Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem17 Structured version   Visualization version   GIF version

Theorem poimirlem17 34777
Description: Lemma for poimir 34793 establishing existence for poimirlem18 34778. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimirlem22.s 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
poimirlem22.1 (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))
poimirlem22.2 (𝜑𝑇𝑆)
poimirlem18.3 ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 𝐾)
poimirlem18.4 (𝜑 → (2nd𝑇) = 0)
Assertion
Ref Expression
poimirlem17 (𝜑 → ∃𝑧𝑆 𝑧𝑇)
Distinct variable groups:   𝑓,𝑗,𝑛,𝑝,𝑡,𝑦,𝑧   𝜑,𝑗,𝑛,𝑦   𝑗,𝐹,𝑛,𝑦   𝑗,𝑁,𝑛,𝑦   𝑇,𝑗,𝑛,𝑦   𝜑,𝑝,𝑡   𝑓,𝐾,𝑗,𝑛,𝑝,𝑡   𝑓,𝑁,𝑝,𝑡   𝑇,𝑓,𝑝   𝜑,𝑧   𝑓,𝐹,𝑝,𝑡,𝑧   𝑧,𝐾   𝑧,𝑁   𝑡,𝑇,𝑧   𝑆,𝑗,𝑛,𝑝,𝑡,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝑆(𝑓)   𝐾(𝑦)

Proof of Theorem poimirlem17
StepHypRef Expression
1 poimir.0 . . . . 5 (𝜑𝑁 ∈ ℕ)
2 poimirlem22.s . . . . 5 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
3 poimirlem22.1 . . . . 5 (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))
4 poimirlem22.2 . . . . 5 (𝜑𝑇𝑆)
5 poimirlem18.3 . . . . 5 ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 𝐾)
6 poimirlem18.4 . . . . 5 (𝜑 → (2nd𝑇) = 0)
71, 2, 3, 4, 5, 6poimirlem16 34776 . . . 4 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})))))
8 elfznn0 12993 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℕ0)
98nn0red 11948 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℝ)
109adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ∈ ℝ)
111nnzd 12078 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℤ)
12 peano2zm 12017 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
1311, 12syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 − 1) ∈ ℤ)
1413zred 12079 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 − 1) ∈ ℝ)
1514adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) ∈ ℝ)
161nnred 11645 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℝ)
1716adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ℝ)
18 elfzle2 12904 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ≤ (𝑁 − 1))
1918adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ≤ (𝑁 − 1))
2016ltm1d 11564 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 − 1) < 𝑁)
2120adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) < 𝑁)
2210, 15, 17, 19, 21lelttrd 10790 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 < 𝑁)
2322adantlr 711 . . . . . . . . . . . . 13 (((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 < 𝑁)
24 fveq2 6666 . . . . . . . . . . . . . . 15 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ → (2nd𝑡) = (2nd ‘⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩))
25 opex 5352 . . . . . . . . . . . . . . . 16 ⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩ ∈ V
26 op2ndg 7696 . . . . . . . . . . . . . . . 16 ((⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩ ∈ V ∧ 𝑁 ∈ ℕ) → (2nd ‘⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) = 𝑁)
2725, 1, 26sylancr 587 . . . . . . . . . . . . . . 15 (𝜑 → (2nd ‘⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) = 𝑁)
2824, 27sylan9eqr 2882 . . . . . . . . . . . . . 14 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → (2nd𝑡) = 𝑁)
2928adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (2nd𝑡) = 𝑁)
3023, 29breqtrrd 5090 . . . . . . . . . . . 12 (((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 < (2nd𝑡))
3130iftrued 4477 . . . . . . . . . . 11 (((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = 𝑦)
3231csbeq1d 3890 . . . . . . . . . 10 (((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = 𝑦 / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))
33 vex 3502 . . . . . . . . . . . . 13 𝑦 ∈ V
34 oveq2 7159 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑦 → (1...𝑗) = (1...𝑦))
3534imaeq2d 5926 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑦 → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = ((2nd ‘(1st𝑡)) “ (1...𝑦)))
3635xpeq1d 5582 . . . . . . . . . . . . . . 15 (𝑗 = 𝑦 → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑡)) “ (1...𝑦)) × {1}))
37 oveq1 7158 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑦 → (𝑗 + 1) = (𝑦 + 1))
3837oveq1d 7166 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑦 → ((𝑗 + 1)...𝑁) = ((𝑦 + 1)...𝑁))
3938imaeq2d 5926 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑦 → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑡)) “ ((𝑦 + 1)...𝑁)))
4039xpeq1d 5582 . . . . . . . . . . . . . . 15 (𝑗 = 𝑦 → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑡)) “ ((𝑦 + 1)...𝑁)) × {0}))
4136, 40uneq12d 4143 . . . . . . . . . . . . . 14 (𝑗 = 𝑦 → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑡)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑦 + 1)...𝑁)) × {0})))
4241oveq2d 7167 . . . . . . . . . . . . 13 (𝑗 = 𝑦 → ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑦 + 1)...𝑁)) × {0}))))
4333, 42csbie 3921 . . . . . . . . . . . 12 𝑦 / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑦 + 1)...𝑁)) × {0})))
