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‡)) ∘f + ((((2nd β€˜(1st β€˜π‘‡)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‡)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})))))
2928adantr 481 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ 𝐹 = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘‡), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‡)) ∘f + ((((2nd β€˜(1st β€˜π‘‡)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‡)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})))))
30 elrabi 3676 . . . . . . . . . . . . . . . . . . . . 21 (𝑇 ∈ {𝑑 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘‘), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))} β†’ 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)))
3130, 3eleq2s 2851 . . . . . . . . . . . . . . . . . . . 20 (𝑇 ∈ 𝑆 β†’ 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)))
326, 31syl 17 . . . . . . . . . . . . . . . . . . 19 (πœ‘ β†’ 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)))
33 xp1st 8003 . . . . . . . . . . . . . . . . . . 19 (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)) β†’ (1st β€˜π‘‡) ∈ (((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}))
3432, 33syl 17 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ (1st β€˜π‘‡) ∈ (((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}))
35 xp1st 8003 . . . . . . . . . . . . . . . . . 18 ((1st β€˜π‘‡) ∈ (((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) β†’ (1st β€˜(1st β€˜π‘‡)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
3634, 35syl 17 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ (1st β€˜(1st β€˜π‘‡)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
37 elmapi 8839 . . . . . . . . . . . . . . . . 17 ((1st β€˜(1st β€˜π‘‡)) ∈ ((0..^𝐾) ↑m (1...𝑁)) β†’ (1st β€˜(1st β€˜π‘‡)):(1...𝑁)⟢(0..^𝐾))
3836, 37syl 17 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (1st β€˜(1st β€˜π‘‡)):(1...𝑁)⟢(0..^𝐾))
39 elfzoelz 13628 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (0..^𝐾) β†’ 𝑛 ∈ β„€)
4039ssriv 3985 . . . . . . . . . . . . . . . 16 (0..^𝐾) βŠ† β„€
41 fss 6731 . . . . . . . . . . . . . . . 16 (((1st β€˜(1st β€˜π‘‡)):(1...𝑁)⟢(0..^𝐾) ∧ (0..^𝐾) βŠ† β„€) β†’ (1st β€˜(1st β€˜π‘‡)):(1...𝑁)βŸΆβ„€)
4238, 40, 41sylancl 586 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (1st β€˜(1st β€˜π‘‡)):(1...𝑁)βŸΆβ„€)
4342adantr 481 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ (1st β€˜(1st β€˜π‘‡)):(1...𝑁)βŸΆβ„€)
44 xp2nd 8004 . . . . . . . . . . . . . . . . 17 ((1st β€˜π‘‡) ∈ (((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) β†’ (2nd β€˜(1st β€˜π‘‡)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)})
4534, 44syl 17 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (2nd β€˜(1st β€˜π‘‡)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)})
46 fvex 6901 . . . . . . . . . . . . . . . . 17 (2nd β€˜(1st β€˜π‘‡)) ∈ V
47 f1oeq1 6818 . . . . . . . . . . . . . . . . 17 (𝑓 = (2nd β€˜(1st β€˜π‘‡)) β†’ (𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁) ↔ (2nd β€˜(1st β€˜π‘‡)):(1...𝑁)–1-1-ontoβ†’(1...𝑁)))
4846, 47elab 3667 . . . . . . . . . . . . . . . 16 ((2nd β€˜(1st β€˜π‘‡)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)} ↔ (2nd β€˜(1st β€˜π‘‡)):(1...𝑁)–1-1-ontoβ†’(1...𝑁))
4945, 48sylib 217 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (2nd β€˜(1st β€˜π‘‡)):(1...𝑁)–1-1-ontoβ†’(1...𝑁))
5049adantr 481 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ (2nd β€˜(1st β€˜π‘‡)):(1...𝑁)–1-1-ontoβ†’(1...𝑁))
512, 29, 43, 50, 8poimirlem1 36477 . . . . . . . . . . . . 13 ((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ Β¬ βˆƒ*𝑛 ∈ (1...𝑁)((πΉβ€˜((2nd β€˜π‘‡) βˆ’ 1))β€˜π‘›) β‰  ((πΉβ€˜(2nd β€˜π‘‡))β€˜π‘›))
5251adantr 481 . . . . . . . . . . . 12 (((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) β†’ Β¬ βˆƒ*𝑛 ∈ (1...𝑁)((πΉβ€˜((2nd β€˜π‘‡) βˆ’ 1))β€˜π‘›) β‰  ((πΉβ€˜(2nd β€˜π‘‡))β€˜π‘›))
531ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) ∧ (2nd β€˜π‘§) β‰  (2nd β€˜π‘‡)) β†’ 𝑁 ∈ β„•)
54 fveq2 6888 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑 = 𝑧 β†’ (2nd β€˜π‘‘) = (2nd β€˜π‘§))
5554breq2d 5159 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 = 𝑧 β†’ (𝑦 < (2nd β€˜π‘‘) ↔ 𝑦 < (2nd β€˜π‘§)))
5655ifbid 4550 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 = 𝑧 β†’ if(𝑦 < (2nd β€˜π‘‘), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd β€˜π‘§), 𝑦, (𝑦 + 1)))
5756csbeq1d 3896 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 = 𝑧 β†’ ⦋if(𝑦 < (2nd β€˜π‘‘), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))) = ⦋if(𝑦 < (2nd β€˜π‘§), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))
58 2fveq3 6893 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 = 𝑧 β†’ (1st β€˜(1st β€˜π‘‘)) = (1st β€˜(1st β€˜π‘§)))
59 2fveq3 6893 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑑 = 𝑧 β†’ (2nd β€˜(1st β€˜π‘‘)) = (2nd β€˜(1st β€˜π‘§)))
6059imaeq1d 6056 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑑 = 𝑧 β†’ ((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) = ((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)))
6160xpeq1d 5704 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑 = 𝑧 β†’ (((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) = (((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)) Γ— {1}))
6259imaeq1d 6056 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑑 = 𝑧 β†’ ((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) = ((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)))
6362xpeq1d 5704 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑 = 𝑧 β†’ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}) = (((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))
6461, 63uneq12d 4163 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 = 𝑧 β†’ ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})) = ((((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})))
6558, 64oveq12d 7423 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 = 𝑧 β†’ ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))) = ((1st β€˜(1st β€˜π‘§)) ∘f + ((((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))
6665csbeq2dv 3899 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 = 𝑧 β†’ ⦋if(𝑦 < (2nd β€˜π‘§), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))) = ⦋if(𝑦 < (2nd β€˜π‘§), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘§)) ∘f + ((((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))
6757, 66eqtrd 2772 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = 𝑧 β†’ ⦋if(𝑦 < (2nd β€˜π‘‘), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))) = ⦋if(𝑦 < (2nd β€˜π‘§), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘§)) ∘f + ((((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))
6867mpteq2dv 5249 . . . . . . . . . . . . . . . . . . 19 (𝑑 = 𝑧 β†’ (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘‘), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})))) = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘§), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘§)) ∘f + ((((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})))))
6968eqeq2d 2743 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑧 β†’ (𝐹 = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘‘), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘§), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘§)) ∘f + ((((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))))
