Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem22 Structured version   Visualization version   GIF version

Theorem poimirlem22 35079
Description: Lemma for poimir 35090, that a given face belongs to exactly two simplices, provided it's not on the boundary of the cube. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimirlem22.s 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
poimirlem22.1 (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))
poimirlem22.2 (𝜑𝑇𝑆)
poimirlem22.3 ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 0)
poimirlem22.4 ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 𝐾)
Assertion
Ref Expression
poimirlem22 (𝜑 → ∃!𝑧𝑆 𝑧𝑇)
Distinct variable groups:   𝑓,𝑗,𝑛,𝑝,𝑡,𝑦,𝑧   𝜑,𝑗,𝑛,𝑦   𝑗,𝐹,𝑛,𝑦   𝑗,𝑁,𝑛,𝑦   𝑇,𝑗,𝑛,𝑦   𝜑,𝑝,𝑡   𝑓,𝐾,𝑗,𝑛,𝑝,𝑡   𝑓,𝑁,𝑝,𝑡   𝑇,𝑓,𝑝   𝜑,𝑧   𝑓,𝐹,𝑝,𝑡,𝑧   𝑧,𝐾   𝑧,𝑁   𝑡,𝑇,𝑧   𝑆,𝑗,𝑛,𝑝,𝑡,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝑆(𝑓)   𝐾(𝑦)

Proof of Theorem poimirlem22
StepHypRef Expression
1 poimir.0 . . . . 5 (𝜑𝑁 ∈ ℕ)
21adantr 484 . . . 4 ((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) → 𝑁 ∈ ℕ)
3 poimirlem22.s . . . 4 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
4 poimirlem22.1 . . . . 5 (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))
54adantr 484 . . . 4 ((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))
6 poimirlem22.2 . . . . 5 (𝜑𝑇𝑆)
76adantr 484 . . . 4 ((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) → 𝑇𝑆)
8 simpr 488 . . . 4 ((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) → (2nd𝑇) ∈ (1...(𝑁 − 1)))
92, 3, 5, 7, 8poimirlem15 35072 . . 3 ((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) → ⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩ ∈ 𝑆)
10 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑇 → (2nd𝑡) = (2nd𝑇))
1110breq2d 5042 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑇 → (𝑦 < (2nd𝑡) ↔ 𝑦 < (2nd𝑇)))
1211ifbid 4447 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑇 → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)))
1312csbeq1d 3832 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))
14 2fveq3 6650 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑇 → (1st ‘(1st𝑡)) = (1st ‘(1st𝑇)))
15 2fveq3 6650 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑇 → (2nd ‘(1st𝑡)) = (2nd ‘(1st𝑇)))
1615imaeq1d 5895 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...𝑗)))
1716xpeq1d 5548 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}))
1815imaeq1d 5895 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)))
1918xpeq1d 5548 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))
2017, 19uneq12d 4091 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑇 → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))
2114, 20oveq12d 7153 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑇 → ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
2221csbeq2dv 3835 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑇if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
2313, 22eqtrd 2833 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
2423mpteq2dv 5126 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑇 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
2524eqeq2d 2809 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑇 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
2625, 3elrab2 3631 . . . . . . . . . . . . . . . . 17 (𝑇𝑆 ↔ (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
2726simprbi 500 . . . . . . . . . . . . . . . 16 (𝑇𝑆𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
286, 27syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
2928adantr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
30 elrabi 3623 . . . . . . . . . . . . . . . . . . . . 21 (𝑇 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
3130, 3eleq2s 2908 . . . . . . . . . . . . . . . . . . . 20 (𝑇𝑆𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
326, 31syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
33 xp1st 7703 . . . . . . . . . . . . . . . . . . 19 (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
3432, 33syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
35 xp1st 7703 . . . . . . . . . . . . . . . . . 18 ((1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
3634, 35syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
37 elmapi 8411 . . . . . . . . . . . . . . . . 17 ((1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)) → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
3836, 37syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
39 elfzoelz 13033 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (0..^𝐾) → 𝑛 ∈ ℤ)
4039ssriv 3919 . . . . . . . . . . . . . . . 16 (0..^𝐾) ⊆ ℤ
41 fss 6501 . . . . . . . . . . . . . . . 16 (((1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾) ∧ (0..^𝐾) ⊆ ℤ) → (1st ‘(1st𝑇)):(1...𝑁)⟶ℤ)
4238, 40, 41sylancl 589 . . . . . . . . . . . . . . 15 (𝜑 → (1st ‘(1st𝑇)):(1...𝑁)⟶ℤ)
4342adantr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) → (1st ‘(1st𝑇)):(1...𝑁)⟶ℤ)
44 xp2nd 7704 . . . . . . . . . . . . . . . . 17 ((1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
4534, 44syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
46 fvex 6658 . . . . . . . . . . . . . . . . 17 (2nd ‘(1st𝑇)) ∈ V
47 f1oeq1 6579 . . . . . . . . . . . . . . . . 17 (𝑓 = (2nd ‘(1st𝑇)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)))
4846, 47elab 3615 . . . . . . . . . . . . . . . 16 ((2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
4945, 48sylib 221 . . . . . . . . . . . . . . 15 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
5049adantr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) → (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
512, 29, 43, 50, 8poimirlem1 35058 . . . . . . . . . . . . 13 ((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) → ¬ ∃*𝑛 ∈ (1...𝑁)((𝐹‘((2nd𝑇) − 1))‘𝑛) ≠ ((𝐹‘(2nd𝑇))‘𝑛))
5251adantr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) → ¬ ∃*𝑛 ∈ (1...𝑁)((𝐹‘((2nd𝑇) − 1))‘𝑛) ≠ ((𝐹‘(2nd𝑇))‘𝑛))
531ad3antrrr 729 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) ∧ (2nd𝑧) ≠ (2nd𝑇)) → 𝑁 ∈ ℕ)
54 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑧 → (2nd𝑡) = (2nd𝑧))
5554breq2d 5042 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑧 → (𝑦 < (2nd𝑡) ↔ 𝑦 < (2nd𝑧)))
