Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem17 Structured version   Visualization version   GIF version

Theorem poimirlem17 35354
Description: Lemma for poimir 35370 establishing existence for poimirlem18 35355. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimirlem22.s 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
poimirlem22.1 (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))
poimirlem22.2 (𝜑𝑇𝑆)
poimirlem18.3 ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 𝐾)
poimirlem18.4 (𝜑 → (2nd𝑇) = 0)
Assertion
Ref Expression
poimirlem17 (𝜑 → ∃𝑧𝑆 𝑧𝑇)
Distinct variable groups:   𝑓,𝑗,𝑛,𝑝,𝑡,𝑦,𝑧   𝜑,𝑗,𝑛,𝑦   𝑗,𝐹,𝑛,𝑦   𝑗,𝑁,𝑛,𝑦   𝑇,𝑗,𝑛,𝑦   𝜑,𝑝,𝑡   𝑓,𝐾,𝑗,𝑛,𝑝,𝑡   𝑓,𝑁,𝑝,𝑡   𝑇,𝑓,𝑝   𝜑,𝑧   𝑓,𝐹,𝑝,𝑡,𝑧   𝑧,𝐾   𝑧,𝑁   𝑡,𝑇,𝑧   𝑆,𝑗,𝑛,𝑝,𝑡,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝑆(𝑓)   𝐾(𝑦)

Proof of Theorem poimirlem17
StepHypRef Expression
1 poimir.0 . . . . 5 (𝜑𝑁 ∈ ℕ)
2 poimirlem22.s . . . . 5 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
3 poimirlem22.1 . . . . 5 (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))
4 poimirlem22.2 . . . . 5 (𝜑𝑇𝑆)
5 poimirlem18.3 . . . . 5 ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 𝐾)
6 poimirlem18.4 . . . . 5 (𝜑 → (2nd𝑇) = 0)
71, 2, 3, 4, 5, 6poimirlem16 35353 . . . 4 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})))))
8 elfznn0 13049 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℕ0)
98nn0red 11995 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℝ)
109adantl 485 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ∈ ℝ)
111nnzd 12125 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℤ)
12 peano2zm 12064 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
1311, 12syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 − 1) ∈ ℤ)
1413zred 12126 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 − 1) ∈ ℝ)
1514adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) ∈ ℝ)
161nnred 11689 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℝ)
1716adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ℝ)
18 elfzle2 12960 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ≤ (𝑁 − 1))
1918adantl 485 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ≤ (𝑁 − 1))
2016ltm1d 11610 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 − 1) < 𝑁)
2120adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) < 𝑁)
2210, 15, 17, 19, 21lelttrd 10836 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 < 𝑁)
2322adantlr 714 . . . . . . . . . . . . 13 (((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 < 𝑁)
24 fveq2 6658 . . . . . . . . . . . . . . 15 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ → (2nd𝑡) = (2nd ‘⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩))
25 opex 5324 . . . . . . . . . . . . . . . 16 ⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩ ∈ V
26 op2ndg 7706 . . . . . . . . . . . . . . . 16 ((⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩ ∈ V ∧ 𝑁 ∈ ℕ) → (2nd ‘⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) = 𝑁)
2725, 1, 26sylancr 590 . . . . . . . . . . . . . . 15 (𝜑 → (2nd ‘⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) = 𝑁)
2824, 27sylan9eqr 2815 . . . . . . . . . . . . . 14 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → (2nd𝑡) = 𝑁)
2928adantr 484 . . . . . . . . . . . . 13 (((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (2nd𝑡) = 𝑁)
3023, 29breqtrrd 5060 . . . . . . . . . . . 12 (((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 < (2nd𝑡))
3130iftrued 4428 . . . . . . . . . . 11 (((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = 𝑦)
3231csbeq1d 3809 . . . . . . . . . 10 (((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = 𝑦 / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))
33 vex 3413 . . . . . . . . . . . . 13 𝑦 ∈ V
34 oveq2 7158 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑦 → (1...𝑗) = (1...𝑦))
3534imaeq2d 5901 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑦 → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = ((2nd ‘(1st𝑡)) “ (1...𝑦)))
3635xpeq1d 5553 . . . . . . . . . . . . . . 15 (𝑗 = 𝑦 → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑡)) “ (1...𝑦)) × {1}))
37 oveq1 7157 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑦 → (𝑗 + 1) = (𝑦 + 1))
3837oveq1d 7165 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑦 → ((𝑗 + 1)...𝑁) = ((𝑦 + 1)...𝑁))
3938imaeq2d 5901 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑦 → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑡)) “ ((𝑦 + 1)...𝑁)))
4039xpeq1d 5553 . . . . . . . . . . . . . . 15 (𝑗 = 𝑦 → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑡)) “ ((𝑦 + 1)...𝑁)) × {0}))
4136, 40uneq12d 4069 . . . . . . . . . . . . . 14 (𝑗 = 𝑦 → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑡)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑦 + 1)...𝑁)) × {0})))
4241oveq2d 7166 . . . . . . . . . . . . 13 (𝑗 = 𝑦 → ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑦 + 1)...𝑁)) × {0}))))
4333, 42csbie 3840 . . . . . . . . . . . 12 𝑦 / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑦 + 1)...𝑁)) × {0})))
44 2fveq3 6663 . . . . . . . . . . . . . 14 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ → (1st ‘(1st𝑡)) = (1st ‘(1st ‘⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩)))
45 op1stg 7705 . . . . . . . . . . . . . . . . 17 ((⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩ ∈ V ∧ 𝑁 ∈ ℕ) → (1st ‘⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) = ⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩)
4625, 1, 45sylancr 590 . . . . . . . . . . . . . . . 16 (𝜑 → (1st ‘⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) = ⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩)
4746fveq2d 6662 . . . . . . . . . . . . . . 15 (𝜑 → (1st ‘(1st ‘⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩)) = (1st ‘⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩))
48 ovex 7183 . . . . . . . . . . . . . . . . 17 (1...𝑁) ∈ V
4948mptex 6977 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∈ V
50 fvex 6671 . . . . . . . . . . . . . . . . 17 (2nd ‘(1st𝑇)) ∈ V
5148mptex 6977 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ∈ V
5250, 51coex 7640 . . . . . . . . . . . . . . . 16 ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) ∈ V
