Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemh Structured version   Visualization version   GIF version

Theorem cdlemh 39283
Description: Lemma H of [Crawley] p. 118. (Contributed by NM, 17-Jun-2013.)
Hypotheses
Ref Expression
cdlemh.b 𝐡 = (Baseβ€˜πΎ)
cdlemh.l ≀ = (leβ€˜πΎ)
cdlemh.j ∨ = (joinβ€˜πΎ)
cdlemh.m ∧ = (meetβ€˜πΎ)
cdlemh.a 𝐴 = (Atomsβ€˜πΎ)
cdlemh.h 𝐻 = (LHypβ€˜πΎ)
cdlemh.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemh.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
cdlemh.s 𝑆 = ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))
Assertion
Ref Expression
cdlemh ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š))

Proof of Theorem cdlemh
StepHypRef Expression
1 simp1 1137 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇))
2 simp21l 1291 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ 𝑃 ∈ 𝐴)
3 simp22l 1293 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ 𝑄 ∈ 𝐴)
4 simp23 1209 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ)))
5 simp33 1212 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))
6 cdlemh.b . . . . . 6 𝐡 = (Baseβ€˜πΎ)
7 cdlemh.l . . . . . 6 ≀ = (leβ€˜πΎ)
8 cdlemh.j . . . . . 6 ∨ = (joinβ€˜πΎ)
9 cdlemh.m . . . . . 6 ∧ = (meetβ€˜πΎ)
10 cdlemh.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
11 cdlemh.h . . . . . 6 𝐻 = (LHypβ€˜πΎ)
12 cdlemh.t . . . . . 6 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
13 cdlemh.r . . . . . 6 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
14 cdlemh.s . . . . . 6 𝑆 = ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))
156, 7, 8, 9, 10, 11, 12, 13, 14cdlemh1 39281 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (𝑆 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) = (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))
161, 2, 3, 4, 5, 15syl122anc 1380 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (𝑆 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) = (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))
17 oveq1 7365 . . . . . . . 8 (𝑆 = (0.β€˜πΎ) β†’ (𝑆 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) = ((0.β€˜πΎ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))
18 simp11l 1285 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ 𝐾 ∈ HL)
19 hlol 37826 . . . . . . . . . 10 (𝐾 ∈ HL β†’ 𝐾 ∈ OL)
2018, 19syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ 𝐾 ∈ OL)
21 simp11r 1286 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ π‘Š ∈ 𝐻)
2218, 21jca 513 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
23 simp13 1206 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ 𝐺 ∈ 𝑇)
24 simp12 1205 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ 𝐹 ∈ 𝑇)
2511, 12ltrncnv 38612 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ ◑𝐹 ∈ 𝑇)
2622, 24, 25syl2anc 585 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ ◑𝐹 ∈ 𝑇)
2723, 26jca 513 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (𝐺 ∈ 𝑇 ∧ ◑𝐹 ∈ 𝑇))
285necomd 3000 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ))
2911, 12, 13trlcnv 38631 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (π‘…β€˜β—‘πΉ) = (π‘…β€˜πΉ))
3022, 24, 29syl2anc 585 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (π‘…β€˜β—‘πΉ) = (π‘…β€˜πΉ))
3128, 30neeqtrrd 3019 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (π‘…β€˜πΊ) β‰  (π‘…β€˜β—‘πΉ))
3210, 11, 12, 13trlcoat 39189 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ ◑𝐹 ∈ 𝑇) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜β—‘πΉ)) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐴)
3322, 27, 31, 32syl3anc 1372 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐴)
346, 10atbase 37754 . . . . . . . . . 10 ((π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐴 β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐡)
3533, 34syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐡)
36 eqid 2737 . . . . . . . . . 10 (0.β€˜πΎ) = (0.β€˜πΎ)
376, 8, 36olj02 37691 . . . . . . . . 9 ((𝐾 ∈ OL ∧ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐡) β†’ ((0.β€˜πΎ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) = (π‘…β€˜(𝐺 ∘ ◑𝐹)))
3820, 35, 37syl2anc 585 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ ((0.β€˜πΎ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) = (π‘…β€˜(𝐺 ∘ ◑𝐹)))
3917, 38sylan9eqr 2799 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ 𝑆 = (0.β€˜πΎ)) β†’ (𝑆 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) = (π‘…β€˜(𝐺 ∘ ◑𝐹)))