5655ifbid 4447 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑧 → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)))
5756csbeq1d 3832 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑧if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))
58 2fveq3 6650 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑧 → (1st ‘(1st𝑡)) = (1st ‘(1st𝑧)))
59 2fveq3 6650 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑧 → (2nd ‘(1st𝑡)) = (2nd ‘(1st𝑧)))
6059imaeq1d 5895 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑧 → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = ((2nd ‘(1st𝑧)) “ (1...𝑗)))
6160xpeq1d 5548 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑧 → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}))
6259imaeq1d 5895 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑧 → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)))
6362xpeq1d 5548 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑧 → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))
6461, 63uneq12d 4091 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑧 → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0})))
6558, 64oveq12d 7153 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑧 → ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑧)) ∘f + ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))))
6665csbeq2dv 3835 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑧if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑧)) ∘f + ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))))
6757, 66eqtrd 2833 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑧if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑧)) ∘f + ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))))
6867mpteq2dv 5126 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑧 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑧)) ∘f + ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0})))))
6968eqeq2d 2809 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑧 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑧)) ∘f + ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
7069, 3elrab2 3631 . . . . . . . . . . . . . . . . 17 (𝑧𝑆 ↔ (𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑧)) ∘f + ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
7170simprbi 500 . . . . . . . . . . . . . . . 16 (𝑧𝑆𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑧)) ∘f + ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0})))))
7271ad2antlr 726 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) ∧ (2nd𝑧) ≠ (2nd𝑇)) → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑧)) ∘f + ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0})))))
73 elrabi 3623 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
7473, 3eleq2s 2908 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝑆𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
75 xp1st 7703 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st𝑧) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
7674, 75syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑧𝑆 → (1st𝑧) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
77 xp1st 7703 . . . . . . . . . . . . . . . . . . 19 ((1st𝑧) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘(1st𝑧)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
7876, 77syl 17 . . . . . . . . . . . . . . . . . 18 (𝑧𝑆 → (1st ‘(1st𝑧)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
79 elmapi 8411 . . . . . . . . . . . . . . . . . 18 ((1st ‘(1st𝑧)) ∈ ((0..^𝐾) ↑m (1...𝑁)) → (1st ‘(1st𝑧)):(1...𝑁)⟶(0..^𝐾))
8078, 79syl 17 . . . . . . . . . . . . . . . . 17 (𝑧𝑆 → (1st ‘(1st𝑧)):(1...𝑁)⟶(0..^𝐾))
81 fss 6501 . . . . . . . . . . . . . . . . 17 (((1st ‘(1st𝑧)):(1...𝑁)⟶(0..^𝐾) ∧ (0..^𝐾) ⊆ ℤ) → (1st ‘(1st𝑧)):(1...𝑁)⟶ℤ)
8280, 40, 81sylancl 589 . . . . . . . . . . . . . . . 16 (𝑧𝑆 → (1st ‘(1st𝑧)):(1...𝑁)⟶ℤ)
8382ad2antlr 726 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) ∧ (2nd𝑧) ≠ (2nd𝑇)) → (1st ‘(1st𝑧)):(1...𝑁)⟶ℤ)
84 xp2nd 7704 . . . . . . . . . . . . . . . . . 18 ((1st𝑧) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(1st𝑧)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
8576, 84syl 17 . . . . . . . . . . . . . . . . 17 (𝑧𝑆 → (2nd ‘(1st𝑧)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
86 fvex 6658 . . . . . . . . . . . . . . . . . 18 (2nd ‘(1st𝑧)) ∈ V
87 f1oeq1 6579 . . . . . . . . . . . . . . . . . 18 (𝑓 = (2nd ‘(1st𝑧)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(1st𝑧)):(1...𝑁)–1-1-onto→(1...𝑁)))
8886, 87elab 3615 . . . . . . . . . . . . . . . . 17 ((2nd ‘(1st𝑧)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(1st𝑧)):(1...𝑁)–1-1-onto→(1...𝑁))
8985, 88sylib 221 . . . . . . . . . . . . . . . 16 (𝑧𝑆 → (2nd ‘(1st𝑧)):(1...𝑁)–1-1-onto→(1...𝑁))
9089ad2antlr 726 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) ∧ (2nd𝑧) ≠ (2nd𝑇)) → (2nd ‘(1st𝑧)):(1...𝑁)–1-1-onto→(1...𝑁))
91 simpllr 775 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) ∧ (2nd𝑧) ≠ (2nd𝑇)) → (2nd𝑇) ∈ (1...(𝑁 − 1)))
92 xp2nd 7704 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (2nd𝑧) ∈ (0...𝑁))
9374, 92syl 17 . . . . . . . . . . . . . . . . 17 (𝑧𝑆 → (2nd𝑧) ∈ (0...𝑁))
9493adantl 485 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) → (2nd𝑧) ∈ (0...𝑁))
95 eldifsn 4680 . . . . . . . . . . . . . . . . 17 ((2nd𝑧) ∈ ((0...𝑁) ∖ {(2nd𝑇)}) ↔ ((2nd𝑧) ∈ (0...𝑁) ∧ (2nd𝑧) ≠ (2nd𝑇)))
9695biimpri 231 . . . . . . . . . . . . . . . 16 (((2nd𝑧) ∈ (0...𝑁) ∧ (2nd𝑧) ≠ (2nd𝑇)) → (2nd𝑧) ∈ ((0...𝑁) ∖ {(2nd𝑇)}))
9794, 96sylan 583 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) ∧ (2nd𝑧) ≠ (2nd𝑇)) → (2nd𝑧) ∈ ((0...𝑁) ∖ {(2nd𝑇)}))
9853, 72, 83, 90, 91, 97poimirlem2 35059 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) ∧ (2nd𝑧) ≠ (2nd𝑇)) → ∃*𝑛 ∈ (1...𝑁)((𝐹‘((2nd𝑇) − 1))‘𝑛) ≠ ((𝐹‘(2nd𝑇))‘𝑛))
9998ex 416 . . . . . . . . . . . . 13 (((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) → ((2nd𝑧) ≠ (2nd𝑇) → ∃*𝑛 ∈ (1...𝑁)((𝐹‘((2nd𝑇) − 1))‘𝑛) ≠ ((𝐹‘(2nd𝑇))‘𝑛)))
10099necon1bd 3005 . . . . . . . . . . . 12 (((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) → (¬ ∃*𝑛 ∈ (1...𝑁)((𝐹‘((2nd𝑇) − 1))‘𝑛) ≠ ((𝐹‘(2nd𝑇))‘𝑛) → (2nd𝑧) = (2nd𝑇)))
10152, 100mpd 15 . . . . . . . . . . 11 (((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) → (2nd𝑧) = (2nd𝑇))