5349, 52op1st 7701 . . . . . . . . . . . . . . 15 (1st ‘⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩) = (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0)))
5447, 53eqtrdi 2809 . . . . . . . . . . . . . 14 (𝜑 → (1st ‘(1st ‘⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩)) = (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))))
5544, 54sylan9eqr 2815 . . . . . . . . . . . . 13 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → (1st ‘(1st𝑡)) = (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))))
56 fveq2 6658 . . . . . . . . . . . . . . . . . . 19 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ → (1st𝑡) = (1st ‘⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩))
5756, 46sylan9eqr 2815 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → (1st𝑡) = ⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩)
5857fveq2d 6662 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → (2nd ‘(1st𝑡)) = (2nd ‘⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩))
5949, 52op2nd 7702 . . . . . . . . . . . . . . . . 17 (2nd ‘⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩) = ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))
6058, 59eqtrdi 2809 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → (2nd ‘(1st𝑡)) = ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))))
6160imaeq1d 5900 . . . . . . . . . . . . . . 15 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → ((2nd ‘(1st𝑡)) “ (1...𝑦)) = (((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)))
6261xpeq1d 5553 . . . . . . . . . . . . . 14 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → (((2nd ‘(1st𝑡)) “ (1...𝑦)) × {1}) = ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}))
6360imaeq1d 5900 . . . . . . . . . . . . . . 15 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → ((2nd ‘(1st𝑡)) “ ((𝑦 + 1)...𝑁)) = (((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)))
6463xpeq1d 5553 . . . . . . . . . . . . . 14 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → (((2nd ‘(1st𝑡)) “ ((𝑦 + 1)...𝑁)) × {0}) = ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))
6562, 64uneq12d 4069 . . . . . . . . . . . . 13 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → ((((2nd ‘(1st𝑡)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑦 + 1)...𝑁)) × {0})) = (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})))
6655, 65oveq12d 7168 . . . . . . . . . . . 12 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑦 + 1)...𝑁)) × {0}))) = ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))))
6743, 66syl5eq 2805 . . . . . . . . . . 11 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → 𝑦 / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))))
6867adantr 484 . . . . . . . . . 10 (((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))))
6932, 68eqtrd 2793 . . . . . . . . 9 (((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))))
7069mpteq2dva 5127 . . . . . . . 8 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})))))
7170eqeq2d 2769 . . . . . . 7 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))))))
7271ex 416 . . . . . 6 (𝜑 → (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})))))))
7372alrimiv 1928 . . . . 5 (𝜑 → ∀𝑡(𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})))))))
74 oveq2 7158 . . . . . . . . . . 11 (1 = if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0) → (((1st ‘(1st𝑇))‘𝑛) + 1) = (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0)))
7574eleq1d 2836 . . . . . . . . . 10 (1 = if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0) → ((((1st ‘(1st𝑇))‘𝑛) + 1) ∈ (0..^𝐾) ↔ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0)) ∈ (0..^𝐾)))
76 oveq2 7158 . . . . . . . . . . 11 (0 = if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0) → (((1st ‘(1st𝑇))‘𝑛) + 0) = (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0)))
7776eleq1d 2836 . . . . . . . . . 10 (0 = if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0) → ((((1st ‘(1st𝑇))‘𝑛) + 0) ∈ (0..^𝐾) ↔ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0)) ∈ (0..^𝐾)))
78 fveq2 6658 . . . . . . . . . . . . . 14 (𝑛 = ((2nd ‘(1st𝑇))‘1) → ((1st ‘(1st𝑇))‘𝑛) = ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)))
7978oveq1d 7165 . . . . . . . . . . . . 13 (𝑛 = ((2nd ‘(1st𝑇))‘1) → (((1st ‘(1st𝑇))‘𝑛) + 1) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1))
8079adantl 485 . . . . . . . . . . . 12 ((𝜑𝑛 = ((2nd ‘(1st𝑇))‘1)) → (((1st ‘(1st𝑇))‘𝑛) + 1) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1))
81 elrabi 3596 . . . . . . . . . . . . . . . . . . 19 (𝑇 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
8281, 2eleq2s 2870 . . . . . . . . . . . . . . . . . 18 (𝑇𝑆𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
83 xp1st 7725 . . . . . . . . . . . . . . . . . 18 (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
844, 82, 833syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
85 xp1st 7725 . . . . . . . . . . . . . . . . 17 ((1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
86 elmapi 8438 . . . . . . . . . . . . . . . . 17 ((1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)) → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
8784, 85, 863syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
884, 82syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
89 xp2nd 7726 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
9088, 83, 893syl 18 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
91 f1oeq1 6590 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (2nd ‘(1st𝑇)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)))
9250, 91elab 3588 . . . . . . . . . . . . . . . . . . 19 ((2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
9390, 92sylib 221 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
94 f1of 6602 . . . . . . . . . . . . . . . . . 18 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑇)):(1...𝑁)⟶(1...𝑁))
9593, 94syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)⟶(1...𝑁))
96 nnuz 12321 . . . . . . . . . . . . . . . . . . 19 ℕ = (ℤ‘1)
971, 96eleqtrdi 2862 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ (ℤ‘1))
98 eluzfz1 12963 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘1) → 1 ∈ (1...𝑁))