7069, 3elrab2 3685 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ 𝑆 ↔ (𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘§), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘§)) ∘f + ((((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))))
7170simprbi 497 . . . . . . . . . . . . . . . 16 (𝑧 ∈ 𝑆 β†’ 𝐹 = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘§), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘§)) ∘f + ((((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})))))
7271ad2antlr 725 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) ∧ (2nd β€˜π‘§) β‰  (2nd β€˜π‘‡)) β†’ 𝐹 = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘§), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘§)) ∘f + ((((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})))))
73 elrabi 3676 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ {𝑑 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘‘), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))} β†’ 𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)))
7473, 3eleq2s 2851 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ 𝑆 β†’ 𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)))
75 xp1st 8003 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)) β†’ (1st β€˜π‘§) ∈ (((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}))
7674, 75syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ 𝑆 β†’ (1st β€˜π‘§) ∈ (((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}))
77 xp1st 8003 . . . . . . . . . . . . . . . . . . 19 ((1st β€˜π‘§) ∈ (((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) β†’ (1st β€˜(1st β€˜π‘§)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
7876, 77syl 17 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ 𝑆 β†’ (1st β€˜(1st β€˜π‘§)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
79 elmapi 8839 . . . . . . . . . . . . . . . . . 18 ((1st β€˜(1st β€˜π‘§)) ∈ ((0..^𝐾) ↑m (1...𝑁)) β†’ (1st β€˜(1st β€˜π‘§)):(1...𝑁)⟢(0..^𝐾))
8078, 79syl 17 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ 𝑆 β†’ (1st β€˜(1st β€˜π‘§)):(1...𝑁)⟢(0..^𝐾))
81 fss 6731 . . . . . . . . . . . . . . . . 17 (((1st β€˜(1st β€˜π‘§)):(1...𝑁)⟢(0..^𝐾) ∧ (0..^𝐾) βŠ† β„€) β†’ (1st β€˜(1st β€˜π‘§)):(1...𝑁)βŸΆβ„€)
8280, 40, 81sylancl 586 . . . . . . . . . . . . . . . 16 (𝑧 ∈ 𝑆 β†’ (1st β€˜(1st β€˜π‘§)):(1...𝑁)βŸΆβ„€)
8382ad2antlr 725 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) ∧ (2nd β€˜π‘§) β‰  (2nd β€˜π‘‡)) β†’ (1st β€˜(1st β€˜π‘§)):(1...𝑁)βŸΆβ„€)
84 xp2nd 8004 . . . . . . . . . . . . . . . . . 18 ((1st β€˜π‘§) ∈ (((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) β†’ (2nd β€˜(1st β€˜π‘§)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)})
8576, 84syl 17 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ 𝑆 β†’ (2nd β€˜(1st β€˜π‘§)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)})
86 fvex 6901 . . . . . . . . . . . . . . . . . 18 (2nd β€˜(1st β€˜π‘§)) ∈ V
87 f1oeq1 6818 . . . . . . . . . . . . . . . . . 18 (𝑓 = (2nd β€˜(1st β€˜π‘§)) β†’ (𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁) ↔ (2nd β€˜(1st β€˜π‘§)):(1...𝑁)–1-1-ontoβ†’(1...𝑁)))
8886, 87elab 3667 . . . . . . . . . . . . . . . . 17 ((2nd β€˜(1st β€˜π‘§)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)} ↔ (2nd β€˜(1st β€˜π‘§)):(1...𝑁)–1-1-ontoβ†’(1...𝑁))
8985, 88sylib 217 . . . . . . . . . . . . . . . 16 (𝑧 ∈ 𝑆 β†’ (2nd β€˜(1st β€˜π‘§)):(1...𝑁)–1-1-ontoβ†’(1...𝑁))
9089ad2antlr 725 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) ∧ (2nd β€˜π‘§) β‰  (2nd β€˜π‘‡)) β†’ (2nd β€˜(1st β€˜π‘§)):(1...𝑁)–1-1-ontoβ†’(1...𝑁))
91 simpllr 774 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) ∧ (2nd β€˜π‘§) β‰  (2nd β€˜π‘‡)) β†’ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1)))
92 xp2nd 8004 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)) β†’ (2nd β€˜π‘§) ∈ (0...𝑁))
9374, 92syl 17 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ 𝑆 β†’ (2nd β€˜π‘§) ∈ (0...𝑁))
9493adantl 482 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) β†’ (2nd β€˜π‘§) ∈ (0...𝑁))
95 eldifsn 4789 . . . . . . . . . . . . . . . . 17 ((2nd β€˜π‘§) ∈ ((0...𝑁) βˆ– {(2nd β€˜π‘‡)}) ↔ ((2nd β€˜π‘§) ∈ (0...𝑁) ∧ (2nd β€˜π‘§) β‰  (2nd β€˜π‘‡)))
9695biimpri 227 . . . . . . . . . . . . . . . 16 (((2nd β€˜π‘§) ∈ (0...𝑁) ∧ (2nd β€˜π‘§) β‰  (2nd β€˜π‘‡)) β†’ (2nd β€˜π‘§) ∈ ((0...𝑁) βˆ– {(2nd β€˜π‘‡)}))
9794, 96sylan 580 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) ∧ (2nd β€˜π‘§) β‰  (2nd β€˜π‘‡)) β†’ (2nd β€˜π‘§) ∈ ((0...𝑁) βˆ– {(2nd β€˜π‘‡)}))
9853, 72, 83, 90, 91, 97poimirlem2 36478 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) ∧ (2nd β€˜π‘§) β‰  (2nd β€˜π‘‡)) β†’ βˆƒ*𝑛 ∈ (1...𝑁)((πΉβ€˜((2nd β€˜π‘‡) βˆ’ 1))β€˜π‘›) β‰  ((πΉβ€˜(2nd β€˜π‘‡))β€˜π‘›))
9998ex 413 . . . . . . . . . . . . 13 (((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) β†’ ((2nd β€˜π‘§) β‰  (2nd β€˜π‘‡) β†’ βˆƒ*𝑛 ∈ (1...𝑁)((πΉβ€˜((2nd β€˜π‘‡) βˆ’ 1))β€˜π‘›) β‰  ((πΉβ€˜(2nd β€˜π‘‡))β€˜π‘›)))
10099necon1bd 2958 . . . . . . . . . . . 12 (((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) β†’ (Β¬ βˆƒ*𝑛 ∈ (1...𝑁)((πΉβ€˜((2nd β€˜π‘‡) βˆ’ 1))β€˜π‘›) β‰  ((πΉβ€˜(2nd β€˜π‘‡))β€˜π‘›) β†’ (2nd β€˜π‘§) = (2nd β€˜π‘‡)))
10152, 100mpd 15 . . . . . . . . . . 11 (((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) β†’ (2nd β€˜π‘§) = (2nd β€˜π‘‡))
102 eleq1 2821 . . . . . . . . . . . . . . . 16 ((2nd β€˜π‘§) = (2nd β€˜π‘‡) β†’ ((2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1)) ↔ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))))
103102biimparc 480 . . . . . . . . . . . . . . 15 (((2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1)) ∧ (2nd β€˜π‘§) = (2nd β€˜π‘‡)) β†’ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1)))
104103anim2i 617 . . . . . . . . . . . . . 14 ((πœ‘ ∧ ((2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1)) ∧ (2nd β€˜π‘§) = (2nd β€˜π‘‡))) β†’ (πœ‘ ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))))
105104anassrs 468 . . . . . . . . . . . . 13 (((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ (2nd β€˜π‘§) = (2nd β€˜π‘‡)) β†’ (πœ‘ ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))))
10671adantl 482 . . . . . . . . . . . . . 14 (((πœ‘ ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) β†’ 𝐹 = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘§), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘§)) ∘f + ((((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})))))
107 breq1 5150 . . . . . . . . . . . . . . . . . 18 (𝑦 = 0 β†’ (𝑦 < (2nd β€˜π‘§) ↔ 0 < (2nd β€˜π‘§)))
108 id 22 . . . . . . . . . . . . . . . . . 18 (𝑦 = 0 β†’ 𝑦 = 0)
109107, 108ifbieq1d 4551 . . . . . . . . . . . . . . . . 17 (𝑦 = 0 β†’ if(𝑦 < (2nd β€˜π‘§), 𝑦, (𝑦 + 1)) = if(0 < (2nd β€˜π‘§), 0, (𝑦 + 1)))
110 elfznn 13526 . . . . . . . . . . . . . . . . . . . 20 ((2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1)) β†’ (2nd β€˜π‘§) ∈ β„•)
111110nngt0d 12257 . . . . . . . . . . . . . . . . . . 19 ((2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1)) β†’ 0 < (2nd β€˜π‘§))
112111iftrued 4535 . . . . . . . . . . . . . . . . . 18 ((2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1)) β†’ if(0 < (2nd β€˜π‘§), 0, (𝑦 + 1)) = 0)
