Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemh Structured version   Visualization version   GIF version

Theorem cdlemh 40199
Description: Lemma H of [Crawley] p. 118. (Contributed by NM, 17-Jun-2013.)
Hypotheses
Ref Expression
cdlemh.b 𝐡 = (Baseβ€˜πΎ)
cdlemh.l ≀ = (leβ€˜πΎ)
cdlemh.j ∨ = (joinβ€˜πΎ)
cdlemh.m ∧ = (meetβ€˜πΎ)
cdlemh.a 𝐴 = (Atomsβ€˜πΎ)
cdlemh.h 𝐻 = (LHypβ€˜πΎ)
cdlemh.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemh.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
cdlemh.s 𝑆 = ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))
Assertion
Ref Expression
cdlemh ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š))

Proof of Theorem cdlemh
StepHypRef Expression
1 simp1 1133 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇))
2 simp21l 1287 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ 𝑃 ∈ 𝐴)
3 simp22l 1289 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ 𝑄 ∈ 𝐴)
4 simp23 1205 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ)))
5 simp33 1208 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))
6 cdlemh.b . . . . . 6 𝐡 = (Baseβ€˜πΎ)
7 cdlemh.l . . . . . 6 ≀ = (leβ€˜πΎ)
8 cdlemh.j . . . . . 6 ∨ = (joinβ€˜πΎ)
9 cdlemh.m . . . . . 6 ∧ = (meetβ€˜πΎ)
10 cdlemh.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
11 cdlemh.h . . . . . 6 𝐻 = (LHypβ€˜πΎ)
12 cdlemh.t . . . . . 6 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
13 cdlemh.r . . . . . 6 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
14 cdlemh.s . . . . . 6 𝑆 = ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))
156, 7, 8, 9, 10, 11, 12, 13, 14cdlemh1 40197 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (𝑆 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) = (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))
161, 2, 3, 4, 5, 15syl122anc 1376 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (𝑆 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) = (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))
17 oveq1 7411 . . . . . . . 8 (𝑆 = (0.β€˜πΎ) β†’ (𝑆 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) = ((0.β€˜πΎ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))
18 simp11l 1281 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ 𝐾 ∈ HL)
19 hlol 38742 . . . . . . . . . 10 (𝐾 ∈ HL β†’ 𝐾 ∈ OL)
2018, 19syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ 𝐾 ∈ OL)
21 simp11r 1282 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ π‘Š ∈ 𝐻)
2218, 21jca 511 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
23 simp13 1202 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ 𝐺 ∈ 𝑇)
24 simp12 1201 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ 𝐹 ∈ 𝑇)
2511, 12ltrncnv 39528 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ ◑𝐹 ∈ 𝑇)
2622, 24, 25syl2anc 583 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ ◑𝐹 ∈ 𝑇)
2723, 26jca 511 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (𝐺 ∈ 𝑇 ∧ ◑𝐹 ∈ 𝑇))
285necomd 2990 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ))
2911, 12, 13trlcnv 39547 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (π‘…β€˜β—‘πΉ) = (π‘…β€˜πΉ))
3022, 24, 29syl2anc 583 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (π‘…β€˜β—‘πΉ) = (π‘…β€˜πΉ))
3128, 30neeqtrrd 3009 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (π‘…β€˜πΊ) β‰  (π‘…β€˜β—‘πΉ))
3210, 11, 12, 13trlcoat 40105 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ ◑𝐹 ∈ 𝑇) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜β—‘πΉ)) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐴)
3322, 27, 31, 32syl3anc 1368 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐴)
346, 10atbase 38670 . . . . . . . . . 10 ((π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐴 β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐡)
3533, 34syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐡)
36 eqid 2726 . . . . . . . . . 10 (0.β€˜πΎ) = (0.β€˜πΎ)
376, 8, 36olj02 38607 . . . . . . . . 9 ((𝐾 ∈ OL ∧ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐡) β†’ ((0.β€˜πΎ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) = (π‘…β€˜(𝐺 ∘ ◑𝐹)))
3820, 35, 37syl2anc 583 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ ((0.β€˜πΎ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) = (π‘…β€˜(𝐺 ∘ ◑𝐹)))
3917, 38sylan9eqr 2788 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ 𝑆 = (0.β€˜πΎ)) β†’ (𝑆 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) = (π‘…β€˜(𝐺 ∘ ◑𝐹)))