9997, 98syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ (1...𝑁))
10095, 99ffvelrnd 6843 . . . . . . . . . . . . . . . 16 (𝜑 → ((2nd ‘(1st𝑇))‘1) ∈ (1...𝑁))
10187, 100ffvelrnd 6843 . . . . . . . . . . . . . . 15 (𝜑 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ (0..^𝐾))
102 elfzonn0 13131 . . . . . . . . . . . . . . 15 (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ (0..^𝐾) → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ ℕ0)
103 peano2nn0 11974 . . . . . . . . . . . . . . 15 (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ ℕ0 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ∈ ℕ0)
104101, 102, 1033syl 18 . . . . . . . . . . . . . 14 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ∈ ℕ0)
105 elfzo0 13127 . . . . . . . . . . . . . . . 16 (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ (0..^𝐾) ↔ (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ ℕ0𝐾 ∈ ℕ ∧ ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) < 𝐾))
106101, 105sylib 221 . . . . . . . . . . . . . . 15 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ ℕ0𝐾 ∈ ℕ ∧ ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) < 𝐾))
107106simp2d 1140 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ ℕ)
108104nn0red 11995 . . . . . . . . . . . . . . 15 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ∈ ℝ)
109107nnred 11689 . . . . . . . . . . . . . . 15 (𝜑𝐾 ∈ ℝ)
110 elfzolt2 13096 . . . . . . . . . . . . . . . . 17 (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ (0..^𝐾) → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) < 𝐾)
111101, 110syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) < 𝐾)
112101, 102syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ ℕ0)
113112nn0zd 12124 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ ℤ)
114107nnzd 12125 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ ℤ)
115 zltp1le 12071 . . . . . . . . . . . . . . . . 17 ((((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) < 𝐾 ↔ (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ≤ 𝐾))
116113, 114, 115syl2anc 587 . . . . . . . . . . . . . . . 16 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) < 𝐾 ↔ (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ≤ 𝐾))
117111, 116mpbid 235 . . . . . . . . . . . . . . 15 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ≤ 𝐾)
118 fvex 6671 . . . . . . . . . . . . . . . . . 18 ((2nd ‘(1st𝑇))‘1) ∈ V
119 eleq1 2839 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = ((2nd ‘(1st𝑇))‘1) → (𝑛 ∈ (1...𝑁) ↔ ((2nd ‘(1st𝑇))‘1) ∈ (1...𝑁)))
120119anbi2d 631 . . . . . . . . . . . . . . . . . . 19 (𝑛 = ((2nd ‘(1st𝑇))‘1) → ((𝜑𝑛 ∈ (1...𝑁)) ↔ (𝜑 ∧ ((2nd ‘(1st𝑇))‘1) ∈ (1...𝑁))))
121 fveq2 6658 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = ((2nd ‘(1st𝑇))‘1) → (𝑝𝑛) = (𝑝‘((2nd ‘(1st𝑇))‘1)))
122121neeq1d 3010 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = ((2nd ‘(1st𝑇))‘1) → ((𝑝𝑛) ≠ 𝐾 ↔ (𝑝‘((2nd ‘(1st𝑇))‘1)) ≠ 𝐾))
123122rexbidv 3221 . . . . . . . . . . . . . . . . . . 19 (𝑛 = ((2nd ‘(1st𝑇))‘1) → (∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 𝐾 ↔ ∃𝑝 ∈ ran 𝐹(𝑝‘((2nd ‘(1st𝑇))‘1)) ≠ 𝐾))
124120, 123imbi12d 348 . . . . . . . . . . . . . . . . . 18 (𝑛 = ((2nd ‘(1st𝑇))‘1) → (((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 𝐾) ↔ ((𝜑 ∧ ((2nd ‘(1st𝑇))‘1) ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘((2nd ‘(1st𝑇))‘1)) ≠ 𝐾)))
125118, 124, 5vtocl 3477 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((2nd ‘(1st𝑇))‘1) ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘((2nd ‘(1st𝑇))‘1)) ≠ 𝐾)
126100, 125mpdan 686 . . . . . . . . . . . . . . . 16 (𝜑 → ∃𝑝 ∈ ran 𝐹(𝑝‘((2nd ‘(1st𝑇))‘1)) ≠ 𝐾)
127 fveq1 6657 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))) → (𝑝‘((2nd ‘(1st𝑇))‘1)) = (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))‘((2nd ‘(1st𝑇))‘1)))
12887ffnd 6499 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (1st ‘(1st𝑇)) Fn (1...𝑁))
129128adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (1st ‘(1st𝑇)) Fn (1...𝑁))
130 1ex 10675 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1 ∈ V
131 fnconstg 6552 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (1 ∈ V → (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))))
132130, 131ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1)))
133 c0ex 10673 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 0 ∈ V
134 fnconstg 6552 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (0 ∈ V → (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))
135133, 134ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))
136132, 135pm3.2i 474 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∧ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))
137 dff1o3 6608 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁) ∧ Fun (2nd ‘(1st𝑇))))
138137simprbi 500 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → Fun (2nd ‘(1st𝑇)))
139 imain 6420 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Fun (2nd ‘(1st𝑇)) → ((2nd ‘(1st𝑇)) “ ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∩ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))))
14093, 138, 1393syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((2nd ‘(1st𝑇)) “ ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∩ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))))
141 nn0p1nn 11973 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℕ)
1428, 141syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ ℕ)
143142nnred 11689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ ℝ)
144143ltp1d 11608 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) < ((𝑦 + 1) + 1))
145 fzdisj 12983 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑦 + 1) < ((𝑦 + 1) + 1) → ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁)) = ∅)
146145imaeq2d 5901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑦 + 1) < ((𝑦 + 1) + 1) → ((2nd ‘(1st𝑇)) “ ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = ((2nd ‘(1st𝑇)) “ ∅))
147 ima0 5917 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((2nd ‘(1st𝑇)) “ ∅) = ∅
148146, 147eqtrdi 2809 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑦 + 1) < ((𝑦 + 1) + 1) → ((2nd ‘(1st𝑇)) “ ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = ∅)