102 eleq1 2877 . . . . . . . . . . . . . . . 16 ((2nd𝑧) = (2nd𝑇) → ((2nd𝑧) ∈ (1...(𝑁 − 1)) ↔ (2nd𝑇) ∈ (1...(𝑁 − 1))))
103102biimparc 483 . . . . . . . . . . . . . . 15 (((2nd𝑇) ∈ (1...(𝑁 − 1)) ∧ (2nd𝑧) = (2nd𝑇)) → (2nd𝑧) ∈ (1...(𝑁 − 1)))
104103anim2i 619 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((2nd𝑇) ∈ (1...(𝑁 − 1)) ∧ (2nd𝑧) = (2nd𝑇))) → (𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))))
105104anassrs 471 . . . . . . . . . . . . 13 (((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ (2nd𝑧) = (2nd𝑇)) → (𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))))
10671adantl 485 . . . . . . . . . . . . . 14 (((𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑧)) ∘f + ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0})))))
107 breq1 5033 . . . . . . . . . . . . . . . . . 18 (𝑦 = 0 → (𝑦 < (2nd𝑧) ↔ 0 < (2nd𝑧)))
108 id 22 . . . . . . . . . . . . . . . . . 18 (𝑦 = 0 → 𝑦 = 0)
109107, 108ifbieq1d 4448 . . . . . . . . . . . . . . . . 17 (𝑦 = 0 → if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)) = if(0 < (2nd𝑧), 0, (𝑦 + 1)))
110 elfznn 12931 . . . . . . . . . . . . . . . . . . . 20 ((2nd𝑧) ∈ (1...(𝑁 − 1)) → (2nd𝑧) ∈ ℕ)
111110nngt0d 11674 . . . . . . . . . . . . . . . . . . 19 ((2nd𝑧) ∈ (1...(𝑁 − 1)) → 0 < (2nd𝑧))
112111iftrued 4433 . . . . . . . . . . . . . . . . . 18 ((2nd𝑧) ∈ (1...(𝑁 − 1)) → if(0 < (2nd𝑧), 0, (𝑦 + 1)) = 0)
113112ad2antlr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) → if(0 < (2nd𝑧), 0, (𝑦 + 1)) = 0)
114109, 113sylan9eqr 2855 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) ∧ 𝑦 = 0) → if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)) = 0)
115114csbeq1d 3832 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) ∧ 𝑦 = 0) → if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑧)) ∘f + ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))) = 0 / 𝑗((1st ‘(1st𝑧)) ∘f + ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))))
116 c0ex 10624 . . . . . . . . . . . . . . . . . 18 0 ∈ V
117 oveq2 7143 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 = 0 → (1...𝑗) = (1...0))
118 fz10 12923 . . . . . . . . . . . . . . . . . . . . . . . 24 (1...0) = ∅
119117, 118eqtrdi 2849 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = 0 → (1...𝑗) = ∅)
120119imaeq2d 5896 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 0 → ((2nd ‘(1st𝑧)) “ (1...𝑗)) = ((2nd ‘(1st𝑧)) “ ∅))
121120xpeq1d 5548 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 0 → (((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑧)) “ ∅) × {1}))
122 oveq1 7142 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 = 0 → (𝑗 + 1) = (0 + 1))
123 0p1e1 11747 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 + 1) = 1
124122, 123eqtrdi 2849 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 = 0 → (𝑗 + 1) = 1)
125124oveq1d 7150 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = 0 → ((𝑗 + 1)...𝑁) = (1...𝑁))
126125imaeq2d 5896 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 0 → ((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑧)) “ (1...𝑁)))
127126xpeq1d 5548 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 0 → (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑧)) “ (1...𝑁)) × {0}))
128121, 127uneq12d 4091 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 0 → ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑧)) “ ∅) × {1}) ∪ (((2nd ‘(1st𝑧)) “ (1...𝑁)) × {0})))
129 ima0 5912 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2nd ‘(1st𝑧)) “ ∅) = ∅
130129xpeq1i 5545 . . . . . . . . . . . . . . . . . . . . . . 23 (((2nd ‘(1st𝑧)) “ ∅) × {1}) = (∅ × {1})
131 0xp 5613 . . . . . . . . . . . . . . . . . . . . . . 23 (∅ × {1}) = ∅
132130, 131eqtri 2821 . . . . . . . . . . . . . . . . . . . . . 22 (((2nd ‘(1st𝑧)) “ ∅) × {1}) = ∅
133132uneq1i 4086 . . . . . . . . . . . . . . . . . . . . 21 ((((2nd ‘(1st𝑧)) “ ∅) × {1}) ∪ (((2nd ‘(1st𝑧)) “ (1...𝑁)) × {0})) = (∅ ∪ (((2nd ‘(1st𝑧)) “ (1...𝑁)) × {0}))
134 uncom 4080 . . . . . . . . . . . . . . . . . . . . 21 (∅ ∪ (((2nd ‘(1st𝑧)) “ (1...𝑁)) × {0})) = ((((2nd ‘(1st𝑧)) “ (1...𝑁)) × {0}) ∪ ∅)
135 un0 4298 . . . . . . . . . . . . . . . . . . . . 21 ((((2nd ‘(1st𝑧)) “ (1...𝑁)) × {0}) ∪ ∅) = (((2nd ‘(1st𝑧)) “ (1...𝑁)) × {0})
136133, 134, 1353eqtri 2825 . . . . . . . . . . . . . . . . . . . 20 ((((2nd ‘(1st𝑧)) “ ∅) × {1}) ∪ (((2nd ‘(1st𝑧)) “ (1...𝑁)) × {0})) = (((2nd ‘(1st𝑧)) “ (1...𝑁)) × {0})
137128, 136eqtrdi 2849 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 0 → ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0})) = (((2nd ‘(1st𝑧)) “ (1...𝑁)) × {0}))
138137oveq2d 7151 . . . . . . . . . . . . . . . . . 18 (𝑗 = 0 → ((1st ‘(1st𝑧)) ∘f + ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑧)) ∘f + (((2nd ‘(1st𝑧)) “ (1...𝑁)) × {0})))
139116, 138csbie 3863 . . . . . . . . . . . . . . . . 17 0 / 𝑗((1st ‘(1st𝑧)) ∘f + ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑧)) ∘f + (((2nd ‘(1st𝑧)) “ (1...𝑁)) × {0}))
140 f1ofo 6597 . . . . . . . . . . . . . . . . . . . . . 22 ((2nd ‘(1st𝑧)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑧)):(1...𝑁)–onto→(1...𝑁))
14189, 140syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑧𝑆 → (2nd ‘(1st𝑧)):(1...𝑁)–onto→(1...𝑁))
142 foima 6570 . . . . . . . . . . . . . . . . . . . . 21 ((2nd ‘(1st𝑧)):(1...𝑁)–onto→(1...𝑁) → ((2nd ‘(1st𝑧)) “ (1...𝑁)) = (1...𝑁))
143141, 142syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝑆 → ((2nd ‘(1st𝑧)) “ (1...𝑁)) = (1...𝑁))
144143xpeq1d 5548 . . . . . . . . . . . . . . . . . . 19 (𝑧𝑆 → (((2nd ‘(1st𝑧)) “ (1...𝑁)) × {0}) = ((1...𝑁) × {0}))
145144oveq2d 7151 . . . . . . . . . . . . . . . . . 18 (𝑧𝑆 → ((1st ‘(1st𝑧)) ∘f + (((2nd ‘(1st𝑧)) “ (1...𝑁)) × {0})) = ((1st ‘(1st𝑧)) ∘f + ((1...𝑁) × {0})))
146 ovexd 7170 . . . . . . . . . . . . . . . . . . 19 (𝑧𝑆 → (1...𝑁) ∈ V)
14780ffnd 6488 . . . . . . . . . . . . . . . . . . 19 (𝑧𝑆 → (1st ‘(1st𝑧)) Fn (1...𝑁))
148 fnconstg 6541 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ V → ((1...𝑁) × {0}) Fn (1...𝑁))
149116, 148mp1i 13 . . . . . . . . . . . . . . . . . . 19 (𝑧𝑆 → ((1...𝑁) × {0}) Fn (1...𝑁))
150 eqidd 2799 . . . . . . . . . . . . . . . . . . 19 ((𝑧𝑆𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑧))‘𝑛) = ((1st ‘(1st𝑧))‘𝑛))