44 2fveq3 6671 . . . . . . . . . . . . . 14 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ → (1st ‘(1st𝑡)) = (1st ‘(1st ‘⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩)))
45 op1stg 7695 . . . . . . . . . . . . . . . . 17 ((⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩ ∈ V ∧ 𝑁 ∈ ℕ) → (1st ‘⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) = ⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩)
4625, 1, 45sylancr 587 . . . . . . . . . . . . . . . 16 (𝜑 → (1st ‘⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) = ⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩)
4746fveq2d 6670 . . . . . . . . . . . . . . 15 (𝜑 → (1st ‘(1st ‘⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩)) = (1st ‘⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩))
48 ovex 7184 . . . . . . . . . . . . . . . . 17 (1...𝑁) ∈ V
4948mptex 6984 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∈ V
50 fvex 6679 . . . . . . . . . . . . . . . . 17 (2nd ‘(1st𝑇)) ∈ V
5148mptex 6984 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ∈ V
5250, 51coex 7626 . . . . . . . . . . . . . . . 16 ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) ∈ V
5349, 52op1st 7691 . . . . . . . . . . . . . . 15 (1st ‘⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩) = (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0)))
5447, 53syl6eq 2876 . . . . . . . . . . . . . 14 (𝜑 → (1st ‘(1st ‘⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩)) = (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))))
5544, 54sylan9eqr 2882 . . . . . . . . . . . . 13 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → (1st ‘(1st𝑡)) = (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))))
56 fveq2 6666 . . . . . . . . . . . . . . . . . . 19 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ → (1st𝑡) = (1st ‘⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩))
5756, 46sylan9eqr 2882 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → (1st𝑡) = ⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩)
5857fveq2d 6670 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → (2nd ‘(1st𝑡)) = (2nd ‘⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩))
5949, 52op2nd 7692 . . . . . . . . . . . . . . . . 17 (2nd ‘⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩) = ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))
6058, 59syl6eq 2876 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → (2nd ‘(1st𝑡)) = ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))))
6160imaeq1d 5925 . . . . . . . . . . . . . . 15 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → ((2nd ‘(1st𝑡)) “ (1...𝑦)) = (((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)))
6261xpeq1d 5582 . . . . . . . . . . . . . 14 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → (((2nd ‘(1st𝑡)) “ (1...𝑦)) × {1}) = ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}))
6360imaeq1d 5925 . . . . . . . . . . . . . . 15 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → ((2nd ‘(1st𝑡)) “ ((𝑦 + 1)...𝑁)) = (((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)))
6463xpeq1d 5582 . . . . . . . . . . . . . 14 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → (((2nd ‘(1st𝑡)) “ ((𝑦 + 1)...𝑁)) × {0}) = ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))
6562, 64uneq12d 4143 . . . . . . . . . . . . 13 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → ((((2nd ‘(1st𝑡)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑦 + 1)...𝑁)) × {0})) = (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})))
6655, 65oveq12d 7169 . . . . . . . . . . . 12 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑦 + 1)...𝑁)) × {0}))) = ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))))
6743, 66syl5eq 2872 . . . . . . . . . . 11 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → 𝑦 / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))))
6867adantr 481 . . . . . . . . . 10 (((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))))
6932, 68eqtrd 2860 . . . . . . . . 9 (((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))))
7069mpteq2dva 5157 . . . . . . . 8 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})))))
7170eqeq2d 2835 . . . . . . 7 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))))))
7271ex 413 . . . . . 6 (𝜑 → (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})))))))
7372alrimiv 1921 . . . . 5 (𝜑 → ∀𝑡(𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})))))))
74 oveq2 7159 . . . . . . . . . . 11 (1 = if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0) → (((1st ‘(1st𝑇))‘𝑛) + 1) = (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0)))
7574eleq1d 2901 . . . . . . . . . 10 (1 = if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0) → ((((1st ‘(1st𝑇))‘𝑛) + 1) ∈ (0..^𝐾) ↔ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0)) ∈ (0..^𝐾)))
76 oveq2 7159 . . . . . . . . . . 11 (0 = if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0) → (((1st ‘(1st𝑇))‘𝑛) + 0) = (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0)))