149144, 148syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd ‘(1st𝑇)) “ ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = ∅)
150140, 149sylan9req 2814 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∩ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = ∅)
151 fnun 6445 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∧ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) ∧ (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∩ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = ∅) → ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∪ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))))
152136, 150, 151sylancr 590 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∪ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))))
153 imaundi 5980 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((2nd ‘(1st𝑇)) “ ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))) = (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∪ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))
154142peano2nnd 11691 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1) + 1) ∈ ℕ)
155154, 96eleqtrdi 2862 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1) + 1) ∈ (ℤ‘1))
1561nncnd 11690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑𝑁 ∈ ℂ)
157 npcan1 11103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
158156, 157syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
159158adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁)
160 elfzuz3 12953 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈ (ℤ𝑦))
161 eluzp1p1 12310 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 − 1) ∈ (ℤ𝑦) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑦 + 1)))
162160, 161syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑦 + 1)))
163162adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑦 + 1)))
164159, 163eqeltrrd 2853 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ‘(𝑦 + 1)))
165 fzsplit2 12981 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑦 + 1) + 1) ∈ (ℤ‘1) ∧ 𝑁 ∈ (ℤ‘(𝑦 + 1))) → (1...𝑁) = ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁)))
166155, 164, 165syl2an2 685 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑁) = ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁)))
167166imaeq2d 5901 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = ((2nd ‘(1st𝑇)) “ ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))))
168 f1ofo 6609 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁))
169 foima 6581 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁) → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (1...𝑁))
17093, 168, 1693syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (1...𝑁))
171170adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (1...𝑁))
172167, 171eqtr3d 2795 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((2nd ‘(1st𝑇)) “ ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))) = (1...𝑁))
173153, 172syl5eqr 2807 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∪ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = (1...𝑁))
174173fneq2d 6428 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∪ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) ↔ ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (1...𝑁)))
175152, 174mpbid 235 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (1...𝑁))
17648a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑁) ∈ V)
177 inidm 4123 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1...𝑁) ∩ (1...𝑁)) = (1...𝑁)
178 eqidd 2759 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ ((2nd ‘(1st𝑇))‘1) ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) = ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)))
179 f1ofn 6603 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑇)) Fn (1...𝑁))
18093, 179syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (2nd ‘(1st𝑇)) Fn (1...𝑁))
181180adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (2nd ‘(1st𝑇)) Fn (1...𝑁))
182 fzss2 12996 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ (ℤ‘(𝑦 + 1)) → (1...(𝑦 + 1)) ⊆ (1...𝑁))
183164, 182syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (1...(𝑦 + 1)) ⊆ (1...𝑁))
184142, 96eleqtrdi 2862 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ (ℤ‘1))
185 eluzfz1 12963 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑦 + 1) ∈ (ℤ‘1) → 1 ∈ (1...(𝑦 + 1)))
186184, 185syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ (0...(𝑁 − 1)) → 1 ∈ (1...(𝑦 + 1)))
187186adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 1 ∈ (1...(𝑦 + 1)))
188 fnfvima 6987 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((2nd ‘(1st𝑇)) Fn (1...𝑁) ∧ (1...(𝑦 + 1)) ⊆ (1...𝑁) ∧ 1 ∈ (1...(𝑦 + 1))) → ((2nd ‘(1st𝑇))‘1) ∈ ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))))
189181, 183, 187, 188syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((2nd ‘(1st𝑇))‘1) ∈ ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))))
190 fvun1 6743 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∧ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) ∧ ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∩ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = ∅ ∧ ((2nd ‘(1st𝑇))‘1) ∈ ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))))) → (((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘1)) = ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1})‘((2nd ‘(1st𝑇))‘1)))
191132, 135, 190mp3an12 1448 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∩ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = ∅ ∧ ((2nd ‘(1st𝑇))‘1) ∈ ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1)))) → (((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘1)) = ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1})‘((2nd ‘(1st𝑇))‘1)))
192150, 189, 191syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘1)) = ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1})‘((2nd ‘(1st𝑇))‘1)))
193130fvconst2 6957 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((2nd ‘(1st𝑇))‘1) ∈ ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) → ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1})‘((2nd ‘(1st𝑇))‘1)) = 1)
194189, 193syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1})‘((2nd ‘(1st𝑇))‘1)) = 1)
195192, 194eqtrd 2793 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘1)) = 1)