151116fvconst2 6943 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ (1...𝑁) → (((1...𝑁) × {0})‘𝑛) = 0)
152151adantl 485 . . . . . . . . . . . . . . . . . . 19 ((𝑧𝑆𝑛 ∈ (1...𝑁)) → (((1...𝑁) × {0})‘𝑛) = 0)
15380ffvelrnda 6828 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧𝑆𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑧))‘𝑛) ∈ (0..^𝐾))
154 elfzonn0 13077 . . . . . . . . . . . . . . . . . . . . . 22 (((1st ‘(1st𝑧))‘𝑛) ∈ (0..^𝐾) → ((1st ‘(1st𝑧))‘𝑛) ∈ ℕ0)
155153, 154syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧𝑆𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑧))‘𝑛) ∈ ℕ0)
156155nn0cnd 11945 . . . . . . . . . . . . . . . . . . . 20 ((𝑧𝑆𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑧))‘𝑛) ∈ ℂ)
157156addid1d 10829 . . . . . . . . . . . . . . . . . . 19 ((𝑧𝑆𝑛 ∈ (1...𝑁)) → (((1st ‘(1st𝑧))‘𝑛) + 0) = ((1st ‘(1st𝑧))‘𝑛))
158146, 147, 149, 147, 150, 152, 157offveq 7410 . . . . . . . . . . . . . . . . . 18 (𝑧𝑆 → ((1st ‘(1st𝑧)) ∘f + ((1...𝑁) × {0})) = (1st ‘(1st𝑧)))
159145, 158eqtrd 2833 . . . . . . . . . . . . . . . . 17 (𝑧𝑆 → ((1st ‘(1st𝑧)) ∘f + (((2nd ‘(1st𝑧)) “ (1...𝑁)) × {0})) = (1st ‘(1st𝑧)))
160139, 159syl5eq 2845 . . . . . . . . . . . . . . . 16 (𝑧𝑆0 / 𝑗((1st ‘(1st𝑧)) ∘f + ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))) = (1st ‘(1st𝑧)))
161160ad2antlr 726 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) ∧ 𝑦 = 0) → 0 / 𝑗((1st ‘(1st𝑧)) ∘f + ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))) = (1st ‘(1st𝑧)))
162115, 161eqtrd 2833 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) ∧ 𝑦 = 0) → if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑧)) ∘f + ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))) = (1st ‘(1st𝑧)))
163 nnm1nn0 11926 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
1641, 163syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 − 1) ∈ ℕ0)
165 0elfz 12999 . . . . . . . . . . . . . . . 16 ((𝑁 − 1) ∈ ℕ0 → 0 ∈ (0...(𝑁 − 1)))
166164, 165syl 17 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ (0...(𝑁 − 1)))
167166ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) → 0 ∈ (0...(𝑁 − 1)))
168 fvexd 6660 . . . . . . . . . . . . . 14 (((𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) → (1st ‘(1st𝑧)) ∈ V)
169106, 162, 167, 168fvmptd 6752 . . . . . . . . . . . . 13 (((𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) → (𝐹‘0) = (1st ‘(1st𝑧)))
170105, 169sylan 583 . . . . . . . . . . . 12 ((((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ (2nd𝑧) = (2nd𝑇)) ∧ 𝑧𝑆) → (𝐹‘0) = (1st ‘(1st𝑧)))
171170an32s 651 . . . . . . . . . . 11 ((((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) ∧ (2nd𝑧) = (2nd𝑇)) → (𝐹‘0) = (1st ‘(1st𝑧)))
172101, 171mpdan 686 . . . . . . . . . 10 (((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) → (𝐹‘0) = (1st ‘(1st𝑧)))
173 fveq2 6645 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑇 → (2nd𝑧) = (2nd𝑇))
174173eleq1d 2874 . . . . . . . . . . . . . . 15 (𝑧 = 𝑇 → ((2nd𝑧) ∈ (1...(𝑁 − 1)) ↔ (2nd𝑇) ∈ (1...(𝑁 − 1))))
175174anbi2d 631 . . . . . . . . . . . . . 14 (𝑧 = 𝑇 → ((𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) ↔ (𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1)))))
176 2fveq3 6650 . . . . . . . . . . . . . . 15 (𝑧 = 𝑇 → (1st ‘(1st𝑧)) = (1st ‘(1st𝑇)))
177176eqeq2d 2809 . . . . . . . . . . . . . 14 (𝑧 = 𝑇 → ((𝐹‘0) = (1st ‘(1st𝑧)) ↔ (𝐹‘0) = (1st ‘(1st𝑇))))
178175, 177imbi12d 348 . . . . . . . . . . . . 13 (𝑧 = 𝑇 → (((𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) → (𝐹‘0) = (1st ‘(1st𝑧))) ↔ ((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) → (𝐹‘0) = (1st ‘(1st𝑇)))))
179169expcom 417 . . . . . . . . . . . . 13 (𝑧𝑆 → ((𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) → (𝐹‘0) = (1st ‘(1st𝑧))))
180178, 179vtoclga 3522 . . . . . . . . . . . 12 (𝑇𝑆 → ((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) → (𝐹‘0) = (1st ‘(1st𝑇))))
1817, 180mpcom 38 . . . . . . . . . . 11 ((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) → (𝐹‘0) = (1st ‘(1st𝑇)))
182181adantr 484 . . . . . . . . . 10 (((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) → (𝐹‘0) = (1st ‘(1st𝑇)))
183172, 182eqtr3d 2835 . . . . . . . . 9 (((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) → (1st ‘(1st𝑧)) = (1st ‘(1st𝑇)))
184183adantr 484 . . . . . . . 8 ((((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) ∧ 𝑧𝑇) → (1st ‘(1st𝑧)) = (1st ‘(1st𝑇)))
1851ad3antrrr 729 . . . . . . . . 9 ((((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) ∧ 𝑧𝑇) → 𝑁 ∈ ℕ)
1866ad3antrrr 729 . . . . . . . . 9 ((((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) ∧ 𝑧𝑇) → 𝑇𝑆)
187 simpllr 775 . . . . . . . . 9 ((((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) ∧ 𝑧𝑇) → (2nd𝑇) ∈ (1...(𝑁 − 1)))
188 simplr 768 . . . . . . . . 9 ((((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) ∧ 𝑧𝑇) → 𝑧𝑆)
18934adantr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) → (1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
190 xpopth 7712 . . . . . . . . . . . . . 14 (((1st𝑧) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ (1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) → (((1st ‘(1st𝑧)) = (1st ‘(1st𝑇)) ∧ (2nd ‘(1st𝑧)) = (2nd ‘(1st𝑇))) ↔ (1st𝑧) = (1st𝑇)))
19176, 189, 190syl2anr 599 . . . . . . . . . . . . 13 (((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) → (((1st ‘(1st𝑧)) = (1st ‘(1st𝑇)) ∧ (2nd ‘(1st𝑧)) = (2nd ‘(1st𝑇))) ↔ (1st𝑧) = (1st𝑇)))
19232adantr 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) → 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
193 xpopth 7712 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) → (((1st𝑧) = (1st𝑇) ∧ (2nd𝑧) = (2nd𝑇)) ↔ 𝑧 = 𝑇))
194193biimpd 232 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) → (((1st𝑧) = (1st𝑇) ∧ (2nd𝑧) = (2nd𝑇)) → 𝑧 = 𝑇))
19574, 192, 194syl2anr 599 . . . . . . . . . . . . . 14 (((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) → (((1st𝑧) = (1st𝑇) ∧ (2nd𝑧) = (2nd𝑇)) → 𝑧 = 𝑇))
196101, 195mpan2d 693 . . . . . . . . . . . . 13 (((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) → ((1st𝑧) = (1st𝑇) → 𝑧 = 𝑇))
197191, 196sylbid 243 . . . . . . . . . . . 12 (((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) → (((1st ‘(1st𝑧)) = (1st ‘(1st𝑇)) ∧ (2nd ‘(1st𝑧)) = (2nd ‘(1st𝑇))) → 𝑧 = 𝑇))