7776eleq1d 2901 . . . . . . . . . 10 (0 = if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0) → ((((1st ‘(1st𝑇))‘𝑛) + 0) ∈ (0..^𝐾) ↔ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0)) ∈ (0..^𝐾)))
78 fveq2 6666 . . . . . . . . . . . . . 14 (𝑛 = ((2nd ‘(1st𝑇))‘1) → ((1st ‘(1st𝑇))‘𝑛) = ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)))
7978oveq1d 7166 . . . . . . . . . . . . 13 (𝑛 = ((2nd ‘(1st𝑇))‘1) → (((1st ‘(1st𝑇))‘𝑛) + 1) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1))
8079adantl 482 . . . . . . . . . . . 12 ((𝜑𝑛 = ((2nd ‘(1st𝑇))‘1)) → (((1st ‘(1st𝑇))‘𝑛) + 1) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1))
81 elrabi 3678 . . . . . . . . . . . . . . . . . . 19 (𝑇 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
8281, 2eleq2s 2935 . . . . . . . . . . . . . . . . . 18 (𝑇𝑆𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
83 xp1st 7715 . . . . . . . . . . . . . . . . . 18 (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
844, 82, 833syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
85 xp1st 7715 . . . . . . . . . . . . . . . . 17 ((1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
86 elmapi 8421 . . . . . . . . . . . . . . . . 17 ((1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)) → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
8784, 85, 863syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
884, 82syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
89 xp2nd 7716 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
9088, 83, 893syl 18 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
91 f1oeq1 6600 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (2nd ‘(1st𝑇)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)))
9250, 91elab 3670 . . . . . . . . . . . . . . . . . . 19 ((2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
9390, 92sylib 219 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
94 f1of 6611 . . . . . . . . . . . . . . . . . 18 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑇)):(1...𝑁)⟶(1...𝑁))
9593, 94syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)⟶(1...𝑁))
96 nnuz 12273 . . . . . . . . . . . . . . . . . . 19 ℕ = (ℤ‘1)
971, 96syl6eleq 2927 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ (ℤ‘1))
98 eluzfz1 12907 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘1) → 1 ∈ (1...𝑁))
9997, 98syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ (1...𝑁))
10095, 99ffvelrnd 6847 . . . . . . . . . . . . . . . 16 (𝜑 → ((2nd ‘(1st𝑇))‘1) ∈ (1...𝑁))
10187, 100ffvelrnd 6847 . . . . . . . . . . . . . . 15 (𝜑 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ (0..^𝐾))
102 elfzonn0 13075 . . . . . . . . . . . . . . 15 (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ (0..^𝐾) → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ ℕ0)
103 peano2nn0 11929 . . . . . . . . . . . . . . 15 (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ ℕ0 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ∈ ℕ0)
104101, 102, 1033syl 18 . . . . . . . . . . . . . 14 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ∈ ℕ0)
105 elfzo0 13071 . . . . . . . . . . . . . . . 16 (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ (0..^𝐾) ↔ (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ ℕ0𝐾 ∈ ℕ ∧ ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) < 𝐾))
106101, 105sylib 219 . . . . . . . . . . . . . . 15 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ ℕ0𝐾 ∈ ℕ ∧ ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) < 𝐾))
107106simp2d 1137 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ ℕ)
108 elfzolt2 13040 . . . . . . . . . . . . . . . . 17 (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ (0..^𝐾) → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) < 𝐾)
109101, 108syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) < 𝐾)
110101, 102syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ ℕ0)
111110nn0zd 12077 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ ℤ)
112107nnzd 12078 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ ℤ)
113 zltp1le 12024 . . . . . . . . . . . . . . . . 17 ((((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) < 𝐾 ↔ (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ≤ 𝐾))
114111, 112, 113syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) < 𝐾 ↔ (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ≤ 𝐾))
115109, 114mpbid 233 . . . . . . . . . . . . . . 15 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ≤ 𝐾)
116 fvex 6679 . . . . . . . . . . . . . . . . . 18 ((2nd ‘(1st𝑇))‘1) ∈ V
117 eleq1 2904 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = ((2nd ‘(1st𝑇))‘1) → (𝑛 ∈ (1...𝑁) ↔ ((2nd ‘(1st𝑇))‘1) ∈ (1...𝑁)))
118117anbi2d 628 . . . . . . . . . . . . . . . . . . 19 (𝑛 = ((2nd ‘(1st𝑇))‘1) → ((𝜑𝑛 ∈ (1...𝑁)) ↔ (𝜑 ∧ ((2nd ‘(1st𝑇))‘1) ∈ (1...𝑁))))
119 fveq2 6666 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = ((2nd ‘(1st𝑇))‘1) → (𝑝𝑛) = (𝑝‘((2nd ‘(1st𝑇))‘1)))