4011, 12ltrnco 39185 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ ◑𝐹 ∈ 𝑇) β†’ (𝐺 ∘ ◑𝐹) ∈ 𝑇)
4122, 23, 26, 40syl3anc 1372 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (𝐺 ∘ ◑𝐹) ∈ 𝑇)
427, 11, 12, 13trlle 38650 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐺 ∘ ◑𝐹) ∈ 𝑇) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ≀ π‘Š)
4322, 41, 42syl2anc 585 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ≀ π‘Š)
44 simp22r 1294 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ Β¬ 𝑄 ≀ π‘Š)
45 nbrne2 5126 . . . . . . . . . . . . 13 (((π‘…β€˜(𝐺 ∘ ◑𝐹)) ≀ π‘Š ∧ Β¬ 𝑄 ≀ π‘Š) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) β‰  𝑄)
4645necomd 3000 . . . . . . . . . . . 12 (((π‘…β€˜(𝐺 ∘ ◑𝐹)) ≀ π‘Š ∧ Β¬ 𝑄 ≀ π‘Š) β†’ 𝑄 β‰  (π‘…β€˜(𝐺 ∘ ◑𝐹)))
4743, 44, 46syl2anc 585 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ 𝑄 β‰  (π‘…β€˜(𝐺 ∘ ◑𝐹)))
48 eqid 2737 . . . . . . . . . . . 12 (LLinesβ€˜πΎ) = (LLinesβ€˜πΎ)
498, 10, 48llni2 37978 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐴) ∧ 𝑄 β‰  (π‘…β€˜(𝐺 ∘ ◑𝐹))) β†’ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) ∈ (LLinesβ€˜πΎ))
5018, 3, 33, 47, 49syl31anc 1374 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) ∈ (LLinesβ€˜πΎ))
5110, 48llnneat 37980 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) ∈ (LLinesβ€˜πΎ)) β†’ Β¬ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) ∈ 𝐴)
5218, 50, 51syl2anc 585 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ Β¬ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) ∈ 𝐴)
53 nelne2 3043 . . . . . . . . 9 (((π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐴 ∧ Β¬ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) ∈ 𝐴) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) β‰  (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))
5433, 52, 53syl2anc 585 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) β‰  (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))
5554adantr 482 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ 𝑆 = (0.β€˜πΎ)) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) β‰  (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))
5639, 55eqnetrd 3012 . . . . . 6 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ 𝑆 = (0.β€˜πΎ)) β†’ (𝑆 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) β‰  (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))
5756ex 414 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (𝑆 = (0.β€˜πΎ) β†’ (𝑆 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) β‰  (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))))
5857necon2d 2967 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ ((𝑆 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) = (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))) β†’ 𝑆 β‰  (0.β€˜πΎ)))
5916, 58mpd 15 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ 𝑆 β‰  (0.β€˜πΎ))
60 simp32 1211 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ 𝐺 β‰  ( I β†Ύ 𝐡))
616, 10, 11, 12, 13trlnidat 38639 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) β†’ (π‘…β€˜πΊ) ∈ 𝐴)
6222, 23, 60, 61syl3anc 1372 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (π‘…β€˜πΊ) ∈ 𝐴)
637, 8, 10hlatlej2 37841 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ (π‘…β€˜πΊ) ∈ 𝐴) β†’ (π‘…β€˜πΊ) ≀ (𝑃 ∨ (π‘…β€˜πΊ)))
6418, 2, 62, 63syl3anc 1372 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (π‘…β€˜πΊ) ≀ (𝑃 ∨ (π‘…β€˜πΊ)))
65 simp22 1208 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
66 simp31 1210 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ 𝐹 β‰  ( I β†Ύ 𝐡))
676, 11, 12ltrncnvnid 38593 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) β†’ ◑𝐹 β‰  ( I β†Ύ 𝐡))
6822, 24, 66, 67syl3anc 1372 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ ◑𝐹 β‰  ( I β†Ύ 𝐡))
696, 11, 12, 13trlcone 39194 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ ◑𝐹 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜β—‘πΉ) ∧ ◑𝐹 β‰  ( I β†Ύ 𝐡))) β†’ (π‘…β€˜πΊ) β‰  (π‘…β€˜(𝐺 ∘ ◑𝐹)))
7069necomd 3000 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ ◑𝐹 ∈ 𝑇) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜β—‘πΉ) ∧ ◑𝐹 β‰  ( I β†Ύ 𝐡))) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) β‰  (π‘…β€˜πΊ))
7122, 23, 26, 31, 68, 70syl122anc 1380 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (π‘…β€˜(𝐺 ∘ ◑𝐹)) β‰  (π‘…β€˜πΊ))
727, 11, 12, 13trlle 38650 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) β†’ (π‘…β€˜πΊ) ≀ π‘Š)