196195adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ ((2nd ‘(1st𝑇))‘1) ∈ (1...𝑁)) → (((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘1)) = 1)
197129, 175, 176, 176, 177, 178, 196ofval 7415 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ ((2nd ‘(1st𝑇))‘1) ∈ (1...𝑁)) → (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))‘((2nd ‘(1st𝑇))‘1)) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1))
198100, 197mpidan 688 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))‘((2nd ‘(1st𝑇))‘1)) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1))
199127, 198sylan9eqr 2815 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))) → (𝑝‘((2nd ‘(1st𝑇))‘1)) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1))
200199adantllr 718 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑝 ∈ ran 𝐹) ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))) → (𝑝‘((2nd ‘(1st𝑇))‘1)) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1))
201 fveq2 6658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑡 = 𝑇 → (2nd𝑡) = (2nd𝑇))
202201breq2d 5044 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 = 𝑇 → (𝑦 < (2nd𝑡) ↔ 𝑦 < (2nd𝑇)))
203202ifbid 4443 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑡 = 𝑇 → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)))
204 2fveq3 6663 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 = 𝑇 → (1st ‘(1st𝑡)) = (1st ‘(1st𝑇)))
205 2fveq3 6663 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑡 = 𝑇 → (2nd ‘(1st𝑡)) = (2nd ‘(1st𝑇)))
206205imaeq1d 5900 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...𝑗)))
207206xpeq1d 5553 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}))
208205imaeq1d 5900 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)))
209208xpeq1d 5553 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))
210207, 209uneq12d 4069 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 = 𝑇 → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))
211204, 210oveq12d 7168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑡 = 𝑇 → ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
212203, 211csbeq12dv 3814 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
213212mpteq2dv 5128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑡 = 𝑇 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
214213eqeq2d 2769 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = 𝑇 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
215214, 2elrab2 3605 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑇𝑆 ↔ (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
216215simprbi 500 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑇𝑆𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
2174, 216syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
218217rneqd 5779 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ran 𝐹 = ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
219218eleq2d 2837 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑝 ∈ ran 𝐹𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
220 eqid 2758 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
221 ovex 7183 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ V
222221csbex 5181 . . . . . . . . . . . . . . . . . . . . . . . 24 if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ V
223220, 222elrnmpti 5801 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ ∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
224219, 223bitrdi 290 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑝 ∈ ran 𝐹 ↔ ∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
2256adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (2nd𝑇) = 0)
226 elfzle1 12959 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ (0...(𝑁 − 1)) → 0 ≤ 𝑦)
227226adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 0 ≤ 𝑦)
228225, 227eqbrtrd 5054 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (2nd𝑇) ≤ 𝑦)
229 0re 10681 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 0 ∈ ℝ
2306, 229eqeltrdi 2860 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (2nd𝑇) ∈ ℝ)
231 lenlt 10757 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((2nd𝑇) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((2nd𝑇) ≤ 𝑦 ↔ ¬ 𝑦 < (2nd𝑇)))
232230, 9, 231syl2an 598 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((2nd𝑇) ≤ 𝑦 ↔ ¬ 𝑦 < (2nd𝑇)))
233228, 232mpbid 235 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ¬ 𝑦 < (2nd𝑇))
234233iffalsed 4431 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) = (𝑦 + 1))
235234csbeq1d 3809 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑦 + 1) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
236 ovex 7183 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 + 1) ∈ V
237 oveq2 7158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑗 = (𝑦 + 1) → (1...𝑗) = (1...(𝑦 + 1)))
238237imaeq2d 5901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗 = (𝑦 + 1) → ((2nd ‘(1st𝑇)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))))
239238xpeq1d 5553 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 = (𝑦 + 1) → (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}))
240 oveq1 7157 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑗 = (𝑦 + 1) → (𝑗 + 1) = ((𝑦 + 1) + 1))
241240oveq1d 7165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑗 = (𝑦 + 1) → ((𝑗 + 1)...𝑁) = (((𝑦 + 1) + 1)...𝑁))
242241imaeq2d 5901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗 = (𝑦 + 1) → ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))
243242xpeq1d 5553 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 = (𝑦 + 1) → (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))
244239, 243uneq12d 4069 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑗 = (𝑦 + 1) → ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))
245244oveq2d 7166 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 = (𝑦 + 1) → ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))
246236, 245csbie 3840 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 + 1) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))
247235, 246eqtrdi 2809 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))
248247eqeq2d 2769 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (𝑝 = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) ↔ 𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))))