120119neeq1d 3079 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = ((2nd ‘(1st𝑇))‘1) → ((𝑝𝑛) ≠ 𝐾 ↔ (𝑝‘((2nd ‘(1st𝑇))‘1)) ≠ 𝐾))
121120rexbidv 3301 . . . . . . . . . . . . . . . . . . 19 (𝑛 = ((2nd ‘(1st𝑇))‘1) → (∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 𝐾 ↔ ∃𝑝 ∈ ran 𝐹(𝑝‘((2nd ‘(1st𝑇))‘1)) ≠ 𝐾))
122118, 121imbi12d 346 . . . . . . . . . . . . . . . . . 18 (𝑛 = ((2nd ‘(1st𝑇))‘1) → (((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 𝐾) ↔ ((𝜑 ∧ ((2nd ‘(1st𝑇))‘1) ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘((2nd ‘(1st𝑇))‘1)) ≠ 𝐾)))
123116, 122, 5vtocl 3564 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((2nd ‘(1st𝑇))‘1) ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘((2nd ‘(1st𝑇))‘1)) ≠ 𝐾)
124100, 123mpdan 683 . . . . . . . . . . . . . . . 16 (𝜑 → ∃𝑝 ∈ ran 𝐹(𝑝‘((2nd ‘(1st𝑇))‘1)) ≠ 𝐾)
125 fveq1 6665 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))) → (𝑝‘((2nd ‘(1st𝑇))‘1)) = (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))‘((2nd ‘(1st𝑇))‘1)))
12687ffnd 6511 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (1st ‘(1st𝑇)) Fn (1...𝑁))
127126adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (1st ‘(1st𝑇)) Fn (1...𝑁))
128 1ex 10629 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1 ∈ V
129 fnconstg 6563 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (1 ∈ V → (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))))
130128, 129ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1)))
131 c0ex 10627 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 0 ∈ V
132 fnconstg 6563 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (0 ∈ V → (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))
133131, 132ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))
134130, 133pm3.2i 471 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∧ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))
135 dff1o3 6617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁) ∧ Fun (2nd ‘(1st𝑇))))
136135simprbi 497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → Fun (2nd ‘(1st𝑇)))
13793, 136syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → Fun (2nd ‘(1st𝑇)))
138 imain 6435 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Fun (2nd ‘(1st𝑇)) → ((2nd ‘(1st𝑇)) “ ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∩ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))))
139137, 138syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((2nd ‘(1st𝑇)) “ ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∩ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))))
140 nn0p1nn 11928 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℕ)
1418, 140syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ ℕ)
142141nnred 11645 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ ℝ)
143142ltp1d 11562 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) < ((𝑦 + 1) + 1))
144 fzdisj 12927 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑦 + 1) < ((𝑦 + 1) + 1) → ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁)) = ∅)
145144imaeq2d 5926 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑦 + 1) < ((𝑦 + 1) + 1) → ((2nd ‘(1st𝑇)) “ ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = ((2nd ‘(1st𝑇)) “ ∅))
146 ima0 5942 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((2nd ‘(1st𝑇)) “ ∅) = ∅
147145, 146syl6eq 2876 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑦 + 1) < ((𝑦 + 1) + 1) → ((2nd ‘(1st𝑇)) “ ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = ∅)
148143, 147syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd ‘(1st𝑇)) “ ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = ∅)
149139, 148sylan9req 2881 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∩ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = ∅)
150 fnun 6459 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∧ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) ∧ (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∩ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = ∅) → ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∪ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))))
151134, 149, 150sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∪ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))))
152 imaundi 6005 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((2nd ‘(1st𝑇)) “ ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))) = (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∪ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))
153141peano2nnd 11647 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1) + 1) ∈ ℕ)
154153, 96syl6eleq 2927 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1) + 1) ∈ (ℤ‘1))
155154adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((𝑦 + 1) + 1) ∈ (ℤ‘1))
1561nncnd 11646 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑𝑁 ∈ ℂ)
157 npcan1 11057 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
158156, 157syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
159158adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁)