198183, 197mpand 694 . . . . . . . . . . 11 (((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) → ((2nd ‘(1st𝑧)) = (2nd ‘(1st𝑇)) → 𝑧 = 𝑇))
199198necon3d 3008 . . . . . . . . . 10 (((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) → (𝑧𝑇 → (2nd ‘(1st𝑧)) ≠ (2nd ‘(1st𝑇))))
200199imp 410 . . . . . . . . 9 ((((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) ∧ 𝑧𝑇) → (2nd ‘(1st𝑧)) ≠ (2nd ‘(1st𝑇)))
201185, 3, 186, 187, 188, 200poimirlem9 35066 . . . . . . . 8 ((((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) ∧ 𝑧𝑇) → (2nd ‘(1st𝑧)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))))
202101adantr 484 . . . . . . . 8 ((((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) ∧ 𝑧𝑇) → (2nd𝑧) = (2nd𝑇))
203184, 201, 202jca31 518 . . . . . . 7 ((((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) ∧ 𝑧𝑇) → (((1st ‘(1st𝑧)) = (1st ‘(1st𝑇)) ∧ (2nd ‘(1st𝑧)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))) ∧ (2nd𝑧) = (2nd𝑇)))
204203ex 416 . . . . . 6 (((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) → (𝑧𝑇 → (((1st ‘(1st𝑧)) = (1st ‘(1st𝑇)) ∧ (2nd ‘(1st𝑧)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))) ∧ (2nd𝑧) = (2nd𝑇))))
205 simplr 768 . . . . . . . 8 ((((1st ‘(1st𝑧)) = (1st ‘(1st𝑇)) ∧ (2nd ‘(1st𝑧)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))) ∧ (2nd𝑧) = (2nd𝑇)) → (2nd ‘(1st𝑧)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))))
206 elfznn 12931 . . . . . . . . . . . . . 14 ((2nd𝑇) ∈ (1...(𝑁 − 1)) → (2nd𝑇) ∈ ℕ)
207206nnred 11640 . . . . . . . . . . . . 13 ((2nd𝑇) ∈ (1...(𝑁 − 1)) → (2nd𝑇) ∈ ℝ)
208207ltp1d 11559 . . . . . . . . . . . . 13 ((2nd𝑇) ∈ (1...(𝑁 − 1)) → (2nd𝑇) < ((2nd𝑇) + 1))
209207, 208ltned 10765 . . . . . . . . . . . 12 ((2nd𝑇) ∈ (1...(𝑁 − 1)) → (2nd𝑇) ≠ ((2nd𝑇) + 1))
210209adantl 485 . . . . . . . . . . 11 ((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) → (2nd𝑇) ≠ ((2nd𝑇) + 1))
211 fveq1 6644 . . . . . . . . . . . . 13 ((2nd ‘(1st𝑇)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) → ((2nd ‘(1st𝑇))‘(2nd𝑇)) = (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))‘(2nd𝑇)))
212 id 22 . . . . . . . . . . . . . . . . . . . . . 22 ((2nd𝑇) ∈ ℝ → (2nd𝑇) ∈ ℝ)
213 ltp1 11469 . . . . . . . . . . . . . . . . . . . . . 22 ((2nd𝑇) ∈ ℝ → (2nd𝑇) < ((2nd𝑇) + 1))
214212, 213ltned 10765 . . . . . . . . . . . . . . . . . . . . 21 ((2nd𝑇) ∈ ℝ → (2nd𝑇) ≠ ((2nd𝑇) + 1))
215 fvex 6658 . . . . . . . . . . . . . . . . . . . . . 22 (2nd𝑇) ∈ V
216 ovex 7168 . . . . . . . . . . . . . . . . . . . . . 22 ((2nd𝑇) + 1) ∈ V
217215, 216, 216, 215fpr 6893 . . . . . . . . . . . . . . . . . . . . 21 ((2nd𝑇) ≠ ((2nd𝑇) + 1) → {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}:{(2nd𝑇), ((2nd𝑇) + 1)}⟶{((2nd𝑇) + 1), (2nd𝑇)})
218214, 217syl 17 . . . . . . . . . . . . . . . . . . . 20 ((2nd𝑇) ∈ ℝ → {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}:{(2nd𝑇), ((2nd𝑇) + 1)}⟶{((2nd𝑇) + 1), (2nd𝑇)})
219 f1oi 6627 . . . . . . . . . . . . . . . . . . . . 21 ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})):((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})–1-1-onto→((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})
220 f1of 6590 . . . . . . . . . . . . . . . . . . . . 21 (( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})):((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})–1-1-onto→((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) → ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})):((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})⟶((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
221219, 220ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})):((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})⟶((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})
222 disjdif 4379 . . . . . . . . . . . . . . . . . . . . 21 ({(2nd𝑇), ((2nd𝑇) + 1)} ∩ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = ∅
223 fun 6514 . . . . . . . . . . . . . . . . . . . . 21 ((({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}:{(2nd𝑇), ((2nd𝑇) + 1)}⟶{((2nd𝑇) + 1), (2nd𝑇)} ∧ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})):((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})⟶((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) ∧ ({(2nd𝑇), ((2nd𝑇) + 1)} ∩ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = ∅) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))):({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))⟶({((2nd𝑇) + 1), (2nd𝑇)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
224222, 223mpan2 690 . . . . . . . . . . . . . . . . . . . 20 (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}:{(2nd𝑇), ((2nd𝑇) + 1)}⟶{((2nd𝑇) + 1), (2nd𝑇)} ∧ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})):((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})⟶((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))):({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))⟶({((2nd𝑇) + 1), (2nd𝑇)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
225218, 221, 224sylancl 589 . . . . . . . . . . . . . . . . . . 19 ((2nd𝑇) ∈ ℝ → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))):({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))⟶({((2nd𝑇) + 1), (2nd𝑇)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
226215prid1 4658 . . . . . . . . . . . . . . . . . . . 20 (2nd𝑇) ∈ {(2nd𝑇), ((2nd𝑇) + 1)}
227 elun1 4103 . . . . . . . . . . . . . . . . . . . 20 ((2nd𝑇) ∈ {(2nd𝑇), ((2nd𝑇) + 1)} → (2nd𝑇) ∈ ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
228226, 227ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (2nd𝑇) ∈ ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
229 fvco3 6737 . . . . . . . . . . . . . . . . . . 19 ((({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))):({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))⟶({((2nd𝑇) + 1), (2nd𝑇)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) ∧ (2nd𝑇) ∈ ({(2nd𝑇), ((2nd𝑇) + 1)} ∪ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))) → (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))‘(2nd𝑇)) = ((2nd ‘(1st𝑇))‘(({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))‘(2nd𝑇))))
230225, 228, 229sylancl 589 . . . . . . . . . . . . . . . . . 18 ((2nd𝑇) ∈ ℝ → (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))‘(2nd𝑇)) = ((2nd ‘(1st𝑇))‘(({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))‘(2nd𝑇))))
