Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemh Structured version   Visualization version   GIF version

Theorem cdlemh 40811
Description: Lemma H of [Crawley] p. 118. (Contributed by NM, 17-Jun-2013.)
Hypotheses
Ref Expression
cdlemh.b 𝐵 = (Base‘𝐾)
cdlemh.l = (le‘𝐾)
cdlemh.j = (join‘𝐾)
cdlemh.m = (meet‘𝐾)
cdlemh.a 𝐴 = (Atoms‘𝐾)
cdlemh.h 𝐻 = (LHyp‘𝐾)
cdlemh.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemh.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemh.s 𝑆 = ((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹))))
Assertion
Ref Expression
cdlemh ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))

Proof of Theorem cdlemh
StepHypRef Expression
1 simp1 1136 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇))
2 simp21l 1291 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑃𝐴)
3 simp22l 1293 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑄𝐴)
4 simp23 1209 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑄 (𝑃 (𝑅𝐹)))
5 simp33 1212 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ≠ (𝑅𝐺))
6 cdlemh.b . . . . . 6 𝐵 = (Base‘𝐾)
7 cdlemh.l . . . . . 6 = (le‘𝐾)
8 cdlemh.j . . . . . 6 = (join‘𝐾)
9 cdlemh.m . . . . . 6 = (meet‘𝐾)
10 cdlemh.a . . . . . 6 𝐴 = (Atoms‘𝐾)
11 cdlemh.h . . . . . 6 𝐻 = (LHyp‘𝐾)
12 cdlemh.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
13 cdlemh.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
14 cdlemh.s . . . . . 6 𝑆 = ((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹))))
156, 7, 8, 9, 10, 11, 12, 13, 14cdlemh1 40809 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑆 (𝑅‘(𝐺𝐹))) = (𝑄 (𝑅‘(𝐺𝐹))))
161, 2, 3, 4, 5, 15syl122anc 1381 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑆 (𝑅‘(𝐺𝐹))) = (𝑄 (𝑅‘(𝐺𝐹))))
17 oveq1 7394 . . . . . . . 8 (𝑆 = (0.‘𝐾) → (𝑆 (𝑅‘(𝐺𝐹))) = ((0.‘𝐾) (𝑅‘(𝐺𝐹))))
18 simp11l 1285 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐾 ∈ HL)
19 hlol 39354 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OL)
2018, 19syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐾 ∈ OL)
21 simp11r 1286 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑊𝐻)
2218, 21jca 511 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
23 simp13 1206 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐺𝑇)
24 simp12 1205 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹𝑇)
2511, 12ltrncnv 40140 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
2622, 24, 25syl2anc 584 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹𝑇)
2723, 26jca 511 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐺𝑇𝐹𝑇))
285necomd 2980 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐺) ≠ (𝑅𝐹))
2911, 12, 13trlcnv 40159 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = (𝑅𝐹))
3022, 24, 29syl2anc 584 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) = (𝑅𝐹))
3128, 30neeqtrrd 2999 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐺) ≠ (𝑅𝐹))
3210, 11, 12, 13trlcoat 40717 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝐹𝑇) ∧ (𝑅𝐺) ≠ (𝑅𝐹)) → (𝑅‘(𝐺𝐹)) ∈ 𝐴)
3322, 27, 31, 32syl3anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅‘(𝐺𝐹)) ∈ 𝐴)
346, 10atbase 39282 . . . . . . . . . 10 ((𝑅‘(𝐺𝐹)) ∈ 𝐴 → (𝑅‘(𝐺𝐹)) ∈ 𝐵)
3533, 34syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅‘(𝐺𝐹)) ∈ 𝐵)
36 eqid 2729 . . . . . . . . . 10 (0.‘𝐾) = (0.‘𝐾)
376, 8, 36olj02 39219 . . . . . . . . 9 ((𝐾 ∈ OL ∧ (𝑅‘(𝐺𝐹)) ∈ 𝐵) → ((0.‘𝐾) (𝑅‘(𝐺𝐹))) = (𝑅‘(𝐺𝐹)))