160 elfzuz3 12898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈ (ℤ𝑦))
161 eluzp1p1 12262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 − 1) ∈ (ℤ𝑦) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑦 + 1)))
162160, 161syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑦 + 1)))
163162adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑦 + 1)))
164159, 163eqeltrrd 2918 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ‘(𝑦 + 1)))
165 fzsplit2 12925 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑦 + 1) + 1) ∈ (ℤ‘1) ∧ 𝑁 ∈ (ℤ‘(𝑦 + 1))) → (1...𝑁) = ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁)))
166155, 164, 165syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑁) = ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁)))
167166imaeq2d 5926 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = ((2nd ‘(1st𝑇)) “ ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))))
168 f1ofo 6618 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁))
169 foima 6591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁) → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (1...𝑁))
17093, 168, 1693syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (1...𝑁))
171170adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (1...𝑁))
172167, 171eqtr3d 2862 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((2nd ‘(1st𝑇)) “ ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))) = (1...𝑁))
173152, 172syl5eqr 2874 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∪ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = (1...𝑁))
174173fneq2d 6443 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∪ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) ↔ ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (1...𝑁)))
175151, 174mpbid 233 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (1...𝑁))
17648a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑁) ∈ V)
177 inidm 4198 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1...𝑁) ∩ (1...𝑁)) = (1...𝑁)
178 eqidd 2825 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ ((2nd ‘(1st𝑇))‘1) ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) = ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)))
179 f1ofn 6612 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑇)) Fn (1...𝑁))
18093, 179syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (2nd ‘(1st𝑇)) Fn (1...𝑁))
181180adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (2nd ‘(1st𝑇)) Fn (1...𝑁))
182 fzss2 12940 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ (ℤ‘(𝑦 + 1)) → (1...(𝑦 + 1)) ⊆ (1...𝑁))
183164, 182syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (1...(𝑦 + 1)) ⊆ (1...𝑁))
184141, 96syl6eleq 2927 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ (ℤ‘1))
185 eluzfz1 12907 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑦 + 1) ∈ (ℤ‘1) → 1 ∈ (1...(𝑦 + 1)))
186184, 185syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ (0...(𝑁 − 1)) → 1 ∈ (1...(𝑦 + 1)))
187186adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 1 ∈ (1...(𝑦 + 1)))
188 fnfvima 6992 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((2nd ‘(1st𝑇)) Fn (1...𝑁) ∧ (1...(𝑦 + 1)) ⊆ (1...𝑁) ∧ 1 ∈ (1...(𝑦 + 1))) → ((2nd ‘(1st𝑇))‘1) ∈ ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))))
189181, 183, 187, 188syl3anc 1365 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((2nd ‘(1st𝑇))‘1) ∈ ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))))
190 fvun1 6750 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∧ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) ∧ ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∩ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = ∅ ∧ ((2nd ‘(1st𝑇))‘1) ∈ ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))))) → (((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘1)) = ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1})‘((2nd ‘(1st𝑇))‘1)))
191130, 133, 190mp3an12 1444 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∩ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = ∅ ∧ ((2nd ‘(1st𝑇))‘1) ∈ ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1)))) → (((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘1)) = ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1})‘((2nd ‘(1st𝑇))‘1)))
192149, 189, 191syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘1)) = ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1})‘((2nd ‘(1st𝑇))‘1)))
193128fvconst2 6965 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((2nd ‘(1st𝑇))‘1) ∈ ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) → ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1})‘((2nd ‘(1st𝑇))‘1)) = 1)
194189, 193syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1})‘((2nd ‘(1st𝑇))‘1)) = 1)
195192, 194eqtrd 2860 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘1)) = 1)
196195adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ ((2nd ‘(1st𝑇))‘1) ∈ (1...𝑁)) → (((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘1)) = 1)