231218ffnd 6488 . . . . . . . . . . . . . . . . . . . . 21 ((2nd𝑇) ∈ ℝ → {⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} Fn {(2nd𝑇), ((2nd𝑇) + 1)})
232 fnresi 6448 . . . . . . . . . . . . . . . . . . . . . 22 ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) Fn ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})
233222, 226pm3.2i 474 . . . . . . . . . . . . . . . . . . . . . 22 (({(2nd𝑇), ((2nd𝑇) + 1)} ∩ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = ∅ ∧ (2nd𝑇) ∈ {(2nd𝑇), ((2nd𝑇) + 1)})
234 fvun1 6729 . . . . . . . . . . . . . . . . . . . . . 22 (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} Fn {(2nd𝑇), ((2nd𝑇) + 1)} ∧ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) Fn ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ∧ (({(2nd𝑇), ((2nd𝑇) + 1)} ∩ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = ∅ ∧ (2nd𝑇) ∈ {(2nd𝑇), ((2nd𝑇) + 1)})) → (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))‘(2nd𝑇)) = ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}‘(2nd𝑇)))
235232, 233, 234mp3an23 1450 . . . . . . . . . . . . . . . . . . . . 21 ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} Fn {(2nd𝑇), ((2nd𝑇) + 1)} → (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))‘(2nd𝑇)) = ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}‘(2nd𝑇)))
236231, 235syl 17 . . . . . . . . . . . . . . . . . . . 20 ((2nd𝑇) ∈ ℝ → (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))‘(2nd𝑇)) = ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}‘(2nd𝑇)))
237215, 216fvpr1 6929 . . . . . . . . . . . . . . . . . . . . 21 ((2nd𝑇) ≠ ((2nd𝑇) + 1) → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}‘(2nd𝑇)) = ((2nd𝑇) + 1))
238214, 237syl 17 . . . . . . . . . . . . . . . . . . . 20 ((2nd𝑇) ∈ ℝ → ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩}‘(2nd𝑇)) = ((2nd𝑇) + 1))
239236, 238eqtrd 2833 . . . . . . . . . . . . . . . . . . 19 ((2nd𝑇) ∈ ℝ → (({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))‘(2nd𝑇)) = ((2nd𝑇) + 1))
240239fveq2d 6649 . . . . . . . . . . . . . . . . . 18 ((2nd𝑇) ∈ ℝ → ((2nd ‘(1st𝑇))‘(({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))‘(2nd𝑇))) = ((2nd ‘(1st𝑇))‘((2nd𝑇) + 1)))
241230, 240eqtrd 2833 . . . . . . . . . . . . . . . . 17 ((2nd𝑇) ∈ ℝ → (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))‘(2nd𝑇)) = ((2nd ‘(1st𝑇))‘((2nd𝑇) + 1)))
242207, 241syl 17 . . . . . . . . . . . . . . . 16 ((2nd𝑇) ∈ (1...(𝑁 − 1)) → (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))‘(2nd𝑇)) = ((2nd ‘(1st𝑇))‘((2nd𝑇) + 1)))
243242eqeq2d 2809 . . . . . . . . . . . . . . 15 ((2nd𝑇) ∈ (1...(𝑁 − 1)) → (((2nd ‘(1st𝑇))‘(2nd𝑇)) = (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))‘(2nd𝑇)) ↔ ((2nd ‘(1st𝑇))‘(2nd𝑇)) = ((2nd ‘(1st𝑇))‘((2nd𝑇) + 1))))
244243adantl 485 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) → (((2nd ‘(1st𝑇))‘(2nd𝑇)) = (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))‘(2nd𝑇)) ↔ ((2nd ‘(1st𝑇))‘(2nd𝑇)) = ((2nd ‘(1st𝑇))‘((2nd𝑇) + 1))))
245 f1of1 6589 . . . . . . . . . . . . . . . . 17 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑇)):(1...𝑁)–1-1→(1...𝑁))
24649, 245syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)–1-1→(1...𝑁))
247246adantr 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) → (2nd ‘(1st𝑇)):(1...𝑁)–1-1→(1...𝑁))
2481nncnd 11641 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℂ)
249 npcan1 11054 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
250248, 249syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
251164nn0zd 12073 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑁 − 1) ∈ ℤ)
252 uzid 12246 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 − 1) ∈ ℤ → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)))
253251, 252syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)))
254 peano2uz 12289 . . . . . . . . . . . . . . . . . . 19 ((𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
255253, 254syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
256250, 255eqeltrrd 2891 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ (ℤ‘(𝑁 − 1)))
257 fzss2 12942 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘(𝑁 − 1)) → (1...(𝑁 − 1)) ⊆ (1...𝑁))
258256, 257syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1...(𝑁 − 1)) ⊆ (1...𝑁))
259258sselda 3915 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) → (2nd𝑇) ∈ (1...𝑁))
260 fzp1elp1 12955 . . . . . . . . . . . . . . . . 17 ((2nd𝑇) ∈ (1...(𝑁 − 1)) → ((2nd𝑇) + 1) ∈ (1...((𝑁 − 1) + 1)))
261260adantl 485 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) → ((2nd𝑇) + 1) ∈ (1...((𝑁 − 1) + 1)))
262250oveq2d 7151 . . . . . . . . . . . . . . . . 17 (𝜑 → (1...((𝑁 − 1) + 1)) = (1...𝑁))
263262adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) → (1...((𝑁 − 1) + 1)) = (1...𝑁))
264261, 263eleqtrd 2892 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) → ((2nd𝑇) + 1) ∈ (1...𝑁))
265 f1veqaeq 6993 . . . . . . . . . . . . . . 15 (((2nd ‘(1st𝑇)):(1...𝑁)–1-1→(1...𝑁) ∧ ((2nd𝑇) ∈ (1...𝑁) ∧ ((2nd𝑇) + 1) ∈ (1...𝑁))) → (((2nd ‘(1st𝑇))‘(2nd𝑇)) = ((2nd ‘(1st𝑇))‘((2nd𝑇) + 1)) → (2nd𝑇) = ((2nd𝑇) + 1)))
266247, 259, 264, 265syl12anc 835 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) → (((2nd ‘(1st𝑇))‘(2nd𝑇)) = ((2nd ‘(1st𝑇))‘((2nd𝑇) + 1)) → (2nd𝑇) = ((2nd𝑇) + 1)))
267244, 266sylbid 243 . . . . . . . . . . . . 13 ((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) → (((2nd ‘(1st𝑇))‘(2nd𝑇)) = (((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))‘(2nd𝑇)) → (2nd𝑇) = ((2nd𝑇) + 1)))
268211, 267syl5 34 . . . . . . . . . . . 12 ((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) → ((2nd ‘(1st𝑇)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) → (2nd𝑇) = ((2nd𝑇) + 1)))
269268necon3d 3008 . . . . . . . . . . 11 ((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) → ((2nd𝑇) ≠ ((2nd𝑇) + 1) → (2nd ‘(1st𝑇)) ≠ ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))))
270210, 269mpd 15 . . . . . . . . . 10 ((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) → (2nd ‘(1st𝑇)) ≠ ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))))
271 2fveq3 6650 . . . . . . . . . . 11 (𝑧 = 𝑇 → (2nd ‘(1st𝑧)) = (2nd ‘(1st𝑇)))
272271neeq1d 3046 . . . . . . . . . 10 (𝑧 = 𝑇 → ((2nd ‘(1st𝑧)) ≠ ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) ↔ (2nd ‘(1st𝑇)) ≠ ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))))