3820, 35, 37syl2anc 584 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((0.‘𝐾) (𝑅‘(𝐺𝐹))) = (𝑅‘(𝐺𝐹)))
3917, 38sylan9eqr 2786 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑆 = (0.‘𝐾)) → (𝑆 (𝑅‘(𝐺𝐹))) = (𝑅‘(𝐺𝐹)))
4011, 12ltrnco 40713 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐹𝑇) → (𝐺𝐹) ∈ 𝑇)
4122, 23, 26, 40syl3anc 1373 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐺𝐹) ∈ 𝑇)
427, 11, 12, 13trlle 40178 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝐹) ∈ 𝑇) → (𝑅‘(𝐺𝐹)) 𝑊)
4322, 41, 42syl2anc 584 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅‘(𝐺𝐹)) 𝑊)
44 simp22r 1294 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ¬ 𝑄 𝑊)
45 nbrne2 5127 . . . . . . . . . . . . 13 (((𝑅‘(𝐺𝐹)) 𝑊 ∧ ¬ 𝑄 𝑊) → (𝑅‘(𝐺𝐹)) ≠ 𝑄)
4645necomd 2980 . . . . . . . . . . . 12 (((𝑅‘(𝐺𝐹)) 𝑊 ∧ ¬ 𝑄 𝑊) → 𝑄 ≠ (𝑅‘(𝐺𝐹)))
4743, 44, 46syl2anc 584 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑄 ≠ (𝑅‘(𝐺𝐹)))
48 eqid 2729 . . . . . . . . . . . 12 (LLines‘𝐾) = (LLines‘𝐾)
498, 10, 48llni2 39506 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄𝐴 ∧ (𝑅‘(𝐺𝐹)) ∈ 𝐴) ∧ 𝑄 ≠ (𝑅‘(𝐺𝐹))) → (𝑄 (𝑅‘(𝐺𝐹))) ∈ (LLines‘𝐾))
5018, 3, 33, 47, 49syl31anc 1375 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑄 (𝑅‘(𝐺𝐹))) ∈ (LLines‘𝐾))
5110, 48llnneat 39508 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑄 (𝑅‘(𝐺𝐹))) ∈ (LLines‘𝐾)) → ¬ (𝑄 (𝑅‘(𝐺𝐹))) ∈ 𝐴)
5218, 50, 51syl2anc 584 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ¬ (𝑄 (𝑅‘(𝐺𝐹))) ∈ 𝐴)
53 nelne2 3023 . . . . . . . . 9 (((𝑅‘(𝐺𝐹)) ∈ 𝐴 ∧ ¬ (𝑄 (𝑅‘(𝐺𝐹))) ∈ 𝐴) → (𝑅‘(𝐺𝐹)) ≠ (𝑄 (𝑅‘(𝐺𝐹))))
5433, 52, 53syl2anc 584 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅‘(𝐺𝐹)) ≠ (𝑄 (𝑅‘(𝐺𝐹))))
5554adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑆 = (0.‘𝐾)) → (𝑅‘(𝐺𝐹)) ≠ (𝑄 (𝑅‘(𝐺𝐹))))
5639, 55eqnetrd 2992 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ 𝑆 = (0.‘𝐾)) → (𝑆 (𝑅‘(𝐺𝐹))) ≠ (𝑄 (𝑅‘(𝐺𝐹))))
5756ex 412 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑆 = (0.‘𝐾) → (𝑆 (𝑅‘(𝐺𝐹))) ≠ (𝑄 (𝑅‘(𝐺𝐹)))))
5857necon2d 2948 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑆 (𝑅‘(𝐺𝐹))) = (𝑄 (𝑅‘(𝐺𝐹))) → 𝑆 ≠ (0.‘𝐾)))
5916, 58mpd 15 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑆 ≠ (0.‘𝐾))
60 simp32 1211 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐺 ≠ ( I ↾ 𝐵))
616, 10, 11, 12, 13trlnidat 40167 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) → (𝑅𝐺) ∈ 𝐴)
6222, 23, 60, 61syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐺) ∈ 𝐴)
637, 8, 10hlatlej2 39369 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝑅𝐺) ∈ 𝐴) → (𝑅𝐺) (𝑃 (𝑅𝐺)))
6418, 2, 62, 63syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐺) (𝑃 (𝑅𝐺)))
65 simp22 1208 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
66 simp31 1210 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹 ≠ ( I ↾ 𝐵))
676, 11, 12ltrncnvnid 40121 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 ≠ ( I ↾ 𝐵))
6822, 24, 66, 67syl3anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹 ≠ ( I ↾ 𝐵))
696, 11, 12, 13trlcone 40722 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝐹𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ 𝐹 ≠ ( I ↾ 𝐵))) → (𝑅𝐺) ≠ (𝑅‘(𝐺𝐹)))
7069necomd 2980 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝐹𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ 𝐹 ≠ ( I ↾ 𝐵))) → (𝑅‘(𝐺𝐹)) ≠ (𝑅𝐺))