113112ad2antlr 725 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) β†’ if(0 < (2nd β€˜π‘§), 0, (𝑦 + 1)) = 0)
114109, 113sylan9eqr 2794 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) ∧ 𝑦 = 0) β†’ if(𝑦 < (2nd β€˜π‘§), 𝑦, (𝑦 + 1)) = 0)
115114csbeq1d 3896 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) ∧ 𝑦 = 0) β†’ ⦋if(𝑦 < (2nd β€˜π‘§), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘§)) ∘f + ((((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))) = ⦋0 / π‘—β¦Œ((1st β€˜(1st β€˜π‘§)) ∘f + ((((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))
116 c0ex 11204 . . . . . . . . . . . . . . . . . 18 0 ∈ V
117 oveq2 7413 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 = 0 β†’ (1...𝑗) = (1...0))
118 fz10 13518 . . . . . . . . . . . . . . . . . . . . . . . 24 (1...0) = βˆ…
119117, 118eqtrdi 2788 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = 0 β†’ (1...𝑗) = βˆ…)
120119imaeq2d 6057 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 0 β†’ ((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)) = ((2nd β€˜(1st β€˜π‘§)) β€œ βˆ…))
121120xpeq1d 5704 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 0 β†’ (((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)) Γ— {1}) = (((2nd β€˜(1st β€˜π‘§)) β€œ βˆ…) Γ— {1}))
122 oveq1 7412 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 = 0 β†’ (𝑗 + 1) = (0 + 1))
123 0p1e1 12330 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 + 1) = 1
124122, 123eqtrdi 2788 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 = 0 β†’ (𝑗 + 1) = 1)
125124oveq1d 7420 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = 0 β†’ ((𝑗 + 1)...𝑁) = (1...𝑁))
126125imaeq2d 6057 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 0 β†’ ((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)) = ((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑁)))
127126xpeq1d 5704 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 0 β†’ (((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}) = (((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑁)) Γ— {0}))
128121, 127uneq12d 4163 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 0 β†’ ((((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})) = ((((2nd β€˜(1st β€˜π‘§)) β€œ βˆ…) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑁)) Γ— {0})))
129 ima0 6073 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2nd β€˜(1st β€˜π‘§)) β€œ βˆ…) = βˆ…
130129xpeq1i 5701 . . . . . . . . . . . . . . . . . . . . . . 23 (((2nd β€˜(1st β€˜π‘§)) β€œ βˆ…) Γ— {1}) = (βˆ… Γ— {1})
131 0xp 5772 . . . . . . . . . . . . . . . . . . . . . . 23 (βˆ… Γ— {1}) = βˆ…
132130, 131eqtri 2760 . . . . . . . . . . . . . . . . . . . . . 22 (((2nd β€˜(1st β€˜π‘§)) β€œ βˆ…) Γ— {1}) = βˆ…
133132uneq1i 4158 . . . . . . . . . . . . . . . . . . . . 21 ((((2nd β€˜(1st β€˜π‘§)) β€œ βˆ…) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑁)) Γ— {0})) = (βˆ… βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑁)) Γ— {0}))
134 uncom 4152 . . . . . . . . . . . . . . . . . . . . 21 (βˆ… βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑁)) Γ— {0})) = ((((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑁)) Γ— {0}) βˆͺ βˆ…)
135 un0 4389 . . . . . . . . . . . . . . . . . . . . 21 ((((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑁)) Γ— {0}) βˆͺ βˆ…) = (((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑁)) Γ— {0})
136133, 134, 1353eqtri 2764 . . . . . . . . . . . . . . . . . . . 20 ((((2nd β€˜(1st β€˜π‘§)) β€œ βˆ…) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑁)) Γ— {0})) = (((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑁)) Γ— {0})
137128, 136eqtrdi 2788 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 0 β†’ ((((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})) = (((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑁)) Γ— {0}))
138137oveq2d 7421 . . . . . . . . . . . . . . . . . 18 (𝑗 = 0 β†’ ((1st β€˜(1st β€˜π‘§)) ∘f + ((((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))) = ((1st β€˜(1st β€˜π‘§)) ∘f + (((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑁)) Γ— {0})))
139116, 138csbie 3928 . . . . . . . . . . . . . . . . 17 ⦋0 / π‘—β¦Œ((1st β€˜(1st β€˜π‘§)) ∘f + ((((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))) = ((1st β€˜(1st β€˜π‘§)) ∘f + (((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑁)) Γ— {0}))
140 f1ofo 6837 . . . . . . . . . . . . . . . . . . . . . 22 ((2nd β€˜(1st β€˜π‘§)):(1...𝑁)–1-1-ontoβ†’(1...𝑁) β†’ (2nd β€˜(1st β€˜π‘§)):(1...𝑁)–ontoβ†’(1...𝑁))
14189, 140syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ 𝑆 β†’ (2nd β€˜(1st β€˜π‘§)):(1...𝑁)–ontoβ†’(1...𝑁))
142 foima 6807 . . . . . . . . . . . . . . . . . . . . 21 ((2nd β€˜(1st β€˜π‘§)):(1...𝑁)–ontoβ†’(1...𝑁) β†’ ((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑁)) = (1...𝑁))
143141, 142syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ 𝑆 β†’ ((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑁)) = (1...𝑁))
144143xpeq1d 5704 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ 𝑆 β†’ (((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑁)) Γ— {0}) = ((1...𝑁) Γ— {0}))
145144oveq2d 7421 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ 𝑆 β†’ ((1st β€˜(1st β€˜π‘§)) ∘f + (((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑁)) Γ— {0})) = ((1st β€˜(1st β€˜π‘§)) ∘f + ((1...𝑁) Γ— {0})))
146 ovexd 7440 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ 𝑆 β†’ (1...𝑁) ∈ V)
14780ffnd 6715 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ 𝑆 β†’ (1st β€˜(1st β€˜π‘§)) Fn (1...𝑁))
148 fnconstg 6776 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ V β†’ ((1...𝑁) Γ— {0}) Fn (1...𝑁))
149116, 148mp1i 13 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ 𝑆 β†’ ((1...𝑁) Γ— {0}) Fn (1...𝑁))
150 eqidd 2733 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ 𝑆 ∧ 𝑛 ∈ (1...𝑁)) β†’ ((1st β€˜(1st β€˜π‘§))β€˜π‘›) = ((1st β€˜(1st β€˜π‘§))β€˜π‘›))
151116fvconst2 7201 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ (1...𝑁) β†’ (((1...𝑁) Γ— {0})β€˜π‘›) = 0)
152151adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ 𝑆 ∧ 𝑛 ∈ (1...𝑁)) β†’ (((1...𝑁) Γ— {0})β€˜π‘›) = 0)
15380ffvelcdmda 7083 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ 𝑆 ∧ 𝑛 ∈ (1...𝑁)) β†’ ((1st β€˜(1st β€˜π‘§))β€˜π‘›) ∈ (0..^𝐾))
154 elfzonn0 13673 . . . . . . . . . . . . . . . . . . . . . 22 (((1st β€˜(1st β€˜π‘§))β€˜π‘›) ∈ (0..^𝐾) β†’ ((1st β€˜(1st β€˜π‘§))β€˜π‘›) ∈ β„•0)
155153, 154syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ 𝑆 ∧ 𝑛 ∈ (1...𝑁)) β†’ ((1st β€˜(1st β€˜π‘§))β€˜π‘›) ∈ β„•0)
156155nn0cnd 12530 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ 𝑆 ∧ 𝑛 ∈ (1...𝑁)) β†’ ((1st β€˜(1st β€˜π‘§))β€˜π‘›) ∈ β„‚)
157156addridd 11410 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ 𝑆 ∧ 𝑛 ∈ (1...𝑁)) β†’ (((1st β€˜(1st β€˜π‘§))β€˜π‘›) + 0) = ((1st β€˜(1st β€˜π‘§))β€˜π‘›))
158146, 147, 149, 147, 150, 152, 157offveq 7690 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ 𝑆 β†’ ((1st β€˜(1st β€˜π‘§)) ∘f + ((1...𝑁) Γ— {0})) = (1st β€˜(1st β€˜π‘§)))
159145, 158eqtrd 2772 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ 𝑆 β†’ ((1st β€˜(1st β€˜π‘§)) ∘f + (((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑁)) Γ— {0})) = (1st β€˜(1st β€˜π‘§)))