273270, 272syl5ibrcom 250 . . . . . . . . 9 ((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) → (𝑧 = 𝑇 → (2nd ‘(1st𝑧)) ≠ ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))))
274273necon2d 3010 . . . . . . . 8 ((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) → ((2nd ‘(1st𝑧)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))) → 𝑧𝑇))
275205, 274syl5 34 . . . . . . 7 ((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) → ((((1st ‘(1st𝑧)) = (1st ‘(1st𝑇)) ∧ (2nd ‘(1st𝑧)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))) ∧ (2nd𝑧) = (2nd𝑇)) → 𝑧𝑇))
276275adantr 484 . . . . . 6 (((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) → ((((1st ‘(1st𝑧)) = (1st ‘(1st𝑇)) ∧ (2nd ‘(1st𝑧)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))) ∧ (2nd𝑧) = (2nd𝑇)) → 𝑧𝑇))
277204, 276impbid 215 . . . . 5 (((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) → (𝑧𝑇 ↔ (((1st ‘(1st𝑧)) = (1st ‘(1st𝑇)) ∧ (2nd ‘(1st𝑧)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))) ∧ (2nd𝑧) = (2nd𝑇))))
278 eqop 7713 . . . . . . . 8 (𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (𝑧 = ⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩ ↔ ((1st𝑧) = ⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩ ∧ (2nd𝑧) = (2nd𝑇))))
279 eqop 7713 . . . . . . . . . 10 ((1st𝑧) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → ((1st𝑧) = ⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩ ↔ ((1st ‘(1st𝑧)) = (1st ‘(1st𝑇)) ∧ (2nd ‘(1st𝑧)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))))))
28075, 279syl 17 . . . . . . . . 9 (𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → ((1st𝑧) = ⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩ ↔ ((1st ‘(1st𝑧)) = (1st ‘(1st𝑇)) ∧ (2nd ‘(1st𝑧)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))))))
281280anbi1d 632 . . . . . . . 8 (𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (((1st𝑧) = ⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩ ∧ (2nd𝑧) = (2nd𝑇)) ↔ (((1st ‘(1st𝑧)) = (1st ‘(1st𝑇)) ∧ (2nd ‘(1st𝑧)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))) ∧ (2nd𝑧) = (2nd𝑇))))
282278, 281bitrd 282 . . . . . . 7 (𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (𝑧 = ⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩ ↔ (((1st ‘(1st𝑧)) = (1st ‘(1st𝑇)) ∧ (2nd ‘(1st𝑧)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))) ∧ (2nd𝑧) = (2nd𝑇))))
28374, 282syl 17 . . . . . 6 (𝑧𝑆 → (𝑧 = ⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩ ↔ (((1st ‘(1st𝑧)) = (1st ‘(1st𝑇)) ∧ (2nd ‘(1st𝑧)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))) ∧ (2nd𝑧) = (2nd𝑇))))
284283adantl 485 . . . . 5 (((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) → (𝑧 = ⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩ ↔ (((1st ‘(1st𝑧)) = (1st ‘(1st𝑇)) ∧ (2nd ‘(1st𝑧)) = ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))) ∧ (2nd𝑧) = (2nd𝑇))))
285277, 284bitr4d 285 . . . 4 (((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) ∧ 𝑧𝑆) → (𝑧𝑇𝑧 = ⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩))
286285ralrimiva 3149 . . 3 ((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) → ∀𝑧𝑆 (𝑧𝑇𝑧 = ⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩))
287 reu6i 3667 . . 3 ((⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩ ∈ 𝑆 ∧ ∀𝑧𝑆 (𝑧𝑇𝑧 = ⟨⟨(1st ‘(1st𝑇)), ((2nd ‘(1st𝑇)) ∘ ({⟨(2nd𝑇), ((2nd𝑇) + 1)⟩, ⟨((2nd𝑇) + 1), (2nd𝑇)⟩} ∪ ( I ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))))⟩, (2nd𝑇)⟩)) → ∃!𝑧𝑆 𝑧𝑇)
2889, 286, 287syl2anc 587 . 2 ((𝜑 ∧ (2nd𝑇) ∈ (1...(𝑁 − 1))) → ∃!𝑧𝑆 𝑧𝑇)
289 xp2nd 7704 . . . . . . 7 (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (2nd𝑇) ∈ (0...𝑁))
29032, 289syl 17 . . . . . 6 (𝜑 → (2nd𝑇) ∈ (0...𝑁))
291290biantrurd 536 . . . . 5 (𝜑 → (¬ (2nd𝑇) ∈ (1...(𝑁 − 1)) ↔ ((2nd𝑇) ∈ (0...𝑁) ∧ ¬ (2nd𝑇) ∈ (1...(𝑁 − 1)))))
2921nnnn0d 11943 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ0)
293 nn0uz 12268 . . . . . . . . . . . 12 0 = (ℤ‘0)
294292, 293eleqtrdi 2900 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ‘0))
295 fzpred 12950 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘0) → (0...𝑁) = ({0} ∪ ((0 + 1)...𝑁)))
296294, 295syl 17 . . . . . . . . . 10 (𝜑 → (0...𝑁) = ({0} ∪ ((0 + 1)...𝑁)))
297123oveq1i 7145 . . . . . . . . . . 11 ((0 + 1)...𝑁) = (1...𝑁)
298297uneq2i 4087 . . . . . . . . . 10 ({0} ∪ ((0 + 1)...𝑁)) = ({0} ∪ (1...𝑁))
299296, 298eqtrdi 2849 . . . . . . . . 9 (𝜑 → (0...𝑁) = ({0} ∪ (1...𝑁)))
300299difeq1d 4049 . . . . . . . 8 (𝜑 → ((0...𝑁) ∖ (1...(𝑁 − 1))) = (({0} ∪ (1...𝑁)) ∖ (1...(𝑁 − 1))))
301 difundir 4207 . . . . . . . . . 10 (({0} ∪ (1...𝑁)) ∖ (1...(𝑁 − 1))) = (({0} ∖ (1...(𝑁 − 1))) ∪ ((1...𝑁) ∖ (1...(𝑁 − 1))))
302 0lt1 11151 . . . . . . . . . . . . . 14 0 < 1
303 0re 10632 . . . . . . . . . . . . . . 15 0 ∈ ℝ
304 1re 10630 . . . . . . . . . . . . . . 15 1 ∈ ℝ
305303, 304ltnlei 10750 . . . . . . . . . . . . . 14 (0 < 1 ↔ ¬ 1 ≤ 0)
306302, 305mpbi 233 . . . . . . . . . . . . 13 ¬ 1 ≤ 0
307 elfzle1 12905 . . . . . . . . . . . . 13 (0 ∈ (1...(𝑁 − 1)) → 1 ≤ 0)
308306, 307mto 200 . . . . . . . . . . . 12 ¬ 0 ∈ (1...(𝑁 − 1))
309 incom 4128 . . . . . . . . . . . . . 14 ((1...(𝑁 − 1)) ∩ {0}) = ({0} ∩ (1...(𝑁 − 1)))
310309eqeq1i 2803 . . . . . . . . . . . . 13 (((1...(𝑁 − 1)) ∩ {0}) = ∅ ↔ ({0} ∩ (1...(𝑁 − 1))) = ∅)
311 disjsn 4607 . . . . . . . . . . . . 13 (((1...(𝑁 − 1)) ∩ {0}) = ∅ ↔ ¬ 0 ∈ (1...(𝑁 − 1)))
312 disj3 4361 . . . . . . . . . . . . 13 (({0} ∩ (1...(𝑁 − 1))) = ∅ ↔ {0} = ({0} ∖ (1...(𝑁 − 1))))
313310, 311, 3123bitr3i 304 . . . . . . . . . . . 12 (¬ 0 ∈ (1...(𝑁 − 1)) ↔ {0} = ({0} ∖ (1...(𝑁 − 1))))
314308, 313mpbi 233 . . . . . . . . . . 11 {0} = ({0} ∖ (1...(𝑁 − 1)))
315314uneq1i 4086 . . . . . . . . . 10 ({0} ∪ ((1...𝑁) ∖ (1...(𝑁 − 1)))) = (({0} ∖ (1...(𝑁 − 1))) ∪ ((1...𝑁) ∖ (1...(𝑁 − 1))))
316301, 315eqtr4i 2824 . . . . . . . . 9 (({0} ∪ (1...𝑁)) ∖ (1...(𝑁 − 1))) = ({0} ∪ ((1...𝑁) ∖ (1...(𝑁 − 1))))
317 difundir 4207 . . . . . . . . . . . 12 (((1...(𝑁 − 1)) ∪ {𝑁}) ∖ (1...(𝑁 − 1))) = (((1...(𝑁 − 1)) ∖ (1...(𝑁 − 1))) ∪ ({𝑁} ∖ (1...(𝑁 − 1))))
318 difid 4284 . . . . . . . . . . . . 13 ((1...(𝑁 − 1)) ∖ (1...(𝑁 − 1))) = ∅
319318uneq1i 4086 . . . . . . . . . . . 12 (((1...(𝑁 − 1)) ∖ (1...(𝑁 − 1))) ∪ ({𝑁} ∖ (1...(𝑁 − 1)))) = (∅ ∪ ({𝑁} ∖ (1...(𝑁 − 1))))