7122, 23, 26, 31, 68, 70syl122anc 1381 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅‘(𝐺𝐹)) ≠ (𝑅𝐺))
727, 11, 12, 13trlle 40178 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) 𝑊)
7322, 23, 72syl2anc 584 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐺) 𝑊)
747, 8, 10, 11lhp2atnle 40027 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅‘(𝐺𝐹)) ≠ (𝑅𝐺)) ∧ ((𝑅‘(𝐺𝐹)) ∈ 𝐴 ∧ (𝑅‘(𝐺𝐹)) 𝑊) ∧ ((𝑅𝐺) ∈ 𝐴 ∧ (𝑅𝐺) 𝑊)) → ¬ (𝑅𝐺) (𝑄 (𝑅‘(𝐺𝐹))))
7522, 65, 71, 33, 43, 62, 73, 74syl322anc 1400 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ¬ (𝑅𝐺) (𝑄 (𝑅‘(𝐺𝐹))))
76 nbrne1 5126 . . . . . . . 8 (((𝑅𝐺) (𝑃 (𝑅𝐺)) ∧ ¬ (𝑅𝐺) (𝑄 (𝑅‘(𝐺𝐹)))) → (𝑃 (𝑅𝐺)) ≠ (𝑄 (𝑅‘(𝐺𝐹))))
7764, 75, 76syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑃 (𝑅𝐺)) ≠ (𝑄 (𝑅‘(𝐺𝐹))))
788, 9, 36, 102atmat0 39520 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝑅𝐺) ∈ 𝐴) ∧ (𝑄𝐴 ∧ (𝑅‘(𝐺𝐹)) ∈ 𝐴 ∧ (𝑃 (𝑅𝐺)) ≠ (𝑄 (𝑅‘(𝐺𝐹))))) → (((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹)))) ∈ 𝐴 ∨ ((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹)))) = (0.‘𝐾)))
7918, 2, 62, 3, 33, 77, 78syl33anc 1387 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹)))) ∈ 𝐴 ∨ ((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹)))) = (0.‘𝐾)))
8014eleq1i 2819 . . . . . . 7 (𝑆𝐴 ↔ ((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹)))) ∈ 𝐴)
8114eqeq1i 2734 . . . . . . 7 (𝑆 = (0.‘𝐾) ↔ ((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹)))) = (0.‘𝐾))
8280, 81orbi12i 914 . . . . . 6 ((𝑆𝐴𝑆 = (0.‘𝐾)) ↔ (((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹)))) ∈ 𝐴 ∨ ((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹)))) = (0.‘𝐾)))
8379, 82sylibr 234 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑆𝐴𝑆 = (0.‘𝐾)))
8483ord 864 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (¬ 𝑆𝐴𝑆 = (0.‘𝐾)))
8584necon1ad 2942 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑆 ≠ (0.‘𝐾) → 𝑆𝐴))
8659, 85mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑆𝐴)
87 simp21 1207 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
8887, 65jca 511 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
896, 7, 8, 9, 10, 11, 12, 13, 14, 36cdlemh2 40810 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑆 𝑊) = (0.‘𝐾))
9088, 89syld3an2 1413 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑆 𝑊) = (0.‘𝐾))
917, 9, 36, 10, 11lhpmatb 40025 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐴) → (¬ 𝑆 𝑊 ↔ (𝑆 𝑊) = (0.‘𝐾)))
9218, 21, 86, 91syl21anc 837 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (¬ 𝑆 𝑊 ↔ (𝑆 𝑊) = (0.‘𝐾)))
9390, 92mpbird 257 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ¬ 𝑆 𝑊)
9486, 93jca 511 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107   I cid 5532  ccnv 5637  cres 5640  ccom 5642  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  meetcmee 18273  0.cp0 18382  OLcol 39167  Atomscatm 39256  HLchlt 39343  LLinesclln 39485  LHypclh 39978  LTrncltrn 40095  trLctrl 40152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-riotaBAD 38946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-undef 8252  df-map 8801  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lvols 39494  df-lines 39495  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099  df-trl 40153
This theorem is referenced by:  cdlemi  40814  cdlemki  40835  cdlemksv2  40841  cdlemk16a  40850
  Copyright terms: Public domain W3C validator