160139, 159eqtrid 2784 . . . . . . . . . . . . . . . 16 (𝑧 ∈ 𝑆 β†’ ⦋0 / π‘—β¦Œ((1st β€˜(1st β€˜π‘§)) ∘f + ((((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))) = (1st β€˜(1st β€˜π‘§)))
161160ad2antlr 725 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) ∧ 𝑦 = 0) β†’ ⦋0 / π‘—β¦Œ((1st β€˜(1st β€˜π‘§)) ∘f + ((((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))) = (1st β€˜(1st β€˜π‘§)))
162115, 161eqtrd 2772 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) ∧ 𝑦 = 0) β†’ ⦋if(𝑦 < (2nd β€˜π‘§), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘§)) ∘f + ((((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))) = (1st β€˜(1st β€˜π‘§)))
163 nnm1nn0 12509 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ β„• β†’ (𝑁 βˆ’ 1) ∈ β„•0)
1641, 163syl 17 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (𝑁 βˆ’ 1) ∈ β„•0)
165 0elfz 13594 . . . . . . . . . . . . . . . 16 ((𝑁 βˆ’ 1) ∈ β„•0 β†’ 0 ∈ (0...(𝑁 βˆ’ 1)))
166164, 165syl 17 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 0 ∈ (0...(𝑁 βˆ’ 1)))
167166ad2antrr 724 . . . . . . . . . . . . . 14 (((πœ‘ ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) β†’ 0 ∈ (0...(𝑁 βˆ’ 1)))
168 fvexd 6903 . . . . . . . . . . . . . 14 (((πœ‘ ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) β†’ (1st β€˜(1st β€˜π‘§)) ∈ V)
169106, 162, 167, 168fvmptd 7002 . . . . . . . . . . . . 13 (((πœ‘ ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) β†’ (πΉβ€˜0) = (1st β€˜(1st β€˜π‘§)))
170105, 169sylan 580 . . . . . . . . . . . 12 ((((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ (2nd β€˜π‘§) = (2nd β€˜π‘‡)) ∧ 𝑧 ∈ 𝑆) β†’ (πΉβ€˜0) = (1st β€˜(1st β€˜π‘§)))
171170an32s 650 . . . . . . . . . . 11 ((((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) ∧ (2nd β€˜π‘§) = (2nd β€˜π‘‡)) β†’ (πΉβ€˜0) = (1st β€˜(1st β€˜π‘§)))
172101, 171mpdan 685 . . . . . . . . . 10 (((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) β†’ (πΉβ€˜0) = (1st β€˜(1st β€˜π‘§)))
173 fveq2 6888 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑇 β†’ (2nd β€˜π‘§) = (2nd β€˜π‘‡))
174173eleq1d 2818 . . . . . . . . . . . . . . 15 (𝑧 = 𝑇 β†’ ((2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1)) ↔ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))))
175174anbi2d 629 . . . . . . . . . . . . . 14 (𝑧 = 𝑇 β†’ ((πœ‘ ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))) ↔ (πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1)))))
176 2fveq3 6893 . . . . . . . . . . . . . . 15 (𝑧 = 𝑇 β†’ (1st β€˜(1st β€˜π‘§)) = (1st β€˜(1st β€˜π‘‡)))
177176eqeq2d 2743 . . . . . . . . . . . . . 14 (𝑧 = 𝑇 β†’ ((πΉβ€˜0) = (1st β€˜(1st β€˜π‘§)) ↔ (πΉβ€˜0) = (1st β€˜(1st β€˜π‘‡))))
178175, 177imbi12d 344 . . . . . . . . . . . . 13 (𝑧 = 𝑇 β†’ (((πœ‘ ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))) β†’ (πΉβ€˜0) = (1st β€˜(1st β€˜π‘§))) ↔ ((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ (πΉβ€˜0) = (1st β€˜(1st β€˜π‘‡)))))
179169expcom 414 . . . . . . . . . . . . 13 (𝑧 ∈ 𝑆 β†’ ((πœ‘ ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))) β†’ (πΉβ€˜0) = (1st β€˜(1st β€˜π‘§))))
180178, 179vtoclga 3565 . . . . . . . . . . . 12 (𝑇 ∈ 𝑆 β†’ ((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ (πΉβ€˜0) = (1st β€˜(1st β€˜π‘‡))))
1817, 180mpcom 38 . . . . . . . . . . 11 ((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ (πΉβ€˜0) = (1st β€˜(1st β€˜π‘‡)))
182181adantr 481 . . . . . . . . . 10 (((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) β†’ (πΉβ€˜0) = (1st β€˜(1st β€˜π‘‡)))
183172, 182eqtr3d 2774 . . . . . . . . 9 (((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) β†’ (1st β€˜(1st β€˜π‘§)) = (1st β€˜(1st β€˜π‘‡)))
184183adantr 481 . . . . . . . 8 ((((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) ∧ 𝑧 β‰  𝑇) β†’ (1st β€˜(1st β€˜π‘§)) = (1st β€˜(1st β€˜π‘‡)))
1851ad3antrrr 728 . . . . . . . . 9 ((((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) ∧ 𝑧 β‰  𝑇) β†’ 𝑁 ∈ β„•)
1866ad3antrrr 728 . . . . . . . . 9 ((((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) ∧ 𝑧 β‰  𝑇) β†’ 𝑇 ∈ 𝑆)
187 simpllr 774 . . . . . . . . 9 ((((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) ∧ 𝑧 β‰  𝑇) β†’ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1)))
188 simplr 767 . . . . . . . . 9 ((((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) ∧ 𝑧 β‰  𝑇) β†’ 𝑧 ∈ 𝑆)
18934adantr 481 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ (1st β€˜π‘‡) ∈ (((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}))
190 xpopth 8012 . . . . . . . . . . . . . 14 (((1st β€˜π‘§) ∈ (((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) ∧ (1st β€˜π‘‡) ∈ (((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)})) β†’ (((1st β€˜(1st β€˜π‘§)) = (1st β€˜(1st β€˜π‘‡)) ∧ (2nd β€˜(1st β€˜π‘§)) = (2nd β€˜(1st β€˜π‘‡))) ↔ (1st β€˜π‘§) = (1st β€˜π‘‡)))
19176, 189, 190syl2anr 597 . . . . . . . . . . . . 13 (((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) β†’ (((1st β€˜(1st β€˜π‘§)) = (1st β€˜(1st β€˜π‘‡)) ∧ (2nd β€˜(1st β€˜π‘§)) = (2nd β€˜(1st β€˜π‘‡))) ↔ (1st β€˜π‘§) = (1st β€˜π‘‡)))
19232adantr 481 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)))
193 xpopth 8012 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)) ∧ 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁))) β†’ (((1st β€˜π‘§) = (1st β€˜π‘‡) ∧ (2nd β€˜π‘§) = (2nd β€˜π‘‡)) ↔ 𝑧 = 𝑇))
194193biimpd 228 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)) ∧ 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁))) β†’ (((1st β€˜π‘§) = (1st β€˜π‘‡) ∧ (2nd β€˜π‘§) = (2nd β€˜π‘‡)) β†’ 𝑧 = 𝑇))
19574, 192, 194syl2anr 597 . . . . . . . . . . . . . 14 (((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) β†’ (((1st β€˜π‘§) = (1st β€˜π‘‡) ∧ (2nd β€˜π‘§) = (2nd β€˜π‘‡)) β†’ 𝑧 = 𝑇))
196101, 195mpan2d 692 . . . . . . . . . . . . 13 (((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) β†’ ((1st β€˜π‘§) = (1st β€˜π‘‡) β†’ 𝑧 = 𝑇))
197191, 196sylbid 239 . . . . . . . . . . . 12 (((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) β†’ (((1st β€˜(1st β€˜π‘§)) = (1st β€˜(1st β€˜π‘‡)) ∧ (2nd β€˜(1st β€˜π‘§)) = (2nd β€˜(1st β€˜π‘‡))) β†’ 𝑧 = 𝑇))
198183, 197mpand 693 . . . . . . . . . . 11 (((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) β†’ ((2nd β€˜(1st β€˜π‘§)) = (2nd β€˜(1st β€˜π‘‡)) β†’ 𝑧 = 𝑇))
199198necon3d 2961 . . . . . . . . . 10 (((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) β†’ (𝑧 β‰  𝑇 β†’ (2nd β€˜(1st β€˜π‘§)) β‰  (2nd β€˜(1st β€˜π‘‡))))
200199imp 407 . . . . . . . . 9 ((((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) ∧ 𝑧 β‰  𝑇) β†’ (2nd β€˜(1st β€˜π‘§)) β‰  (2nd β€˜(1st β€˜π‘‡)))
201185, 3, 186, 187, 188, 200poimirlem9 36485 . . . . . . . 8 ((((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) ∧ 𝑧 β‰  𝑇) β†’ (2nd β€˜(1st β€˜π‘§)) = ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})))))
202101adantr 481 . . . . . . . 8 ((((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) ∧ 𝑧 β‰  𝑇) β†’ (2nd β€˜π‘§) = (2nd β€˜π‘‡))
203184, 201, 202jca31 515 . . . . . . 7 ((((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) ∧ 𝑧 β‰  𝑇) β†’ (((1st β€˜(1st β€˜π‘§)) = (1st β€˜(1st β€˜π‘‡)) ∧ (2nd β€˜(1st β€˜π‘§)) = ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))) ∧ (2nd β€˜π‘§) = (2nd β€˜π‘‡)))