249248rexbidva 3220 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) ↔ ∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))))
250224, 249bitrd 282 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑝 ∈ ran 𝐹 ↔ ∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))))
251250biimpa 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ ran 𝐹) → ∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))
252200, 251r19.29a 3213 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ ran 𝐹) → (𝑝‘((2nd ‘(1st𝑇))‘1)) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1))
253 eqtr3 2780 . . . . . . . . . . . . . . . . . . . 20 (((𝑝‘((2nd ‘(1st𝑇))‘1)) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ∧ 𝐾 = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1)) → (𝑝‘((2nd ‘(1st𝑇))‘1)) = 𝐾)
254253ex 416 . . . . . . . . . . . . . . . . . . 19 ((𝑝‘((2nd ‘(1st𝑇))‘1)) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) → (𝐾 = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) → (𝑝‘((2nd ‘(1st𝑇))‘1)) = 𝐾))
255252, 254syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ ran 𝐹) → (𝐾 = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) → (𝑝‘((2nd ‘(1st𝑇))‘1)) = 𝐾))
256255necon3d 2972 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ran 𝐹) → ((𝑝‘((2nd ‘(1st𝑇))‘1)) ≠ 𝐾𝐾 ≠ (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1)))
257256rexlimdva 3208 . . . . . . . . . . . . . . . 16 (𝜑 → (∃𝑝 ∈ ran 𝐹(𝑝‘((2nd ‘(1st𝑇))‘1)) ≠ 𝐾𝐾 ≠ (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1)))
258126, 257mpd 15 . . . . . . . . . . . . . . 15 (𝜑𝐾 ≠ (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1))
259108, 109, 117, 258leneltd 10832 . . . . . . . . . . . . . 14 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) < 𝐾)
260 elfzo0 13127 . . . . . . . . . . . . . 14 ((((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ∈ (0..^𝐾) ↔ ((((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ∈ ℕ0𝐾 ∈ ℕ ∧ (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) < 𝐾))
261104, 107, 259, 260syl3anbrc 1340 . . . . . . . . . . . . 13 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ∈ (0..^𝐾))
262261adantr 484 . . . . . . . . . . . 12 ((𝜑𝑛 = ((2nd ‘(1st𝑇))‘1)) → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ∈ (0..^𝐾))
26380, 262eqeltrd 2852 . . . . . . . . . . 11 ((𝜑𝑛 = ((2nd ‘(1st𝑇))‘1)) → (((1st ‘(1st𝑇))‘𝑛) + 1) ∈ (0..^𝐾))
264263adantlr 714 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑛 = ((2nd ‘(1st𝑇))‘1)) → (((1st ‘(1st𝑇))‘𝑛) + 1) ∈ (0..^𝐾))
26587ffvelrnda 6842 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) ∈ (0..^𝐾))
266 elfzonn0 13131 . . . . . . . . . . . . . . 15 (((1st ‘(1st𝑇))‘𝑛) ∈ (0..^𝐾) → ((1st ‘(1st𝑇))‘𝑛) ∈ ℕ0)
267265, 266syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) ∈ ℕ0)
268267nn0cnd 11996 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) ∈ ℂ)
269268addid1d 10878 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → (((1st ‘(1st𝑇))‘𝑛) + 0) = ((1st ‘(1st𝑇))‘𝑛))
270269, 265eqeltrd 2852 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → (((1st ‘(1st𝑇))‘𝑛) + 0) ∈ (0..^𝐾))
271270adantr 484 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ ¬ 𝑛 = ((2nd ‘(1st𝑇))‘1)) → (((1st ‘(1st𝑇))‘𝑛) + 0) ∈ (0..^𝐾))
27275, 77, 264, 271ifbothda 4458 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0)) ∈ (0..^𝐾))
273272fmpttd 6870 . . . . . . . 8 (𝜑 → (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))):(1...𝑁)⟶(0..^𝐾))
274 ovex 7183 . . . . . . . . 9 (0..^𝐾) ∈ V
275274, 48elmap 8453 . . . . . . . 8 ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∈ ((0..^𝐾) ↑m (1...𝑁)) ↔ (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))):(1...𝑁)⟶(0..^𝐾))
276273, 275sylibr 237 . . . . . . 7 (𝜑 → (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∈ ((0..^𝐾) ↑m (1...𝑁)))
277 simpr 488 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...(𝑁 − 1))) → 𝑛 ∈ (1...(𝑁 − 1)))
278 1z 12051 . . . . . . . . . . . . . . . . 17 1 ∈ ℤ
27913, 278jctil 523 . . . . . . . . . . . . . . . 16 (𝜑 → (1 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ))
280 elfzelz 12956 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (1...(𝑁 − 1)) → 𝑛 ∈ ℤ)
281280, 278jctir 524 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (1...(𝑁 − 1)) → (𝑛 ∈ ℤ ∧ 1 ∈ ℤ))
282 fzaddel 12990 . . . . . . . . . . . . . . . 16 (((1 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑛 ∈ (1...(𝑁 − 1)) ↔ (𝑛 + 1) ∈ ((1 + 1)...((𝑁 − 1) + 1))))
283279, 281, 282syl2an 598 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...(𝑁 − 1))) → (𝑛 ∈ (1...(𝑁 − 1)) ↔ (𝑛 + 1) ∈ ((1 + 1)...((𝑁 − 1) + 1))))
284277, 283mpbid 235 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(𝑁 − 1))) → (𝑛 + 1) ∈ ((1 + 1)...((𝑁 − 1) + 1)))
285158oveq2d 7166 . . . . . . . . . . . . . . 15 (𝜑 → ((1 + 1)...((𝑁 − 1) + 1)) = ((1 + 1)...𝑁))
286285adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(𝑁 − 1))) → ((1 + 1)...((𝑁 − 1) + 1)) = ((1 + 1)...𝑁))
287284, 286eleqtrd 2854 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(𝑁 − 1))) → (𝑛 + 1) ∈ ((1 + 1)...𝑁))
288287ralrimiva 3113 . . . . . . . . . . . 12 (𝜑 → ∀𝑛 ∈ (1...(𝑁 − 1))(𝑛 + 1) ∈ ((1 + 1)...𝑁))
289 simpr 488 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ((1 + 1)...𝑁)) → 𝑦 ∈ ((1 + 1)...𝑁))
290 peano2z 12062 . . . . . . . . . . . . . . . . . . 19 (1 ∈ ℤ → (1 + 1) ∈ ℤ)
291278, 290ax-mp 5 . . . . . . . . . . . . . . . . . 18 (1 + 1) ∈ ℤ
29211, 291jctil 523 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ))
293 elfzelz 12956 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ((1 + 1)...𝑁) → 𝑦 ∈ ℤ)
294293, 278jctir 524 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ((1 + 1)...𝑁) → (𝑦 ∈ ℤ ∧ 1 ∈ ℤ))
295 fzsubel 12992 . . . . . . . . . . . . . . . . 17 ((((1 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑦 ∈ ((1 + 1)...𝑁) ↔ (𝑦 − 1) ∈ (((1 + 1) − 1)...(𝑁 − 1))))
296292, 294, 295syl2an 598 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ((1 + 1)...𝑁)) → (𝑦 ∈ ((1 + 1)...𝑁) ↔ (𝑦 − 1) ∈ (((1 + 1) − 1)...(𝑁 − 1))))
297289, 296mpbid 235 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ((1 + 1)...𝑁)) → (𝑦 − 1) ∈ (((1 + 1) − 1)...(𝑁 − 1)))
298 ax-1cn 10633 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