4011, 12ltrnco 40101 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ ◑𝐹 ∈ 𝑇) β†’ (𝐺 ∘ ◑𝐹) ∈ 𝑇)
4122, 23, 26, 40syl3anc 1368 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (𝐺 ∘ ◑𝐹) ∈ 𝑇)
427, 11, 12, 13trlle 39566 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐺 ∘ ◑𝐹) ∈ 𝑇) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ≀ π‘Š)
4322, 41, 42syl2anc 583 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ≀ π‘Š)
44 simp22r 1290 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ Β¬ 𝑄 ≀ π‘Š)
45 nbrne2 5161 . . . . . . . . . . . . 13 (((π‘…β€˜(𝐺 ∘ ◑𝐹)) ≀ π‘Š ∧ Β¬ 𝑄 ≀ π‘Š) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) β‰  𝑄)
4645necomd 2990 . . . . . . . . . . . 12 (((π‘…β€˜(𝐺 ∘ ◑𝐹)) ≀ π‘Š ∧ Β¬ 𝑄 ≀ π‘Š) β†’ 𝑄 β‰  (π‘…β€˜(𝐺 ∘ ◑𝐹)))
4743, 44, 46syl2anc 583 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ 𝑄 β‰  (π‘…β€˜(𝐺 ∘ ◑𝐹)))
48 eqid 2726 . . . . . . . . . . . 12 (LLinesβ€˜πΎ) = (LLinesβ€˜πΎ)
498, 10, 48llni2 38894 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐴) ∧ 𝑄 β‰  (π‘…β€˜(𝐺 ∘ ◑𝐹))) β†’ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) ∈ (LLinesβ€˜πΎ))
5018, 3, 33, 47, 49syl31anc 1370 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) ∈ (LLinesβ€˜πΎ))
5110, 48llnneat 38896 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) ∈ (LLinesβ€˜πΎ)) β†’ Β¬ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) ∈ 𝐴)
5218, 50, 51syl2anc 583 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ Β¬ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) ∈ 𝐴)
53 nelne2 3034 . . . . . . . . 9 (((π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐴 ∧ Β¬ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) ∈ 𝐴) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) β‰  (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))
5433, 52, 53syl2anc 583 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) β‰  (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))
5554adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ 𝑆 = (0.β€˜πΎ)) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) β‰  (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))
5639, 55eqnetrd 3002 . . . . . 6 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ 𝑆 = (0.β€˜πΎ)) β†’ (𝑆 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) β‰  (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))
5756ex 412 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (𝑆 = (0.β€˜πΎ) β†’ (𝑆 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) β‰  (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))))
5857necon2d 2957 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ ((𝑆 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) = (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) β†’ 𝑆 β‰  (0.β€˜πΎ)))
5916, 58mpd 15 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ 𝑆 β‰  (0.β€˜πΎ))
60 simp32 1207 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ 𝐺 β‰  ( I β†Ύ 𝐡))
616, 10, 11, 12, 13trlnidat 39555 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) β†’ (π‘…β€˜πΊ) ∈ 𝐴)
6222, 23, 60, 61syl3anc 1368 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (π‘…β€˜πΊ) ∈ 𝐴)
637, 8, 10hlatlej2 38757 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ (π‘…β€˜πΊ) ∈ 𝐴) β†’ (π‘…β€˜πΊ) ≀ (𝑃 ∨ (π‘…β€˜πΊ)))
6418, 2, 62, 63syl3anc 1368 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (π‘…β€˜πΊ) ≀ (𝑃 ∨ (π‘…β€˜πΊ)))
65 simp22 1204 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
66 simp31 1206 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ 𝐹 β‰  ( I β†Ύ 𝐡))
676, 11, 12ltrncnvnid 39509 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) β†’ ◑𝐹 β‰  ( I β†Ύ 𝐡))
6822, 24, 66, 67syl3anc 1368 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ ◑𝐹 β‰  ( I β†Ύ 𝐡))
696, 11, 12, 13trlcone 40110 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ ◑𝐹 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜β—‘πΉ) ∧ ◑𝐹 β‰  ( I β†Ύ 𝐡))) β†’ (π‘…β€˜πΊ) β‰  (π‘…β€˜(𝐺 ∘ ◑𝐹)))
7069necomd 2990 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ ◑𝐹 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜β—‘πΉ) ∧ ◑𝐹 β‰  ( I β†Ύ 𝐡))) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) β‰  (π‘…β€˜πΊ))
7122, 23, 26, 31, 68, 70syl122anc 1376 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) β‰  (π‘…β€˜πΊ))