204203ex 413 . . . . . 6 (((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) β†’ (𝑧 β‰  𝑇 β†’ (((1st β€˜(1st β€˜π‘§)) = (1st β€˜(1st β€˜π‘‡)) ∧ (2nd β€˜(1st β€˜π‘§)) = ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))) ∧ (2nd β€˜π‘§) = (2nd β€˜π‘‡))))
205 simplr 767 . . . . . . . 8 ((((1st β€˜(1st β€˜π‘§)) = (1st β€˜(1st β€˜π‘‡)) ∧ (2nd β€˜(1st β€˜π‘§)) = ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))) ∧ (2nd β€˜π‘§) = (2nd β€˜π‘‡)) β†’ (2nd β€˜(1st β€˜π‘§)) = ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})))))
206 elfznn 13526 . . . . . . . . . . . . . 14 ((2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1)) β†’ (2nd β€˜π‘‡) ∈ β„•)
207206nnred 12223 . . . . . . . . . . . . 13 ((2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1)) β†’ (2nd β€˜π‘‡) ∈ ℝ)
208207ltp1d 12140 . . . . . . . . . . . . 13 ((2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1)) β†’ (2nd β€˜π‘‡) < ((2nd β€˜π‘‡) + 1))
209207, 208ltned 11346 . . . . . . . . . . . 12 ((2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1)) β†’ (2nd β€˜π‘‡) β‰  ((2nd β€˜π‘‡) + 1))
210209adantl 482 . . . . . . . . . . 11 ((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ (2nd β€˜π‘‡) β‰  ((2nd β€˜π‘‡) + 1))
211 fveq1 6887 . . . . . . . . . . . . 13 ((2nd β€˜(1st β€˜π‘‡)) = ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})))) β†’ ((2nd β€˜(1st β€˜π‘‡))β€˜(2nd β€˜π‘‡)) = (((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))β€˜(2nd β€˜π‘‡)))
212 id 22 . . . . . . . . . . . . . . . . . . . . . 22 ((2nd β€˜π‘‡) ∈ ℝ β†’ (2nd β€˜π‘‡) ∈ ℝ)
213 ltp1 12050 . . . . . . . . . . . . . . . . . . . . . 22 ((2nd β€˜π‘‡) ∈ ℝ β†’ (2nd β€˜π‘‡) < ((2nd β€˜π‘‡) + 1))
214212, 213ltned 11346 . . . . . . . . . . . . . . . . . . . . 21 ((2nd β€˜π‘‡) ∈ ℝ β†’ (2nd β€˜π‘‡) β‰  ((2nd β€˜π‘‡) + 1))
215 fvex 6901 . . . . . . . . . . . . . . . . . . . . . 22 (2nd β€˜π‘‡) ∈ V
216 ovex 7438 . . . . . . . . . . . . . . . . . . . . . 22 ((2nd β€˜π‘‡) + 1) ∈ V
217215, 216, 216, 215fpr 7148 . . . . . . . . . . . . . . . . . . . . 21 ((2nd β€˜π‘‡) β‰  ((2nd β€˜π‘‡) + 1) β†’ {⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩}:{(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}⟢{((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)})
218214, 217syl 17 . . . . . . . . . . . . . . . . . . . 20 ((2nd β€˜π‘‡) ∈ ℝ β†’ {⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩}:{(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}⟢{((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)})
219 f1oi 6868 . . . . . . . . . . . . . . . . . . . . 21 ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})):((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})–1-1-ontoβ†’((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})
220 f1of 6830 . . . . . . . . . . . . . . . . . . . . 21 (( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})):((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})–1-1-ontoβ†’((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}) β†’ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})):((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})⟢((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))
221219, 220ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})):((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})⟢((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})
222 disjdif 4470 . . . . . . . . . . . . . . . . . . . . 21 ({(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)} ∩ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})) = βˆ…
223 fun 6750 . . . . . . . . . . . . . . . . . . . . 21 ((({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩}:{(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}⟢{((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)} ∧ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})):((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})⟢((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})) ∧ ({(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)} ∩ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})) = βˆ…) β†’ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))):({(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)} βˆͺ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))⟢({((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)} βˆͺ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})))
224222, 223mpan2 689 . . . . . . . . . . . . . . . . . . . 20 (({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩}:{(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}⟢{((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)} ∧ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})):((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})⟢((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})) β†’ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))):({(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)} βˆͺ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))⟢({((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)} βˆͺ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})))
225218, 221, 224sylancl 586 . . . . . . . . . . . . . . . . . . 19 ((2nd β€˜π‘‡) ∈ ℝ β†’ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))):({(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)} βˆͺ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))⟢({((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)} βˆͺ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})))
226215prid1 4765 . . . . . . . . . . . . . . . . . . . 20 (2nd β€˜π‘‡) ∈ {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}
227 elun1 4175 . . . . . . . . . . . . . . . . . . . 20 ((2nd β€˜π‘‡) ∈ {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)} β†’ (2nd β€˜π‘‡) ∈ ({(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)} βˆͺ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})))
228226, 227ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (2nd β€˜π‘‡) ∈ ({(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)} βˆͺ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))
229 fvco3 6987 . . . . . . . . . . . . . . . . . . 19 ((({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))):({(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)} βˆͺ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))⟢({((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)} βˆͺ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})) ∧ (2nd β€˜π‘‡) ∈ ({(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)} βˆͺ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))) β†’ (((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))β€˜(2nd β€˜π‘‡)) = ((2nd β€˜(1st β€˜π‘‡))β€˜(({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})))β€˜(2nd β€˜π‘‡))))
230225, 228, 229sylancl 586 . . . . . . . . . . . . . . . . . 18 ((2nd β€˜π‘‡) ∈ ℝ β†’ (((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))β€˜(2nd β€˜π‘‡)) = ((2nd β€˜(1st β€˜π‘‡))β€˜(({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})))β€˜(2nd β€˜π‘‡))))
231218ffnd 6715 . . . . . . . . . . . . . . . . . . . . 21 ((2nd β€˜π‘‡) ∈ ℝ β†’ {⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} Fn {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})
232 fnresi 6676 . . . . . . . . . . . . . . . . . . . . . 22 ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})) Fn ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})