299298, 298pncan3oi 10940 . . . . . . . . . . . . . . . 16 ((1 + 1) − 1) = 1
300299oveq1i 7160 . . . . . . . . . . . . . . 15 (((1 + 1) − 1)...(𝑁 − 1)) = (1...(𝑁 − 1))
301297, 300eleqtrdi 2862 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ((1 + 1)...𝑁)) → (𝑦 − 1) ∈ (1...(𝑁 − 1)))
302293zcnd 12127 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ((1 + 1)...𝑁) → 𝑦 ∈ ℂ)
303 elfznn 12985 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (1...(𝑁 − 1)) → 𝑛 ∈ ℕ)
304303nncnd 11690 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (1...(𝑁 − 1)) → 𝑛 ∈ ℂ)
305 subadd2 10928 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑦 − 1) = 𝑛 ↔ (𝑛 + 1) = 𝑦))
306298, 305mp3an2 1446 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑦 − 1) = 𝑛 ↔ (𝑛 + 1) = 𝑦))
307306bicomd 226 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑛 + 1) = 𝑦 ↔ (𝑦 − 1) = 𝑛))
308 eqcom 2765 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑛 + 1) ↔ (𝑛 + 1) = 𝑦)
309 eqcom 2765 . . . . . . . . . . . . . . . . . 18 (𝑛 = (𝑦 − 1) ↔ (𝑦 − 1) = 𝑛)
310307, 308, 3093bitr4g 317 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑦 = (𝑛 + 1) ↔ 𝑛 = (𝑦 − 1)))
311302, 304, 310syl2an 598 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ((1 + 1)...𝑁) ∧ 𝑛 ∈ (1...(𝑁 − 1))) → (𝑦 = (𝑛 + 1) ↔ 𝑛 = (𝑦 − 1)))
312311ralrimiva 3113 . . . . . . . . . . . . . . 15 (𝑦 ∈ ((1 + 1)...𝑁) → ∀𝑛 ∈ (1...(𝑁 − 1))(𝑦 = (𝑛 + 1) ↔ 𝑛 = (𝑦 − 1)))
313312adantl 485 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ((1 + 1)...𝑁)) → ∀𝑛 ∈ (1...(𝑁 − 1))(𝑦 = (𝑛 + 1) ↔ 𝑛 = (𝑦 − 1)))
314 reu6i 3642 . . . . . . . . . . . . . 14 (((𝑦 − 1) ∈ (1...(𝑁 − 1)) ∧ ∀𝑛 ∈ (1...(𝑁 − 1))(𝑦 = (𝑛 + 1) ↔ 𝑛 = (𝑦 − 1))) → ∃!𝑛 ∈ (1...(𝑁 − 1))𝑦 = (𝑛 + 1))
315301, 313, 314syl2anc 587 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((1 + 1)...𝑁)) → ∃!𝑛 ∈ (1...(𝑁 − 1))𝑦 = (𝑛 + 1))
316315ralrimiva 3113 . . . . . . . . . . . 12 (𝜑 → ∀𝑦 ∈ ((1 + 1)...𝑁)∃!𝑛 ∈ (1...(𝑁 − 1))𝑦 = (𝑛 + 1))
317 eqid 2758 . . . . . . . . . . . . 13 (𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)) = (𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1))
318317f1ompt 6866 . . . . . . . . . . . 12 ((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)):(1...(𝑁 − 1))–1-1-onto→((1 + 1)...𝑁) ↔ (∀𝑛 ∈ (1...(𝑁 − 1))(𝑛 + 1) ∈ ((1 + 1)...𝑁) ∧ ∀𝑦 ∈ ((1 + 1)...𝑁)∃!𝑛 ∈ (1...(𝑁 − 1))𝑦 = (𝑛 + 1)))
319288, 316, 318sylanbrc 586 . . . . . . . . . . 11 (𝜑 → (𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)):(1...(𝑁 − 1))–1-1-onto→((1 + 1)...𝑁))
320 f1osng 6642 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 1 ∈ V) → {⟨𝑁, 1⟩}:{𝑁}–1-1-onto→{1})
3211, 130, 320sylancl 589 . . . . . . . . . . 11 (𝜑 → {⟨𝑁, 1⟩}:{𝑁}–1-1-onto→{1})
32214, 16ltnled 10825 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 − 1) < 𝑁 ↔ ¬ 𝑁 ≤ (𝑁 − 1)))
32320, 322mpbid 235 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑁 ≤ (𝑁 − 1))
324 elfzle2 12960 . . . . . . . . . . . . 13 (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1))
325323, 324nsyl 142 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑁 ∈ (1...(𝑁 − 1)))
326 disjsn 4604 . . . . . . . . . . . 12 (((1...(𝑁 − 1)) ∩ {𝑁}) = ∅ ↔ ¬ 𝑁 ∈ (1...(𝑁 − 1)))
327325, 326sylibr 237 . . . . . . . . . . 11 (𝜑 → ((1...(𝑁 − 1)) ∩ {𝑁}) = ∅)
328 1re 10679 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
329328ltp1i 11582 . . . . . . . . . . . . . . 15 1 < (1 + 1)
330291zrei 12026 . . . . . . . . . . . . . . . 16 (1 + 1) ∈ ℝ
331328, 330ltnlei 10799 . . . . . . . . . . . . . . 15 (1 < (1 + 1) ↔ ¬ (1 + 1) ≤ 1)
332329, 331mpbi 233 . . . . . . . . . . . . . 14 ¬ (1 + 1) ≤ 1
333 elfzle1 12959 . . . . . . . . . . . . . 14 (1 ∈ ((1 + 1)...𝑁) → (1 + 1) ≤ 1)
334332, 333mto 200 . . . . . . . . . . . . 13 ¬ 1 ∈ ((1 + 1)...𝑁)
335 disjsn 4604 . . . . . . . . . . . . 13 ((((1 + 1)...𝑁) ∩ {1}) = ∅ ↔ ¬ 1 ∈ ((1 + 1)...𝑁))
336334, 335mpbir 234 . . . . . . . . . . . 12 (((1 + 1)...𝑁) ∩ {1}) = ∅
337336a1i 11 . . . . . . . . . . 11 (𝜑 → (((1 + 1)...𝑁) ∩ {1}) = ∅)
338 f1oun 6621 . . . . . . . . . . 11 ((((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)):(1...(𝑁 − 1))–1-1-onto→((1 + 1)...𝑁) ∧ {⟨𝑁, 1⟩}:{𝑁}–1-1-onto→{1}) ∧ (((1...(𝑁 − 1)) ∩ {𝑁}) = ∅ ∧ (((1 + 1)...𝑁) ∩ {1}) = ∅)) → ((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)) ∪ {⟨𝑁, 1⟩}):((1...(𝑁 − 1)) ∪ {𝑁})–1-1-onto→(((1 + 1)...𝑁) ∪ {1}))
339319, 321, 327, 337, 338syl22anc 837 . . . . . . . . . 10 (𝜑 → ((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)) ∪ {⟨𝑁, 1⟩}):((1...(𝑁 − 1)) ∪ {𝑁})–1-1-onto→(((1 + 1)...𝑁) ∪ {1}))
340130a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ V)
341158, 97eqeltrd 2852 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑁 − 1) + 1) ∈ (ℤ‘1))
342 uzid 12297 . . . . . . . . . . . . . . . . 17 ((𝑁 − 1) ∈ ℤ → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)))
343 peano2uz 12341 . . . . . . . . . . . . . . . . 17 ((𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
34413, 342, 3433syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
345158, 344eqeltrrd 2853 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ (ℤ‘(𝑁 − 1)))
346 fzsplit2 12981 . . . . . . . . . . . . . . 15 ((((𝑁 − 1) + 1) ∈ (ℤ‘1) ∧ 𝑁 ∈ (ℤ‘(𝑁 − 1))) → (1...𝑁) = ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)))
347341, 345, 346syl2anc 587 . . . . . . . . . . . . . 14 (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)))
348158oveq1d 7165 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑁 − 1) + 1)...𝑁) = (𝑁...𝑁))
349 fzsn 12998 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁})
35011, 349syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁...𝑁) = {𝑁})
351348, 350eqtrd 2793 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑁 − 1) + 1)...𝑁) = {𝑁})
352351uneq2d 4068 . . . . . . . . . . . . . 14 (𝜑 → ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)) = ((1...(𝑁 − 1)) ∪ {𝑁}))
353347, 352eqtr2d 2794 . . . . . . . . . . . . 13 (𝜑 → ((1...(𝑁 − 1)) ∪ {𝑁}) = (1...𝑁))
354 iftrue 4426 . . . . . . . . . . . . . 14 (𝑛 = 𝑁 → if(𝑛 = 𝑁, 1, (𝑛 + 1)) = 1)
355354adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑛 = 𝑁) → if(𝑛 = 𝑁, 1, (𝑛 + 1)) = 1)
3561, 340, 353, 355fmptapd 6924 . . . . . . . . . . . 12 (𝜑 → ((𝑛 ∈ (1...(𝑁 − 1)) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ∪ {⟨𝑁, 1⟩}) = (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))