197127, 175, 176, 176, 177, 178, 196ofval 7411 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ ((2nd ‘(1st𝑇))‘1) ∈ (1...𝑁)) → (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))‘((2nd ‘(1st𝑇))‘1)) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1))
198100, 197mpidan 685 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))‘((2nd ‘(1st𝑇))‘1)) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1))
199125, 198sylan9eqr 2882 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))) → (𝑝‘((2nd ‘(1st𝑇))‘1)) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1))
200199adantllr 715 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑝 ∈ ran 𝐹) ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))) → (𝑝‘((2nd ‘(1st𝑇))‘1)) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1))
201 fveq2 6666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑡 = 𝑇 → (2nd𝑡) = (2nd𝑇))
202201breq2d 5074 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑡 = 𝑇 → (𝑦 < (2nd𝑡) ↔ 𝑦 < (2nd𝑇)))
203202ifbid 4491 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 = 𝑇 → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)))
204203csbeq1d 3890 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))
205 2fveq3 6671 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑡 = 𝑇 → (1st ‘(1st𝑡)) = (1st ‘(1st𝑇)))
206 2fveq3 6671 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑡 = 𝑇 → (2nd ‘(1st𝑡)) = (2nd ‘(1st𝑇)))
207206imaeq1d 5925 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...𝑗)))
208207xpeq1d 5582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}))
209206imaeq1d 5925 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)))
210209xpeq1d 5582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))
211208, 210uneq12d 4143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑡 = 𝑇 → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))
212205, 211oveq12d 7169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 = 𝑇 → ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
213212csbeq2dv 3893 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑡 = 𝑇if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
214204, 213eqtrd 2860 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
215214mpteq2dv 5158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑡 = 𝑇 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
216215eqeq2d 2835 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = 𝑇 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
217216, 2elrab2 3686 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑇𝑆 ↔ (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
218217simprbi 497 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑇𝑆𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
2194, 218syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
220219rneqd 5806 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ran 𝐹 = ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
221220eleq2d 2902 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑝 ∈ ran 𝐹𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
222 eqid 2824 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
223 ovex 7184 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ V
224223csbex 5211 . . . . . . . . . . . . . . . . . . . . . . . 24 if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ V
225222, 224elrnmpti 5830 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ ∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
226221, 225syl6bb 288 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑝 ∈ ran 𝐹 ↔ ∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
2276adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (2nd𝑇) = 0)
228 elfzle1 12903 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ (0...(𝑁 − 1)) → 0 ≤ 𝑦)
229228adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 0 ≤ 𝑦)
230227, 229eqbrtrd 5084 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (2nd𝑇) ≤ 𝑦)
231 0re 10635 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 0 ∈ ℝ
2326, 231syl6eqel 2925 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (2nd𝑇) ∈ ℝ)
233 lenlt 10711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((2nd𝑇) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((2nd𝑇) ≤ 𝑦 ↔ ¬ 𝑦 < (2nd𝑇)))
234232, 9, 233syl2an 595 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((2nd𝑇) ≤ 𝑦 ↔ ¬ 𝑦 < (2nd𝑇)))
235230, 234mpbid 233 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ¬ 𝑦 < (2nd𝑇))
236235iffalsed 4480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) = (𝑦 + 1))
237236csbeq1d 3890 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑦 + 1) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
238 ovex 7184 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 + 1) ∈ V
239 oveq2 7159 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑗 = (𝑦 + 1) → (1...𝑗) = (1...(𝑦 + 1)))
240239imaeq2d 5926 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗 = (𝑦 + 1) → ((2nd ‘(1st𝑇)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))))