233222, 226pm3.2i 471 . . . . . . . . . . . . . . . . . . . . . 22 (({(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)} ∩ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})) = βˆ… ∧ (2nd β€˜π‘‡) ∈ {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})
234 fvun1 6979 . . . . . . . . . . . . . . . . . . . . . 22 (({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} Fn {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)} ∧ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})) Fn ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}) ∧ (({(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)} ∩ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})) = βˆ… ∧ (2nd β€˜π‘‡) ∈ {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})) β†’ (({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})))β€˜(2nd β€˜π‘‡)) = ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩}β€˜(2nd β€˜π‘‡)))
235232, 233, 234mp3an23 1453 . . . . . . . . . . . . . . . . . . . . 21 ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} Fn {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)} β†’ (({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})))β€˜(2nd β€˜π‘‡)) = ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩}β€˜(2nd β€˜π‘‡)))
236231, 235syl 17 . . . . . . . . . . . . . . . . . . . 20 ((2nd β€˜π‘‡) ∈ ℝ β†’ (({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})))β€˜(2nd β€˜π‘‡)) = ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩}β€˜(2nd β€˜π‘‡)))
237215, 216fvpr1 7187 . . . . . . . . . . . . . . . . . . . . 21 ((2nd β€˜π‘‡) β‰  ((2nd β€˜π‘‡) + 1) β†’ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩}β€˜(2nd β€˜π‘‡)) = ((2nd β€˜π‘‡) + 1))
238214, 237syl 17 . . . . . . . . . . . . . . . . . . . 20 ((2nd β€˜π‘‡) ∈ ℝ β†’ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩}β€˜(2nd β€˜π‘‡)) = ((2nd β€˜π‘‡) + 1))
239236, 238eqtrd 2772 . . . . . . . . . . . . . . . . . . 19 ((2nd β€˜π‘‡) ∈ ℝ β†’ (({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})))β€˜(2nd β€˜π‘‡)) = ((2nd β€˜π‘‡) + 1))
240239fveq2d 6892 . . . . . . . . . . . . . . . . . 18 ((2nd β€˜π‘‡) ∈ ℝ β†’ ((2nd β€˜(1st β€˜π‘‡))β€˜(({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})))β€˜(2nd β€˜π‘‡))) = ((2nd β€˜(1st β€˜π‘‡))β€˜((2nd β€˜π‘‡) + 1)))
241230, 240eqtrd 2772 . . . . . . . . . . . . . . . . 17 ((2nd β€˜π‘‡) ∈ ℝ β†’ (((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))β€˜(2nd β€˜π‘‡)) = ((2nd β€˜(1st β€˜π‘‡))β€˜((2nd β€˜π‘‡) + 1)))
242207, 241syl 17 . . . . . . . . . . . . . . . 16 ((2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1)) β†’ (((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))β€˜(2nd β€˜π‘‡)) = ((2nd β€˜(1st β€˜π‘‡))β€˜((2nd β€˜π‘‡) + 1)))
243242eqeq2d 2743 . . . . . . . . . . . . . . 15 ((2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1)) β†’ (((2nd β€˜(1st β€˜π‘‡))β€˜(2nd β€˜π‘‡)) = (((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))β€˜(2nd β€˜π‘‡)) ↔ ((2nd β€˜(1st β€˜π‘‡))β€˜(2nd β€˜π‘‡)) = ((2nd β€˜(1st β€˜π‘‡))β€˜((2nd β€˜π‘‡) + 1))))
244243adantl 482 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ (((2nd β€˜(1st β€˜π‘‡))β€˜(2nd β€˜π‘‡)) = (((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))β€˜(2nd β€˜π‘‡)) ↔ ((2nd β€˜(1st β€˜π‘‡))β€˜(2nd β€˜π‘‡)) = ((2nd β€˜(1st β€˜π‘‡))β€˜((2nd β€˜π‘‡) + 1))))
245 f1of1 6829 . . . . . . . . . . . . . . . . 17 ((2nd β€˜(1st β€˜π‘‡)):(1...𝑁)–1-1-ontoβ†’(1...𝑁) β†’ (2nd β€˜(1st β€˜π‘‡)):(1...𝑁)–1-1β†’(1...𝑁))
24649, 245syl 17 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (2nd β€˜(1st β€˜π‘‡)):(1...𝑁)–1-1β†’(1...𝑁))
247246adantr 481 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ (2nd β€˜(1st β€˜π‘‡)):(1...𝑁)–1-1β†’(1...𝑁))
2481nncnd 12224 . . . . . . . . . . . . . . . . . . 19 (πœ‘ β†’ 𝑁 ∈ β„‚)
249 npcan1 11635 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ β„‚ β†’ ((𝑁 βˆ’ 1) + 1) = 𝑁)
250248, 249syl 17 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ ((𝑁 βˆ’ 1) + 1) = 𝑁)
251164nn0zd 12580 . . . . . . . . . . . . . . . . . . . 20 (πœ‘ β†’ (𝑁 βˆ’ 1) ∈ β„€)
252 uzid 12833 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 βˆ’ 1) ∈ β„€ β†’ (𝑁 βˆ’ 1) ∈ (β„€β‰₯β€˜(𝑁 βˆ’ 1)))
253251, 252syl 17 . . . . . . . . . . . . . . . . . . 19 (πœ‘ β†’ (𝑁 βˆ’ 1) ∈ (β„€β‰₯β€˜(𝑁 βˆ’ 1)))
254 peano2uz 12881 . . . . . . . . . . . . . . . . . . 19 ((𝑁 βˆ’ 1) ∈ (β„€β‰₯β€˜(𝑁 βˆ’ 1)) β†’ ((𝑁 βˆ’ 1) + 1) ∈ (β„€β‰₯β€˜(𝑁 βˆ’ 1)))
255253, 254syl 17 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ ((𝑁 βˆ’ 1) + 1) ∈ (β„€β‰₯β€˜(𝑁 βˆ’ 1)))
256250, 255eqeltrrd 2834 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ 𝑁 ∈ (β„€β‰₯β€˜(𝑁 βˆ’ 1)))
257 fzss2 13537 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (β„€β‰₯β€˜(𝑁 βˆ’ 1)) β†’ (1...(𝑁 βˆ’ 1)) βŠ† (1...𝑁))
258256, 257syl 17 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (1...(𝑁 βˆ’ 1)) βŠ† (1...𝑁))
259258sselda 3981 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ (2nd β€˜π‘‡) ∈ (1...𝑁))
260 fzp1elp1 13550 . . . . . . . . . . . . . . . . 17 ((2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1)) β†’ ((2nd β€˜π‘‡) + 1) ∈ (1...((𝑁 βˆ’ 1) + 1)))
261260adantl 482 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ ((2nd β€˜π‘‡) + 1) ∈ (1...((𝑁 βˆ’ 1) + 1)))
262250oveq2d 7421 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ (1...((𝑁 βˆ’ 1) + 1)) = (1...𝑁))
263262adantr 481 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ (1...((𝑁 βˆ’ 1) + 1)) = (1...𝑁))
264261, 263eleqtrd 2835 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ ((2nd β€˜π‘‡) + 1) ∈ (1...𝑁))
265 f1veqaeq 7252 . . . . . . . . . . . . . . 15 (((2nd β€˜(1st β€˜π‘‡)):(1...𝑁)–1-1β†’(1...𝑁) ∧ ((2nd β€˜π‘‡) ∈ (1...𝑁) ∧ ((2nd β€˜π‘‡) + 1) ∈ (1...𝑁))) β†’ (((2nd β€˜(1st β€˜π‘‡))β€˜(2nd β€˜π‘‡)) = ((2nd β€˜(1st β€˜π‘‡))β€˜((2nd β€˜π‘‡) + 1)) β†’ (2nd β€˜π‘‡) = ((2nd β€˜π‘‡) + 1)))
266247, 259, 264, 265syl12anc 835 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ (((2nd β€˜(1st β€˜π‘‡))β€˜(2nd β€˜π‘‡)) = ((2nd β€˜(1st β€˜π‘‡))β€˜((2nd β€˜π‘‡) + 1)) β†’ (2nd β€˜π‘‡) = ((2nd β€˜π‘‡) + 1)))
267244, 266sylbid 239 . . . . . . . . . . . . 13 ((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ (((2nd β€˜(1st β€˜π‘‡))β€˜(2nd β€˜π‘‡)) = (((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))β€˜(2nd β€˜π‘‡)) β†’ (2nd β€˜π‘‡) = ((2nd β€˜π‘‡) + 1)))
268211, 267syl5 34 . . . . . . . . . . . 12 ((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ ((2nd β€˜(1st β€˜π‘‡)) = ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})))) β†’ (2nd β€˜π‘‡) = ((2nd β€˜π‘‡) + 1)))
269268necon3d 2961 . . . . . . . . . . 11 ((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ ((2nd β€˜π‘‡) β‰  ((2nd β€˜π‘‡) + 1) β†’ (2nd β€˜(1st β€˜π‘‡)) β‰  ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))))
270210, 269mpd 15 . . . . . . . . . 10 ((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ (2nd β€˜(1st β€˜π‘‡)) β‰  ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})))))
271 2fveq3 6893 . . . . . . . . . . 11 (𝑧 = 𝑇 β†’ (2nd β€˜(1st β€˜π‘§)) = (2nd β€˜(1st β€˜π‘‡)))
272271neeq1d 3000 . . . . . . . . . 10 (𝑧 = 𝑇 β†’ ((2nd β€˜(1st β€˜π‘§)) β‰  ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})))) ↔ (2nd β€˜(1st β€˜π‘‡)) β‰  ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))))