357 eleq1 2839 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑁 → (𝑛 ∈ (1...(𝑁 − 1)) ↔ 𝑁 ∈ (1...(𝑁 − 1))))
358357notbid 321 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑁 → (¬ 𝑛 ∈ (1...(𝑁 − 1)) ↔ ¬ 𝑁 ∈ (1...(𝑁 − 1))))
359325, 358syl5ibrcom 250 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑛 = 𝑁 → ¬ 𝑛 ∈ (1...(𝑁 − 1))))
360359necon2ad 2966 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑛 ∈ (1...(𝑁 − 1)) → 𝑛𝑁))
361360imp 410 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...(𝑁 − 1))) → 𝑛𝑁)
362 ifnefalse 4432 . . . . . . . . . . . . . . 15 (𝑛𝑁 → if(𝑛 = 𝑁, 1, (𝑛 + 1)) = (𝑛 + 1))
363361, 362syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(𝑁 − 1))) → if(𝑛 = 𝑁, 1, (𝑛 + 1)) = (𝑛 + 1))
364363mpteq2dva 5127 . . . . . . . . . . . . 13 (𝜑 → (𝑛 ∈ (1...(𝑁 − 1)) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) = (𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)))
365364uneq1d 4067 . . . . . . . . . . . 12 (𝜑 → ((𝑛 ∈ (1...(𝑁 − 1)) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ∪ {⟨𝑁, 1⟩}) = ((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)) ∪ {⟨𝑁, 1⟩}))
366356, 365eqtr3d 2795 . . . . . . . . . . 11 (𝜑 → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) = ((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)) ∪ {⟨𝑁, 1⟩}))
367347, 352eqtrd 2793 . . . . . . . . . . 11 (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ {𝑁}))
368 uzid 12297 . . . . . . . . . . . . . 14 (1 ∈ ℤ → 1 ∈ (ℤ‘1))
369 peano2uz 12341 . . . . . . . . . . . . . 14 (1 ∈ (ℤ‘1) → (1 + 1) ∈ (ℤ‘1))
370278, 368, 369mp2b 10 . . . . . . . . . . . . 13 (1 + 1) ∈ (ℤ‘1)
371 fzsplit2 12981 . . . . . . . . . . . . 13 (((1 + 1) ∈ (ℤ‘1) ∧ 𝑁 ∈ (ℤ‘1)) → (1...𝑁) = ((1...1) ∪ ((1 + 1)...𝑁)))
372370, 97, 371sylancr 590 . . . . . . . . . . . 12 (𝜑 → (1...𝑁) = ((1...1) ∪ ((1 + 1)...𝑁)))
373 fzsn 12998 . . . . . . . . . . . . . . 15 (1 ∈ ℤ → (1...1) = {1})
374278, 373ax-mp 5 . . . . . . . . . . . . . 14 (1...1) = {1}
375374uneq1i 4064 . . . . . . . . . . . . 13 ((1...1) ∪ ((1 + 1)...𝑁)) = ({1} ∪ ((1 + 1)...𝑁))
376375equncomi 4060 . . . . . . . . . . . 12 ((1...1) ∪ ((1 + 1)...𝑁)) = (((1 + 1)...𝑁) ∪ {1})
377372, 376eqtrdi 2809 . . . . . . . . . . 11 (𝜑 → (1...𝑁) = (((1 + 1)...𝑁) ∪ {1}))
378366, 367, 377f1oeq123d 6596 . . . . . . . . . 10 (𝜑 → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))):(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)) ∪ {⟨𝑁, 1⟩}):((1...(𝑁 − 1)) ∪ {𝑁})–1-1-onto→(((1 + 1)...𝑁) ∪ {1})))
379339, 378mpbird 260 . . . . . . . . 9 (𝜑 → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))):(1...𝑁)–1-1-onto→(1...𝑁))
380 f1oco 6624 . . . . . . . . 9 (((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) ∧ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))):(1...𝑁)–1-1-onto→(1...𝑁)) → ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))):(1...𝑁)–1-1-onto→(1...𝑁))
38193, 379, 380syl2anc 587 . . . . . . . 8 (𝜑 → ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))):(1...𝑁)–1-1-onto→(1...𝑁))
382 f1oeq1 6590 . . . . . . . . 9 (𝑓 = ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))):(1...𝑁)–1-1-onto→(1...𝑁)))
38352, 382elab 3588 . . . . . . . 8 (((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))):(1...𝑁)–1-1-onto→(1...𝑁))
384381, 383sylibr 237 . . . . . . 7 (𝜑 → ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
385276, 384opelxpd 5562 . . . . . 6 (𝜑 → ⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩ ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
3861nnnn0d 11994 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
387 nn0fz0 13054 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
388386, 387sylib 221 . . . . . 6 (𝜑𝑁 ∈ (0...𝑁))
389385, 388opelxpd 5562 . . . . 5 (𝜑 → ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
390 elrab3t 3601 . . . . 5 ((∀𝑡(𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})))))) ∧ ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) → (⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))))))
39173, 389, 390syl2anc 587 . . . 4 (𝜑 → (⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))))))
3927, 391mpbird 260 . . 3 (𝜑 → ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))})
393392, 2eleqtrrdi 2863 . 2 (𝜑 → ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ∈ 𝑆)
394 fveqeq2 6667 . . . . . 6 (⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ = 𝑇 → ((2nd ‘⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) = 𝑁 ↔ (2nd𝑇) = 𝑁))
39527, 394syl5ibcom 248 . . . . 5 (𝜑 → (⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ = 𝑇 → (2nd𝑇) = 𝑁))
3961nnne0d 11724 . . . . . 6 (𝜑𝑁 ≠ 0)
397 neeq1 3013 . . . . . 6 ((2nd𝑇) = 𝑁 → ((2nd𝑇) ≠ 0 ↔ 𝑁 ≠ 0))
398396, 397syl5ibrcom 250 . . . . 5 (𝜑 → ((2nd𝑇) = 𝑁 → (2nd𝑇) ≠ 0))
399395, 398syld 47 . . . 4 (𝜑 → (⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ = 𝑇 → (2nd𝑇) ≠ 0))
400399necon2d 2974 . . 3 (𝜑 → ((2nd𝑇) = 0 → ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ≠ 𝑇))
4016, 400mpd 15 . 2 (𝜑 → ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ≠ 𝑇)
402 neeq1 3013 . . 3 (𝑧 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ → (𝑧𝑇 ↔ ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ≠ 𝑇))
403402rspcev 3541 . 2 ((⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ∈ 𝑆 ∧ ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ≠ 𝑇) → ∃𝑧𝑆 𝑧𝑇)
404393, 401, 403syl2anc 587 1 (𝜑 → ∃𝑧𝑆 𝑧𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084  wal 1536   = wceq 1538  wcel 2111  {cab 2735  wne 2951  wral 3070  wrex 3071  ∃!wreu 3072  {crab 3074  Vcvv 3409  csb 3805  cun 3856  cin 3857  wss 3858  c0 4225  ifcif 4420  {csn 4522  cop 4528   class class class wbr 5032  cmpt 5112   × cxp 5522  ccnv 5523  ran crn 5525  cima 5527  ccom 5528  Fun wfun 6329   Fn wfn 6330  wf 6331  ontowfo 6333  1-1-ontowf1o 6334  cfv 6335  (class class class)co 7150  f cof 7403  1st c1st 7691  2nd c2nd 7692  m cmap 8416  cc 10573  cr 10574  0cc0 10575  1c1 10576   + caddc 10578   < clt 10713  cle 10714  cmin 10908  cn 11674  0cn0 11934  cz 12020  cuz 12282  ...cfz 12939  ..^cfzo 13082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-n0 11935  df-z 12021  df-uz 12283  df-fz 12940  df-fzo 13083
This theorem is referenced by:  poimirlem18  35355
  Copyright terms: Public domain W3C validator