241240xpeq1d 5582 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 = (𝑦 + 1) → (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}))
242 oveq1 7158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑗 = (𝑦 + 1) → (𝑗 + 1) = ((𝑦 + 1) + 1))
243242oveq1d 7166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑗 = (𝑦 + 1) → ((𝑗 + 1)...𝑁) = (((𝑦 + 1) + 1)...𝑁))
244243imaeq2d 5926 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗 = (𝑦 + 1) → ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))
245244xpeq1d 5582 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 = (𝑦 + 1) → (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))
246241, 245uneq12d 4143 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑗 = (𝑦 + 1) → ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))
247246oveq2d 7167 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 = (𝑦 + 1) → ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))
248238, 247csbie 3921 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 + 1) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))
249237, 248syl6eq 2876 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))
250249eqeq2d 2835 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (𝑝 = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) ↔ 𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))))
251250rexbidva 3300 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) ↔ ∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))))
252226, 251bitrd 280 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑝 ∈ ran 𝐹 ↔ ∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))))
253252biimpa 477 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ ran 𝐹) → ∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))
254200, 253r19.29a 3293 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ ran 𝐹) → (𝑝‘((2nd ‘(1st𝑇))‘1)) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1))
255 eqtr3 2847 . . . . . . . . . . . . . . . . . . . 20 (((𝑝‘((2nd ‘(1st𝑇))‘1)) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ∧ 𝐾 = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1)) → (𝑝‘((2nd ‘(1st𝑇))‘1)) = 𝐾)
256255ex 413 . . . . . . . . . . . . . . . . . . 19 ((𝑝‘((2nd ‘(1st𝑇))‘1)) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) → (𝐾 = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) → (𝑝‘((2nd ‘(1st𝑇))‘1)) = 𝐾))
257254, 256syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ ran 𝐹) → (𝐾 = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) → (𝑝‘((2nd ‘(1st𝑇))‘1)) = 𝐾))
258257necon3d 3041 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ran 𝐹) → ((𝑝‘((2nd ‘(1st𝑇))‘1)) ≠ 𝐾𝐾 ≠ (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1)))
259258rexlimdva 3288 . . . . . . . . . . . . . . . 16 (𝜑 → (∃𝑝 ∈ ran 𝐹(𝑝‘((2nd ‘(1st𝑇))‘1)) ≠ 𝐾𝐾 ≠ (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1)))
260124, 259mpd 15 . . . . . . . . . . . . . . 15 (𝜑𝐾 ≠ (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1))
261104nn0red 11948 . . . . . . . . . . . . . . . 16 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ∈ ℝ)
262107nnred 11645 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ ℝ)
263261, 262ltlend 10777 . . . . . . . . . . . . . . 15 (𝜑 → ((((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) < 𝐾 ↔ ((((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ≤ 𝐾𝐾 ≠ (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1))))
264115, 260, 263mpbir2and 709 . . . . . . . . . . . . . 14 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) < 𝐾)
265 elfzo0 13071 . . . . . . . . . . . . . 14 ((((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ∈ (0..^𝐾) ↔ ((((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ∈ ℕ0𝐾 ∈ ℕ ∧ (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) < 𝐾))
266104, 107, 264, 265syl3anbrc 1337 . . . . . . . . . . . . 13 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ∈ (0..^𝐾))
267266adantr 481 . . . . . . . . . . . 12 ((𝜑𝑛 = ((2nd ‘(1st𝑇))‘1)) → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ∈ (0..^𝐾))
26880, 267eqeltrd 2917 . . . . . . . . . . 11 ((𝜑𝑛 = ((2nd ‘(1st𝑇))‘1)) → (((1st ‘(1st𝑇))‘𝑛) + 1) ∈ (0..^𝐾))
269268adantlr 711 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑛 = ((2nd ‘(1st𝑇))‘1)) → (((1st ‘(1st𝑇))‘𝑛) + 1) ∈ (0..^𝐾))
27087ffvelrnda 6846 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) ∈ (0..^𝐾))
271 elfzonn0 13075 . . . . . . . . . . . . . . 15 (((1st ‘(1st𝑇))‘𝑛) ∈ (0..^𝐾) → ((1st ‘(1st𝑇))‘𝑛) ∈ ℕ0)
272270, 271syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) ∈ ℕ0)
273272nn0cnd 11949 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) ∈ ℂ)
274273addid1d 10832 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → (((1st ‘(1st𝑇))‘𝑛) + 0) = ((1st ‘(1st𝑇))‘𝑛))
275274, 270eqeltrd 2917 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → (((1st ‘(1st𝑇))‘𝑛) + 0) ∈ (0..^𝐾))
276275adantr 481 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ ¬ 𝑛 = ((2nd ‘(1st𝑇))‘1)) → (((1st ‘(1st𝑇))‘𝑛) + 0) ∈ (0..^𝐾))