273270, 272syl5ibrcom 246 . . . . . . . . 9 ((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ (𝑧 = 𝑇 β†’ (2nd β€˜(1st β€˜π‘§)) β‰  ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))))
274273necon2d 2963 . . . . . . . 8 ((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ ((2nd β€˜(1st β€˜π‘§)) = ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})))) β†’ 𝑧 β‰  𝑇))
275205, 274syl5 34 . . . . . . 7 ((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ ((((1st β€˜(1st β€˜π‘§)) = (1st β€˜(1st β€˜π‘‡)) ∧ (2nd β€˜(1st β€˜π‘§)) = ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))) ∧ (2nd β€˜π‘§) = (2nd β€˜π‘‡)) β†’ 𝑧 β‰  𝑇))
276275adantr 481 . . . . . 6 (((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) β†’ ((((1st β€˜(1st β€˜π‘§)) = (1st β€˜(1st β€˜π‘‡)) ∧ (2nd β€˜(1st β€˜π‘§)) = ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))) ∧ (2nd β€˜π‘§) = (2nd β€˜π‘‡)) β†’ 𝑧 β‰  𝑇))
277204, 276impbid 211 . . . . 5 (((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) β†’ (𝑧 β‰  𝑇 ↔ (((1st β€˜(1st β€˜π‘§)) = (1st β€˜(1st β€˜π‘‡)) ∧ (2nd β€˜(1st β€˜π‘§)) = ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))) ∧ (2nd β€˜π‘§) = (2nd β€˜π‘‡))))
278 eqop 8013 . . . . . . . 8 (𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)) β†’ (𝑧 = ⟨⟨(1st β€˜(1st β€˜π‘‡)), ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))⟩, (2nd β€˜π‘‡)⟩ ↔ ((1st β€˜π‘§) = ⟨(1st β€˜(1st β€˜π‘‡)), ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))⟩ ∧ (2nd β€˜π‘§) = (2nd β€˜π‘‡))))
279 eqop 8013 . . . . . . . . . 10 ((1st β€˜π‘§) ∈ (((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) β†’ ((1st β€˜π‘§) = ⟨(1st β€˜(1st β€˜π‘‡)), ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))⟩ ↔ ((1st β€˜(1st β€˜π‘§)) = (1st β€˜(1st β€˜π‘‡)) ∧ (2nd β€˜(1st β€˜π‘§)) = ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})))))))
28075, 279syl 17 . . . . . . . . 9 (𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)) β†’ ((1st β€˜π‘§) = ⟨(1st β€˜(1st β€˜π‘‡)), ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))⟩ ↔ ((1st β€˜(1st β€˜π‘§)) = (1st β€˜(1st β€˜π‘‡)) ∧ (2nd β€˜(1st β€˜π‘§)) = ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)})))))))
281280anbi1d 630 . . . . . . . 8 (𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)) β†’ (((1st β€˜π‘§) = ⟨(1st β€˜(1st β€˜π‘‡)), ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))⟩ ∧ (2nd β€˜π‘§) = (2nd β€˜π‘‡)) ↔ (((1st β€˜(1st β€˜π‘§)) = (1st β€˜(1st β€˜π‘‡)) ∧ (2nd β€˜(1st β€˜π‘§)) = ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))) ∧ (2nd β€˜π‘§) = (2nd β€˜π‘‡))))
282278, 281bitrd 278 . . . . . . 7 (𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)) β†’ (𝑧 = ⟨⟨(1st β€˜(1st β€˜π‘‡)), ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))⟩, (2nd β€˜π‘‡)⟩ ↔ (((1st β€˜(1st β€˜π‘§)) = (1st β€˜(1st β€˜π‘‡)) ∧ (2nd β€˜(1st β€˜π‘§)) = ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))) ∧ (2nd β€˜π‘§) = (2nd β€˜π‘‡))))
28374, 282syl 17 . . . . . 6 (𝑧 ∈ 𝑆 β†’ (𝑧 = ⟨⟨(1st β€˜(1st β€˜π‘‡)), ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))⟩, (2nd β€˜π‘‡)⟩ ↔ (((1st β€˜(1st β€˜π‘§)) = (1st β€˜(1st β€˜π‘‡)) ∧ (2nd β€˜(1st β€˜π‘§)) = ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))) ∧ (2nd β€˜π‘§) = (2nd β€˜π‘‡))))
284283adantl 482 . . . . 5 (((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) β†’ (𝑧 = ⟨⟨(1st β€˜(1st β€˜π‘‡)), ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))⟩, (2nd β€˜π‘‡)⟩ ↔ (((1st β€˜(1st β€˜π‘§)) = (1st β€˜(1st β€˜π‘‡)) ∧ (2nd β€˜(1st β€˜π‘§)) = ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))) ∧ (2nd β€˜π‘§) = (2nd β€˜π‘‡))))
285277, 284bitr4d 281 . . . 4 (((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ∧ 𝑧 ∈ 𝑆) β†’ (𝑧 β‰  𝑇 ↔ 𝑧 = ⟨⟨(1st β€˜(1st β€˜π‘‡)), ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))⟩, (2nd β€˜π‘‡)⟩))
286285ralrimiva 3146 . . 3 ((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ βˆ€π‘§ ∈ 𝑆 (𝑧 β‰  𝑇 ↔ 𝑧 = ⟨⟨(1st β€˜(1st β€˜π‘‡)), ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))⟩, (2nd β€˜π‘‡)⟩))
287 reu6i 3723 . . 3 ((⟨⟨(1st β€˜(1st β€˜π‘‡)), ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))⟩, (2nd β€˜π‘‡)⟩ ∈ 𝑆 ∧ βˆ€π‘§ ∈ 𝑆 (𝑧 β‰  𝑇 ↔ 𝑧 = ⟨⟨(1st β€˜(1st β€˜π‘‡)), ((2nd β€˜(1st β€˜π‘‡)) ∘ ({⟨(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)⟩, ⟨((2nd β€˜π‘‡) + 1), (2nd β€˜π‘‡)⟩} βˆͺ ( I β†Ύ ((1...𝑁) βˆ– {(2nd β€˜π‘‡), ((2nd β€˜π‘‡) + 1)}))))⟩, (2nd β€˜π‘‡)⟩)) β†’ βˆƒ!𝑧 ∈ 𝑆 𝑧 β‰  𝑇)
2889, 286, 287syl2anc 584 . 2 ((πœ‘ ∧ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ βˆƒ!𝑧 ∈ 𝑆 𝑧 β‰  𝑇)
289 xp2nd 8004 . . . . . . 7 (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)) β†’ (2nd β€˜π‘‡) ∈ (0...𝑁))
29032, 289syl 17 . . . . . 6 (πœ‘ β†’ (2nd β€˜π‘‡) ∈ (0...𝑁))
291290biantrurd 533 . . . . 5 (πœ‘ β†’ (Β¬ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1)) ↔ ((2nd β€˜π‘‡) ∈ (0...𝑁) ∧ Β¬ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1)))))
2921nnnn0d 12528 . . . . . . . . . . . 12 (πœ‘ β†’ 𝑁 ∈ β„•0)
293 nn0uz 12860 . . . . . . . . . . . 12 β„•0 = (β„€β‰₯β€˜0)
294292, 293eleqtrdi 2843 . . . . . . . . . . 11 (πœ‘ β†’ 𝑁 ∈ (β„€β‰₯β€˜0))
295 fzpred 13545 . . . . . . . . . . 11 (𝑁 ∈ (β„€β‰₯β€˜0) β†’ (0...𝑁) = ({0} βˆͺ ((0 + 1)...𝑁)))
296294, 295syl 17 . . . . . . . . . 10 (πœ‘ β†’ (0...𝑁) = ({0} βˆͺ ((0 + 1)...𝑁)))
297123oveq1i 7415 . . . . . . . . . . 11 ((0 + 1)...𝑁) = (1...𝑁)
298297uneq2i 4159 . . . . . . . . . 10 ({0} βˆͺ ((0 + 1)...𝑁)) = ({0} βˆͺ (1...𝑁))
299296, 298eqtrdi 2788 . . . . . . . . 9 (πœ‘ β†’ (0...𝑁) = ({0} βˆͺ (1...𝑁)))
300299difeq1d 4120 . . . . . . . 8 (πœ‘ β†’ ((0...𝑁) βˆ– (1...(𝑁 βˆ’ 1))) = (({0} βˆͺ (1...𝑁)) βˆ– (1...(𝑁 βˆ’ 1))))
301 difundir 4279 . . . . . . . . . 10 (({0} βˆͺ (1...𝑁)) βˆ– (1...(𝑁 βˆ’ 1))) = (({0} βˆ– (1...(𝑁 βˆ’ 1))) βˆͺ ((1...𝑁) βˆ– (1...(𝑁 βˆ’ 1))))
302 0lt1 11732 . . . . . . . . . . . . . 14 0 < 1
303 0re 11212 . . . . . . . . . . . . . . 15 0 ∈ ℝ
304 1re 11210 . . . . . . . . . . . . . . 15 1 ∈ ℝ
305303, 304ltnlei 11331 . . . . . . . . . . . . . 14 (0 < 1 ↔ Β¬ 1 ≀ 0)
306302, 305mpbi 229 . . . . . . . . . . . . 13 Β¬ 1 ≀ 0
307 elfzle1 13500 . . . . . . . . . . . . 13 (0 ∈ (1...(𝑁 βˆ’ 1)) β†’ 1 ≀ 0)
308306, 307mto 196 . . . . . . . . . . . 12 Β¬ 0 ∈ (1...(𝑁 βˆ’ 1))
309 incom 4200 . . . . . . . . . . . . . 14 ((1...(𝑁 βˆ’ 1)) ∩ {0}) = ({0} ∩ (1...(𝑁 βˆ’ 1)))
310309eqeq1i 2737 . . . . . . . . . . . . 13 (((1...(𝑁 βˆ’ 1)) ∩ {0}) = βˆ… ↔ ({0} ∩ (1...(𝑁 βˆ’ 1))) = βˆ…)
311 disjsn 4714 . . . . . . . . . . . . 13 (((1...(𝑁 βˆ’ 1)) ∩ {0}) = βˆ… ↔ Β¬ 0 ∈ (1...(𝑁 βˆ’ 1)))
312 disj3 4452 . . . . . . . . . . . . 13 (({0} ∩ (1...(𝑁 βˆ’ 1))) = βˆ… ↔ {0} = ({0} βˆ– (1...(𝑁 βˆ’ 1))))
313310, 311, 3123bitr3i 300 . . . . . . . . . . . 12 (Β¬ 0 ∈ (1...(𝑁 βˆ’ 1)) ↔ {0} = ({0} βˆ– (1...(𝑁 βˆ’ 1))))
314308, 313mpbi 229 . . . . . . . . . . 11 {0} = ({0} βˆ– (1...(𝑁 βˆ’ 1)))
315314uneq1i 4158 . . . . . . . . . 10 ({0} βˆͺ ((1...𝑁) βˆ– (1...(𝑁 βˆ’ 1)))) = (({0} βˆ– (1...(𝑁 βˆ’ 1))) βˆͺ ((1...𝑁) βˆ– (1...(𝑁 βˆ’ 1))))
316301, 315eqtr4i 2763 . . . . . . . . 9 (({0} βˆͺ (1...𝑁)) βˆ– (1...(𝑁 βˆ’ 1))) = ({0} βˆͺ ((1...𝑁) βˆ– (1...(𝑁 βˆ’ 1))))
317 difundir 4279 . . . . . . . . . . . 12 (((1...(𝑁 βˆ’ 1)) βˆͺ {𝑁}) βˆ– (1...(𝑁 βˆ’ 1))) = (((1...(𝑁 βˆ’ 1)) βˆ– (1...(𝑁 βˆ’ 1))) βˆͺ ({𝑁} βˆ– (1...(𝑁 βˆ’ 1))))