320 uncom 4080 . . . . . . . . . . . . 13 (∅ ∪ ({𝑁} ∖ (1...(𝑁 − 1)))) = (({𝑁} ∖ (1...(𝑁 − 1))) ∪ ∅)
321 un0 4298 . . . . . . . . . . . . 13 (({𝑁} ∖ (1...(𝑁 − 1))) ∪ ∅) = ({𝑁} ∖ (1...(𝑁 − 1)))
322320, 321eqtri 2821 . . . . . . . . . . . 12 (∅ ∪ ({𝑁} ∖ (1...(𝑁 − 1)))) = ({𝑁} ∖ (1...(𝑁 − 1)))
323317, 319, 3223eqtri 2825 . . . . . . . . . . 11 (((1...(𝑁 − 1)) ∪ {𝑁}) ∖ (1...(𝑁 − 1))) = ({𝑁} ∖ (1...(𝑁 − 1)))
324 nnuz 12269 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
3251, 324eleqtrdi 2900 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ (ℤ‘1))
326250, 325eqeltrd 2890 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 − 1) + 1) ∈ (ℤ‘1))
327 fzsplit2 12927 . . . . . . . . . . . . . 14 ((((𝑁 − 1) + 1) ∈ (ℤ‘1) ∧ 𝑁 ∈ (ℤ‘(𝑁 − 1))) → (1...𝑁) = ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)))
328326, 256, 327syl2anc 587 . . . . . . . . . . . . 13 (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)))
329250oveq1d 7150 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑁 − 1) + 1)...𝑁) = (𝑁...𝑁))
3301nnzd 12074 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℤ)
331 fzsn 12944 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁})
332330, 331syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁...𝑁) = {𝑁})
333329, 332eqtrd 2833 . . . . . . . . . . . . . 14 (𝜑 → (((𝑁 − 1) + 1)...𝑁) = {𝑁})
334333uneq2d 4090 . . . . . . . . . . . . 13 (𝜑 → ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)) = ((1...(𝑁 − 1)) ∪ {𝑁}))
335328, 334eqtrd 2833 . . . . . . . . . . . 12 (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ {𝑁}))
336335difeq1d 4049 . . . . . . . . . . 11 (𝜑 → ((1...𝑁) ∖ (1...(𝑁 − 1))) = (((1...(𝑁 − 1)) ∪ {𝑁}) ∖ (1...(𝑁 − 1))))
3371nnred 11640 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℝ)
338337ltm1d 11561 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 − 1) < 𝑁)
339164nn0red 11944 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 − 1) ∈ ℝ)
340339, 337ltnled 10776 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 − 1) < 𝑁 ↔ ¬ 𝑁 ≤ (𝑁 − 1)))
341338, 340mpbid 235 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑁 ≤ (𝑁 − 1))
342 elfzle2 12906 . . . . . . . . . . . . 13 (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1))
343341, 342nsyl 142 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑁 ∈ (1...(𝑁 − 1)))
344 incom 4128 . . . . . . . . . . . . . 14 ((1...(𝑁 − 1)) ∩ {𝑁}) = ({𝑁} ∩ (1...(𝑁 − 1)))
345344eqeq1i 2803 . . . . . . . . . . . . 13 (((1...(𝑁 − 1)) ∩ {𝑁}) = ∅ ↔ ({𝑁} ∩ (1...(𝑁 − 1))) = ∅)
346 disjsn 4607 . . . . . . . . . . . . 13 (((1...(𝑁 − 1)) ∩ {𝑁}) = ∅ ↔ ¬ 𝑁 ∈ (1...(𝑁 − 1)))
347 disj3 4361 . . . . . . . . . . . . 13 (({𝑁} ∩ (1...(𝑁 − 1))) = ∅ ↔ {𝑁} = ({𝑁} ∖ (1...(𝑁 − 1))))
348345, 346, 3473bitr3i 304 . . . . . . . . . . . 12 𝑁 ∈ (1...(𝑁 − 1)) ↔ {𝑁} = ({𝑁} ∖ (1...(𝑁 − 1))))
349343, 348sylib 221 . . . . . . . . . . 11 (𝜑 → {𝑁} = ({𝑁} ∖ (1...(𝑁 − 1))))
350323, 336, 3493eqtr4a 2859 . . . . . . . . . 10 (𝜑 → ((1...𝑁) ∖ (1...(𝑁 − 1))) = {𝑁})
351350uneq2d 4090 . . . . . . . . 9 (𝜑 → ({0} ∪ ((1...𝑁) ∖ (1...(𝑁 − 1)))) = ({0} ∪ {𝑁}))
352316, 351syl5eq 2845 . . . . . . . 8 (𝜑 → (({0} ∪ (1...𝑁)) ∖ (1...(𝑁 − 1))) = ({0} ∪ {𝑁}))
353300, 352eqtrd 2833 . . . . . . 7 (𝜑 → ((0...𝑁) ∖ (1...(𝑁 − 1))) = ({0} ∪ {𝑁}))
354353eleq2d 2875 . . . . . 6 (𝜑 → ((2nd𝑇) ∈ ((0...𝑁) ∖ (1...(𝑁 − 1))) ↔ (2nd𝑇) ∈ ({0} ∪ {𝑁})))
355 eldif 3891 . . . . . 6 ((2nd𝑇) ∈ ((0...𝑁) ∖ (1...(𝑁 − 1))) ↔ ((2nd𝑇) ∈ (0...𝑁) ∧ ¬ (2nd𝑇) ∈ (1...(𝑁 − 1))))
356 elun 4076 . . . . . . 7 ((2nd𝑇) ∈ ({0} ∪ {𝑁}) ↔ ((2nd𝑇) ∈ {0} ∨ (2nd𝑇) ∈ {𝑁}))
357215elsn 4540 . . . . . . . 8 ((2nd𝑇) ∈ {0} ↔ (2nd𝑇) = 0)
358215elsn 4540 . . . . . . . 8 ((2nd𝑇) ∈ {𝑁} ↔ (2nd𝑇) = 𝑁)
359357, 358orbi12i 912 . . . . . . 7 (((2nd𝑇) ∈ {0} ∨ (2nd𝑇) ∈ {𝑁}) ↔ ((2nd𝑇) = 0 ∨ (2nd𝑇) = 𝑁))
360356, 359bitri 278 . . . . . 6 ((2nd𝑇) ∈ ({0} ∪ {𝑁}) ↔ ((2nd𝑇) = 0 ∨ (2nd𝑇) = 𝑁))
361354, 355, 3603bitr3g 316 . . . . 5 (𝜑 → (((2nd𝑇) ∈ (0...𝑁) ∧ ¬ (2nd𝑇) ∈ (1...(𝑁 − 1))) ↔ ((2nd𝑇) = 0 ∨ (2nd𝑇) = 𝑁)))
362291, 361bitrd 282 . . . 4 (𝜑 → (¬ (2nd𝑇) ∈ (1...(𝑁 − 1)) ↔ ((2nd𝑇) = 0 ∨ (2nd𝑇) = 𝑁)))
363362biimpa 480 . . 3 ((𝜑 ∧ ¬ (2nd𝑇) ∈ (1...(𝑁 − 1))) → ((2nd𝑇) = 0 ∨ (2nd𝑇) = 𝑁))
3641adantr 484 . . . . 5 ((𝜑 ∧ (2nd𝑇) = 0) → 𝑁 ∈ ℕ)
3654adantr 484 . . . . 5 ((𝜑 ∧ (2nd𝑇) = 0) → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))
3666adantr 484 . . . . 5 ((𝜑 ∧ (2nd𝑇) = 0) → 𝑇𝑆)
367 poimirlem22.4 . . . . . 6 ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 𝐾)
368367adantlr 714 . . . . 5 (((𝜑 ∧ (2nd𝑇) = 0) ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 𝐾)
369 simpr 488 . . . . 5 ((𝜑 ∧ (2nd𝑇) = 0) → (2nd𝑇) = 0)
370364, 3, 365, 366, 368, 369poimirlem18 35075 . . . 4 ((𝜑 ∧ (2nd𝑇) = 0) → ∃!𝑧𝑆 𝑧𝑇)
3711adantr 484 . . . . 5 ((𝜑 ∧ (2nd𝑇) = 𝑁) → 𝑁 ∈ ℕ)
3724adantr 484 . . . . 5 ((𝜑 ∧ (2nd𝑇) = 𝑁) → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))
3736adantr 484 . . . . 5 ((𝜑 ∧ (2nd𝑇) = 𝑁) → 𝑇𝑆)
374 poimirlem22.3 . . . . . 6 ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 0)
375374adantlr 714 . . . . 5 (((𝜑 ∧ (2nd𝑇) = 𝑁) ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 0)
376 simpr 488 . . . . 5 ((𝜑 ∧ (2nd𝑇) = 𝑁) → (2nd𝑇) = 𝑁)
377371, 3, 372, 373, 375, 376poimirlem21 35078 . . . 4 ((𝜑 ∧ (2nd𝑇) = 𝑁) → ∃!𝑧𝑆 𝑧𝑇)
378370, 377jaodan 955 . . 3 ((𝜑 ∧ ((2nd𝑇) = 0 ∨ (2nd𝑇) = 𝑁)) → ∃!𝑧𝑆 𝑧𝑇)
379363, 378syldan 594 . 2 ((𝜑 ∧ ¬ (2nd𝑇) ∈ (1...(𝑁 − 1))) → ∃!𝑧𝑆 𝑧𝑇)
380288, 379pm2.61dan 812 1 (𝜑 → ∃!𝑧𝑆 𝑧𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  {cab 2776  wne 2987  wral 3106  wrex 3107  ∃!wreu 3108  ∃*wrmo 3109  {crab 3110  Vcvv 3441  csb 3828  cdif 3878  cun 3879  cin 3880  wss 3881  c0 4243  ifcif 4425  {csn 4525  {cpr 4527  cop 4531   class class class wbr 5030  cmpt 5110   I cid 5424   × cxp 5517  ran crn 5520  cres 5521  cima 5522  ccom 5523   Fn wfn 6319  wf 6320  1-1wf1 6321  ontowfo 6322  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  f cof 7387  1st c1st 7669  2nd c2nd 7670  m cmap 8389  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   < clt 10664  cle 10665  cmin 10859  cn 11625  0cn0 11885  cz 11969  cuz 12231  ...cfz 12885  ..^cfzo 13028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-fac 13630  df-bc 13659  df-hash 13687
This theorem is referenced by:  poimirlem27  35084
  Copyright terms: Public domain W3C validator