727, 11, 12, 13trlle 39566 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) β†’ (π‘…β€˜πΊ) ≀ π‘Š)
7322, 23, 72syl2anc 583 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (π‘…β€˜πΊ) ≀ π‘Š)
747, 8, 10, 11lhp2atnle 39415 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (π‘…β€˜(𝐺 ∘ ◑𝐹)) β‰  (π‘…β€˜πΊ)) ∧ ((π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐴 ∧ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ≀ π‘Š) ∧ ((π‘…β€˜πΊ) ∈ 𝐴 ∧ (π‘…β€˜πΊ) ≀ π‘Š)) β†’ Β¬ (π‘…β€˜πΊ) ≀ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))
7522, 65, 71, 33, 43, 62, 73, 74syl322anc 1395 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ Β¬ (π‘…β€˜πΊ) ≀ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))
76 nbrne1 5160 . . . . . . . 8 (((π‘…β€˜πΊ) ≀ (𝑃 ∨ (π‘…β€˜πΊ)) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))) β†’ (𝑃 ∨ (π‘…β€˜πΊ)) β‰  (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))
7764, 75, 76syl2anc 583 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (𝑃 ∨ (π‘…β€˜πΊ)) β‰  (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))
788, 9, 36, 102atmat0 38908 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ (π‘…β€˜πΊ) ∈ 𝐴) ∧ (𝑄 ∈ 𝐴 ∧ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐴 ∧ (𝑃 ∨ (π‘…β€˜πΊ)) β‰  (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))) β†’ (((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))) ∈ 𝐴 ∨ ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))) = (0.β€˜πΎ)))
7918, 2, 62, 3, 33, 77, 78syl33anc 1382 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))) ∈ 𝐴 ∨ ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))) = (0.β€˜πΎ)))
8014eleq1i 2818 . . . . . . 7 (𝑆 ∈ 𝐴 ↔ ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))) ∈ 𝐴)
8114eqeq1i 2731 . . . . . . 7 (𝑆 = (0.β€˜πΎ) ↔ ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))) = (0.β€˜πΎ))
8280, 81orbi12i 911 . . . . . 6 ((𝑆 ∈ 𝐴 ∨ 𝑆 = (0.β€˜πΎ)) ↔ (((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))) ∈ 𝐴 ∨ ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))) = (0.β€˜πΎ)))
8379, 82sylibr 233 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (𝑆 ∈ 𝐴 ∨ 𝑆 = (0.β€˜πΎ)))
8483ord 861 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (Β¬ 𝑆 ∈ 𝐴 β†’ 𝑆 = (0.β€˜πΎ)))
8584necon1ad 2951 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (𝑆 β‰  (0.β€˜πΎ) β†’ 𝑆 ∈ 𝐴))
8659, 85mpd 15 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ 𝑆 ∈ 𝐴)
87 simp21 1203 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
8887, 65jca 511 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)))
896, 7, 8, 9, 10, 11, 12, 13, 14, 36cdlemh2 40198 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (𝑆 ∧ π‘Š) = (0.β€˜πΎ))
9088, 89syld3an2 1408 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (𝑆 ∧ π‘Š) = (0.β€˜πΎ))
917, 9, 36, 10, 11lhpmatb 39413 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐴) β†’ (Β¬ 𝑆 ≀ π‘Š ↔ (𝑆 ∧ π‘Š) = (0.β€˜πΎ)))
9218, 21, 86, 91syl21anc 835 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (Β¬ 𝑆 ≀ π‘Š ↔ (𝑆 ∧ π‘Š) = (0.β€˜πΎ)))
9390, 92mpbird 257 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ Β¬ 𝑆 ≀ π‘Š)
9486, 93jca 511 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∨ wo 844   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934   class class class wbr 5141   I cid 5566  β—‘ccnv 5668   β†Ύ cres 5671   ∘ ccom 5673  β€˜cfv 6536  (class class class)co 7404  Basecbs 17151  lecple 17211  joincjn 18274  meetcmee 18275  0.cp0 18386  OLcol 38555  Atomscatm 38644  HLchlt 38731  LLinesclln 38873  LHypclh 39366  LTrncltrn 39483  trLctrl 39540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-riotaBAD 38334
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7971  df-2nd 7972  df-undef 8256  df-map 8821  df-proset 18258  df-poset 18276  df-plt 18293  df-lub 18309  df-glb 18310  df-join 18311  df-meet 18312  df-p0 18388  df-p1 18389  df-lat 18395  df-clat 18462  df-oposet 38557  df-ol 38559  df-oml 38560  df-covers 38647  df-ats 38648  df-atl 38679  df-cvlat 38703  df-hlat 38732  df-llines 38880  df-lplanes 38881  df-lvols 38882  df-lines 38883  df-psubsp 38885  df-pmap 38886  df-padd 39178  df-lhyp 39370  df-laut 39371  df-ldil 39486  df-ltrn 39487  df-trl 39541
This theorem is referenced by:  cdlemi  40202  cdlemki  40223  cdlemksv2  40229  cdlemk16a  40238
  Copyright terms: Public domain W3C validator