318 difid 4369 . . . . . . . . . . . . 13 ((1...(𝑁 βˆ’ 1)) βˆ– (1...(𝑁 βˆ’ 1))) = βˆ…
319318uneq1i 4158 . . . . . . . . . . . 12 (((1...(𝑁 βˆ’ 1)) βˆ– (1...(𝑁 βˆ’ 1))) βˆͺ ({𝑁} βˆ– (1...(𝑁 βˆ’ 1)))) = (βˆ… βˆͺ ({𝑁} βˆ– (1...(𝑁 βˆ’ 1))))
320 uncom 4152 . . . . . . . . . . . . 13 (βˆ… βˆͺ ({𝑁} βˆ– (1...(𝑁 βˆ’ 1)))) = (({𝑁} βˆ– (1...(𝑁 βˆ’ 1))) βˆͺ βˆ…)
321 un0 4389 . . . . . . . . . . . . 13 (({𝑁} βˆ– (1...(𝑁 βˆ’ 1))) βˆͺ βˆ…) = ({𝑁} βˆ– (1...(𝑁 βˆ’ 1)))
322320, 321eqtri 2760 . . . . . . . . . . . 12 (βˆ… βˆͺ ({𝑁} βˆ– (1...(𝑁 βˆ’ 1)))) = ({𝑁} βˆ– (1...(𝑁 βˆ’ 1)))
323317, 319, 3223eqtri 2764 . . . . . . . . . . 11 (((1...(𝑁 βˆ’ 1)) βˆͺ {𝑁}) βˆ– (1...(𝑁 βˆ’ 1))) = ({𝑁} βˆ– (1...(𝑁 βˆ’ 1)))
324 nnuz 12861 . . . . . . . . . . . . . . . 16 β„• = (β„€β‰₯β€˜1)
3251, 324eleqtrdi 2843 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝑁 ∈ (β„€β‰₯β€˜1))
326250, 325eqeltrd 2833 . . . . . . . . . . . . . 14 (πœ‘ β†’ ((𝑁 βˆ’ 1) + 1) ∈ (β„€β‰₯β€˜1))
327 fzsplit2 13522 . . . . . . . . . . . . . 14 ((((𝑁 βˆ’ 1) + 1) ∈ (β„€β‰₯β€˜1) ∧ 𝑁 ∈ (β„€β‰₯β€˜(𝑁 βˆ’ 1))) β†’ (1...𝑁) = ((1...(𝑁 βˆ’ 1)) βˆͺ (((𝑁 βˆ’ 1) + 1)...𝑁)))
328326, 256, 327syl2anc 584 . . . . . . . . . . . . 13 (πœ‘ β†’ (1...𝑁) = ((1...(𝑁 βˆ’ 1)) βˆͺ (((𝑁 βˆ’ 1) + 1)...𝑁)))
329250oveq1d 7420 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (((𝑁 βˆ’ 1) + 1)...𝑁) = (𝑁...𝑁))
3301nnzd 12581 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ 𝑁 ∈ β„€)
331 fzsn 13539 . . . . . . . . . . . . . . . 16 (𝑁 ∈ β„€ β†’ (𝑁...𝑁) = {𝑁})
332330, 331syl 17 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (𝑁...𝑁) = {𝑁})
333329, 332eqtrd 2772 . . . . . . . . . . . . . 14 (πœ‘ β†’ (((𝑁 βˆ’ 1) + 1)...𝑁) = {𝑁})
334333uneq2d 4162 . . . . . . . . . . . . 13 (πœ‘ β†’ ((1...(𝑁 βˆ’ 1)) βˆͺ (((𝑁 βˆ’ 1) + 1)...𝑁)) = ((1...(𝑁 βˆ’ 1)) βˆͺ {𝑁}))
335328, 334eqtrd 2772 . . . . . . . . . . . 12 (πœ‘ β†’ (1...𝑁) = ((1...(𝑁 βˆ’ 1)) βˆͺ {𝑁}))
336335difeq1d 4120 . . . . . . . . . . 11 (πœ‘ β†’ ((1...𝑁) βˆ– (1...(𝑁 βˆ’ 1))) = (((1...(𝑁 βˆ’ 1)) βˆͺ {𝑁}) βˆ– (1...(𝑁 βˆ’ 1))))
3371nnred 12223 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝑁 ∈ ℝ)
338337ltm1d 12142 . . . . . . . . . . . . . 14 (πœ‘ β†’ (𝑁 βˆ’ 1) < 𝑁)
339164nn0red 12529 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (𝑁 βˆ’ 1) ∈ ℝ)
340339, 337ltnled 11357 . . . . . . . . . . . . . 14 (πœ‘ β†’ ((𝑁 βˆ’ 1) < 𝑁 ↔ Β¬ 𝑁 ≀ (𝑁 βˆ’ 1)))
341338, 340mpbid 231 . . . . . . . . . . . . 13 (πœ‘ β†’ Β¬ 𝑁 ≀ (𝑁 βˆ’ 1))
342 elfzle2 13501 . . . . . . . . . . . . 13 (𝑁 ∈ (1...(𝑁 βˆ’ 1)) β†’ 𝑁 ≀ (𝑁 βˆ’ 1))
343341, 342nsyl 140 . . . . . . . . . . . 12 (πœ‘ β†’ Β¬ 𝑁 ∈ (1...(𝑁 βˆ’ 1)))
344 incom 4200 . . . . . . . . . . . . . 14 ((1...(𝑁 βˆ’ 1)) ∩ {𝑁}) = ({𝑁} ∩ (1...(𝑁 βˆ’ 1)))
345344eqeq1i 2737 . . . . . . . . . . . . 13 (((1...(𝑁 βˆ’ 1)) ∩ {𝑁}) = βˆ… ↔ ({𝑁} ∩ (1...(𝑁 βˆ’ 1))) = βˆ…)
346 disjsn 4714 . . . . . . . . . . . . 13 (((1...(𝑁 βˆ’ 1)) ∩ {𝑁}) = βˆ… ↔ Β¬ 𝑁 ∈ (1...(𝑁 βˆ’ 1)))
347 disj3 4452 . . . . . . . . . . . . 13 (({𝑁} ∩ (1...(𝑁 βˆ’ 1))) = βˆ… ↔ {𝑁} = ({𝑁} βˆ– (1...(𝑁 βˆ’ 1))))
348345, 346, 3473bitr3i 300 . . . . . . . . . . . 12 (Β¬ 𝑁 ∈ (1...(𝑁 βˆ’ 1)) ↔ {𝑁} = ({𝑁} βˆ– (1...(𝑁 βˆ’ 1))))
349343, 348sylib 217 . . . . . . . . . . 11 (πœ‘ β†’ {𝑁} = ({𝑁} βˆ– (1...(𝑁 βˆ’ 1))))
350323, 336, 3493eqtr4a 2798 . . . . . . . . . 10 (πœ‘ β†’ ((1...𝑁) βˆ– (1...(𝑁 βˆ’ 1))) = {𝑁})
351350uneq2d 4162 . . . . . . . . 9 (πœ‘ β†’ ({0} βˆͺ ((1...𝑁) βˆ– (1...(𝑁 βˆ’ 1)))) = ({0} βˆͺ {𝑁}))
352316, 351eqtrid 2784 . . . . . . . 8 (πœ‘ β†’ (({0} βˆͺ (1...𝑁)) βˆ– (1...(𝑁 βˆ’ 1))) = ({0} βˆͺ {𝑁}))
353300, 352eqtrd 2772 . . . . . . 7 (πœ‘ β†’ ((0...𝑁) βˆ– (1...(𝑁 βˆ’ 1))) = ({0} βˆͺ {𝑁}))
354353eleq2d 2819 . . . . . 6 (πœ‘ β†’ ((2nd β€˜π‘‡) ∈ ((0...𝑁) βˆ– (1...(𝑁 βˆ’ 1))) ↔ (2nd β€˜π‘‡) ∈ ({0} βˆͺ {𝑁})))
355 eldif 3957 . . . . . 6 ((2nd β€˜π‘‡) ∈ ((0...𝑁) βˆ– (1...(𝑁 βˆ’ 1))) ↔ ((2nd β€˜π‘‡) ∈ (0...𝑁) ∧ Β¬ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))))
356 elun 4147 . . . . . . 7 ((2nd β€˜π‘‡) ∈ ({0} βˆͺ {𝑁}) ↔ ((2nd β€˜π‘‡) ∈ {0} ∨ (2nd β€˜π‘‡) ∈ {𝑁}))
357215elsn 4642 . . . . . . . 8 ((2nd β€˜π‘‡) ∈ {0} ↔ (2nd β€˜π‘‡) = 0)
358215elsn 4642 . . . . . . . 8 ((2nd β€˜π‘‡) ∈ {𝑁} ↔ (2nd β€˜π‘‡) = 𝑁)
359357, 358orbi12i 913 . . . . . . 7 (((2nd β€˜π‘‡) ∈ {0} ∨ (2nd β€˜π‘‡) ∈ {𝑁}) ↔ ((2nd β€˜π‘‡) = 0 ∨ (2nd β€˜π‘‡) = 𝑁))
360356, 359bitri 274 . . . . . 6 ((2nd β€˜π‘‡) ∈ ({0} βˆͺ {𝑁}) ↔ ((2nd β€˜π‘‡) = 0 ∨ (2nd β€˜π‘‡) = 𝑁))
361354, 355, 3603bitr3g 312 . . . . 5 (πœ‘ β†’ (((2nd β€˜π‘‡) ∈ (0...𝑁) ∧ Β¬ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) ↔ ((2nd β€˜π‘‡) = 0 ∨ (2nd β€˜π‘‡) = 𝑁)))
362291, 361bitrd 278 . . . 4 (πœ‘ β†’ (Β¬ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1)) ↔ ((2nd β€˜π‘‡) = 0 ∨ (2nd β€˜π‘‡) = 𝑁)))
363362biimpa 477 . . 3 ((πœ‘ ∧ Β¬ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ ((2nd β€˜π‘‡) = 0 ∨ (2nd β€˜π‘‡) = 𝑁))
3641adantr 481 . . . . 5 ((πœ‘ ∧ (2nd β€˜π‘‡) = 0) β†’ 𝑁 ∈ β„•)
3654adantr 481 . . . . 5 ((πœ‘ ∧ (2nd β€˜π‘‡) = 0) β†’ 𝐹:(0...(𝑁 βˆ’ 1))⟢((0...𝐾) ↑m (1...𝑁)))
3666adantr 481 . . . . 5 ((πœ‘ ∧ (2nd β€˜π‘‡) = 0) β†’ 𝑇 ∈ 𝑆)
367 poimirlem22.4 . . . . . 6 ((πœ‘ ∧ 𝑛 ∈ (1...𝑁)) β†’ βˆƒπ‘ ∈ ran 𝐹(π‘β€˜π‘›) β‰  𝐾)
368367adantlr 713 . . . . 5 (((πœ‘ ∧ (2nd β€˜π‘‡) = 0) ∧ 𝑛 ∈ (1...𝑁)) β†’ βˆƒπ‘ ∈ ran 𝐹(π‘β€˜π‘›) β‰  𝐾)
369 simpr 485 . . . . 5 ((πœ‘ ∧ (2nd β€˜π‘‡) = 0) β†’ (2nd β€˜π‘‡) = 0)
370364, 3, 365, 366, 368, 369poimirlem18 36494 . . . 4 ((πœ‘ ∧ (2nd β€˜π‘‡) = 0) β†’ βˆƒ!𝑧 ∈ 𝑆 𝑧 β‰  𝑇)
3711adantr 481 . . . . 5 ((πœ‘ ∧ (2nd β€˜π‘‡) = 𝑁) β†’ 𝑁 ∈ β„•)
3724adantr 481 . . . . 5 ((πœ‘ ∧ (2nd β€˜π‘‡) = 𝑁) β†’ 𝐹:(0...(𝑁 βˆ’ 1))⟢((0...𝐾) ↑m (1...𝑁)))
3736adantr 481 . . . . 5 ((πœ‘ ∧ (2nd β€˜π‘‡) = 𝑁) β†’ 𝑇 ∈ 𝑆)
374 poimirlem22.3 . . . . . 6 ((πœ‘ ∧ 𝑛 ∈ (1...𝑁)) β†’ βˆƒπ‘ ∈ ran 𝐹(π‘β€˜π‘›) β‰  0)
375374adantlr 713 . . . . 5 (((πœ‘ ∧ (2nd β€˜π‘‡) = 𝑁) ∧ 𝑛 ∈ (1...𝑁)) β†’ βˆƒπ‘ ∈ ran 𝐹(π‘β€˜π‘›) β‰  0)
376 simpr 485 . . . . 5 ((πœ‘ ∧ (2nd β€˜π‘‡) = 𝑁) β†’ (2nd β€˜π‘‡) = 𝑁)
377371, 3, 372, 373, 375, 376poimirlem21 36497 . . . 4 ((πœ‘ ∧ (2nd β€˜π‘‡) = 𝑁) β†’ βˆƒ!𝑧 ∈ 𝑆 𝑧 β‰  𝑇)
378370, 377jaodan 956 . . 3 ((πœ‘ ∧ ((2nd β€˜π‘‡) = 0 ∨ (2nd β€˜π‘‡) = 𝑁)) β†’ βˆƒ!𝑧 ∈ 𝑆 𝑧 β‰  𝑇)
379363, 378syldan 591 . 2 ((πœ‘ ∧ Β¬ (2nd β€˜π‘‡) ∈ (1...(𝑁 βˆ’ 1))) β†’ βˆƒ!𝑧 ∈ 𝑆 𝑧 β‰  𝑇)
380288, 379pm2.61dan 811 1 (πœ‘ β†’ βˆƒ!𝑧 ∈ 𝑆 𝑧 β‰  𝑇)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ wo 845   = wceq 1541   ∈ wcel 2106  {cab 2709   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070  βˆƒ!wreu 3374  βˆƒ*wrmo 3375  {crab 3432  Vcvv 3474  β¦‹csb 3892   βˆ– cdif 3944   βˆͺ cun 3945   ∩ cin 3946   βŠ† wss 3947  βˆ…c0 4321  ifcif 4527  {csn 4627  {cpr 4629  βŸ¨cop 4633   class class class wbr 5147   ↦ cmpt 5230   I cid 5572   Γ— cxp 5673  ran crn 5676   β†Ύ cres 5677   β€œ cima 5678   ∘ ccom 5679   Fn wfn 6535  βŸΆwf 6536  β€“1-1β†’wf1 6537  β€“ontoβ†’wfo 6538  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540  (class class class)co 7405   ∘f cof 7664  1st c1st 7969  2nd c2nd 7970   ↑m cmap 8816  β„‚cc 11104  β„cr 11105  0cc0 11106  1c1 11107   + caddc 11109   < clt 11244   ≀ cle 11245   βˆ’ cmin 11440  β„•cn 12208  β„•0cn0 12468  β„€cz 12554  β„€β‰₯cuz 12818  ...cfz 13480  ..^cfzo 13623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-fac 14230  df-bc 14259  df-hash 14287
This theorem is referenced by:  poimirlem27  36503
  Copyright terms: Public domain W3C validator