7322, 23, 72syl2anc 585 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (π‘…β€˜πΊ) ≀ π‘Š)
747, 8, 10, 11lhp2atnle 38499 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (π‘…β€˜(𝐺 ∘ ◑𝐹)) β‰  (π‘…β€˜πΊ)) ∧ ((π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐴 ∧ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ≀ π‘Š) ∧ ((π‘…β€˜πΊ) ∈ 𝐴 ∧ (π‘…β€˜πΊ) ≀ π‘Š)) β†’ Β¬ (π‘…β€˜πΊ) ≀ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))
7522, 65, 71, 33, 43, 62, 73, 74syl322anc 1399 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ Β¬ (π‘…β€˜πΊ) ≀ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))
76 nbrne1 5125 . . . . . . . 8 (((π‘…β€˜πΊ) ≀ (𝑃 ∨ (π‘…β€˜πΊ)) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))) β†’ (𝑃 ∨ (π‘…β€˜πΊ)) β‰  (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))
7764, 75, 76syl2anc 585 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (𝑃 ∨ (π‘…β€˜πΊ)) β‰  (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))
788, 9, 36, 102atmat0 37992 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ (π‘…β€˜πΊ) ∈ 𝐴) ∧ (𝑄 ∈ 𝐴 ∧ (π‘…β€˜(𝐺 ∘ ◑𝐹)) ∈ 𝐴 ∧ (𝑃 ∨ (π‘…β€˜πΊ)) β‰  (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))) β†’ (((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))) ∈ 𝐴 ∨ ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))) = (0.β€˜πΎ)))
7918, 2, 62, 3, 33, 77, 78syl33anc 1386 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))) ∈ 𝐴 ∨ ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))) = (0.β€˜πΎ)))
8014eleq1i 2829 . . . . . . 7 (𝑆 ∈ 𝐴 ↔ ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))) ∈ 𝐴)
8114eqeq1i 2742 . . . . . . 7 (𝑆 = (0.β€˜πΎ) ↔ ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))) = (0.β€˜πΎ))
8280, 81orbi12i 914 . . . . . 6 ((𝑆 ∈ 𝐴 ∨ 𝑆 = (0.β€˜πΎ)) ↔ (((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))) ∈ 𝐴 ∨ ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (𝑄 ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))) = (0.β€˜πΎ)))
8379, 82sylibr 233 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (𝑆 ∈ 𝐴 ∨ 𝑆 = (0.β€˜πΎ)))
8483ord 863 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (Β¬ 𝑆 ∈ 𝐴 β†’ 𝑆 = (0.β€˜πΎ)))
8584necon1ad 2961 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (𝑆 β‰  (0.β€˜πΎ) β†’ 𝑆 ∈ 𝐴))
8659, 85mpd 15 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ 𝑆 ∈ 𝐴)
87 simp21 1207 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
8887, 65jca 513 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)))
896, 7, 8, 9, 10, 11, 12, 13, 14, 36cdlemh2 39282 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (𝑆 ∧ π‘Š) = (0.β€˜πΎ))
9088, 89syld3an2 1412 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (𝑆 ∧ π‘Š) = (0.β€˜πΎ))
917, 9, 36, 10, 11lhpmatb 38497 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐴) β†’ (Β¬ 𝑆 ≀ π‘Š ↔ (𝑆 ∧ π‘Š) = (0.β€˜πΎ)))
9218, 21, 86, 91syl21anc 837 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (Β¬ 𝑆 ≀ π‘Š ↔ (𝑆 ∧ π‘Š) = (0.β€˜πΎ)))
9390, 92mpbird 257 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ Β¬ 𝑆 ≀ π‘Š)
9486, 93jca 513 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ (𝑃 ∨ (π‘…β€˜πΉ))) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∨ wo 846   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2944   class class class wbr 5106   I cid 5531  β—‘ccnv 5633   β†Ύ cres 5636   ∘ ccom 5638  β€˜cfv 6497  (class class class)co 7358  Basecbs 17084  lecple 17141  joincjn 18201  meetcmee 18202  0.cp0 18313  OLcol 37639  Atomscatm 37728  HLchlt 37815  LLinesclln 37957  LHypclh 38450  LTrncltrn 38567  trLctrl 38624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-riotaBAD 37418
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rmo 3354  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-iin 4958  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923  df-undef 8205  df-map 8768  df-proset 18185  df-poset 18203  df-plt 18220  df-lub 18236  df-glb 18237  df-join 18238  df-meet 18239  df-p0 18315  df-p1 18316  df-lat 18322  df-clat 18389  df-oposet 37641  df-ol 37643  df-oml 37644  df-covers 37731  df-ats 37732  df-atl 37763  df-cvlat 37787  df-hlat 37816  df-llines 37964  df-lplanes 37965  df-lvols 37966  df-lines 37967  df-psubsp 37969  df-pmap 37970  df-padd 38262  df-lhyp 38454  df-laut 38455  df-ldil 38570  df-ltrn 38571  df-trl 38625
This theorem is referenced by:  cdlemi  39286  cdlemki  39307  cdlemksv2  39313  cdlemk16a  39322
  Copyright terms: Public domain W3C validator