27775, 77, 269, 276ifbothda 4506 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0)) ∈ (0..^𝐾))
278277fmpttd 6874 . . . . . . . 8 (𝜑 → (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))):(1...𝑁)⟶(0..^𝐾))
279 ovex 7184 . . . . . . . . 9 (0..^𝐾) ∈ V
280279, 48elmap 8428 . . . . . . . 8 ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∈ ((0..^𝐾) ↑m (1...𝑁)) ↔ (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))):(1...𝑁)⟶(0..^𝐾))
281278, 280sylibr 235 . . . . . . 7 (𝜑 → (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∈ ((0..^𝐾) ↑m (1...𝑁)))
282 simpr 485 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...(𝑁 − 1))) → 𝑛 ∈ (1...(𝑁 − 1)))
283 1z 12004 . . . . . . . . . . . . . . . . 17 1 ∈ ℤ
28413, 283jctil 520 . . . . . . . . . . . . . . . 16 (𝜑 → (1 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ))
285 elfzelz 12901 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (1...(𝑁 − 1)) → 𝑛 ∈ ℤ)
286285, 283jctir 521 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (1...(𝑁 − 1)) → (𝑛 ∈ ℤ ∧ 1 ∈ ℤ))
287 fzaddel 12934 . . . . . . . . . . . . . . . 16 (((1 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑛 ∈ (1...(𝑁 − 1)) ↔ (𝑛 + 1) ∈ ((1 + 1)...((𝑁 − 1) + 1))))
288284, 286, 287syl2an 595 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...(𝑁 − 1))) → (𝑛 ∈ (1...(𝑁 − 1)) ↔ (𝑛 + 1) ∈ ((1 + 1)...((𝑁 − 1) + 1))))
289282, 288mpbid 233 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(𝑁 − 1))) → (𝑛 + 1) ∈ ((1 + 1)...((𝑁 − 1) + 1)))
290158oveq2d 7167 . . . . . . . . . . . . . . 15 (𝜑 → ((1 + 1)...((𝑁 − 1) + 1)) = ((1 + 1)...𝑁))
291290adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(𝑁 − 1))) → ((1 + 1)...((𝑁 − 1) + 1)) = ((1 + 1)...𝑁))
292289, 291eleqtrd 2919 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(𝑁 − 1))) → (𝑛 + 1) ∈ ((1 + 1)...𝑁))
293292ralrimiva 3186 . . . . . . . . . . . 12 (𝜑 → ∀𝑛 ∈ (1...(𝑁 − 1))(𝑛 + 1) ∈ ((1 + 1)...𝑁))
294 simpr 485 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ((1 + 1)...𝑁)) → 𝑦 ∈ ((1 + 1)...𝑁))
295 peano2z 12015 . . . . . . . . . . . . . . . . . . 19 (1 ∈ ℤ → (1 + 1) ∈ ℤ)
296283, 295ax-mp 5 . . . . . . . . . . . . . . . . . 18 (1 + 1) ∈ ℤ
29711, 296jctil 520 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ))
298 elfzelz 12901 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ((1 + 1)...𝑁) → 𝑦 ∈ ℤ)
299298, 283jctir 521 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ((1 + 1)...𝑁) → (𝑦 ∈ ℤ ∧ 1 ∈ ℤ))
300 fzsubel 12936 . . . . . . . . . . . . . . . . 17 ((((1 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑦 ∈ ((1 + 1)...𝑁) ↔ (𝑦 − 1) ∈ (((1 + 1) − 1)...(𝑁 − 1))))
301297, 299, 300syl2an 595 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ((1 + 1)...𝑁)) → (𝑦 ∈ ((1 + 1)...𝑁) ↔ (𝑦 − 1) ∈ (((1 + 1) − 1)...(𝑁 − 1))))
302294, 301mpbid 233 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ((1 + 1)...𝑁)) → (𝑦 − 1) ∈ (((1 + 1) − 1)...(𝑁 − 1)))
303 ax-1cn 10587 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
304303, 303pncan3oi 10894 . . . . . . . . . . . . . . . 16 ((1 + 1) − 1) = 1
305304oveq1i 7161 . . . . . . . . . . . . . . 15 (((1 + 1) − 1)...(𝑁 − 1)) = (1...(𝑁 − 1))
306302, 305syl6eleq 2927 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ((1 + 1)...𝑁)) → (𝑦 − 1) ∈ (1...(𝑁 − 1)))
307298zcnd 12080 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ((1 + 1)...𝑁) → 𝑦 ∈ ℂ)
308 elfznn 12929 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (1...(𝑁 − 1)) → 𝑛 ∈ ℕ)
309308nncnd 11646 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (1...(𝑁 − 1)) → 𝑛 ∈ ℂ)
310 subadd2 10882 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑦 − 1) = 𝑛 ↔ (𝑛 + 1) = 𝑦))
311303, 310mp3an2 1442 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑦 − 1) = 𝑛 ↔ (𝑛 + 1) = 𝑦))
312311bicomd 224 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑛 + 1) = 𝑦 ↔ (𝑦 − 1) = 𝑛))
313 eqcom 2831 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑛 + 1) ↔ (𝑛 + 1) = 𝑦)
314 eqcom 2831 . . . . . . . . . . . . . . . . . 18 (𝑛 = (𝑦 − 1) ↔ (𝑦 − 1) = 𝑛)
315312, 313, 3143bitr4g 315 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑦 = (𝑛 + 1) ↔ 𝑛 = (𝑦 − 1)))
316307, 309, 315syl2an 595 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ((1 + 1)...𝑁) ∧ 𝑛 ∈ (1...(𝑁 − 1))) → (𝑦 = (𝑛 + 1) ↔ 𝑛 = (𝑦 − 1)))
317316ralrimiva 3186 . . . . . . . . . . . . . . 15 (𝑦 ∈ ((1 + 1)...𝑁) → ∀𝑛 ∈ (1...(𝑁 − 1))(𝑦 = (𝑛 + 1) ↔ 𝑛 = (𝑦 − 1)))
318317adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ((1 + 1)...𝑁)) → ∀𝑛 ∈ (1...(𝑁 − 1))(𝑦 = (𝑛 + 1) ↔ 𝑛 = (𝑦 − 1)))
319 reu6i 3722 . . . . . . . . . . . . . 14 (((𝑦 − 1) ∈ (1...(𝑁 − 1)) ∧ ∀𝑛 ∈ (1...(𝑁 − 1))(𝑦 = (𝑛 + 1) ↔ 𝑛 = (𝑦 − 1))) → ∃!𝑛 ∈ (1...(𝑁 − 1))𝑦 = (𝑛 + 1))
320306, 318, 319syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((1 + 1)...𝑁)) → ∃!𝑛 ∈ (1...(𝑁 − 1))𝑦 = (𝑛 + 1))
321320ralrimiva 3186 . . . . . . . . . . . 12 (𝜑 → ∀𝑦 ∈ ((1 + 1)...𝑁)∃!𝑛 ∈ (1...(𝑁 − 1))𝑦 = (𝑛 + 1))
322 eqid 2824 . . . . . . . . . . . . 13 (𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)) = (𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1))
323322f1ompt 6870 . . . . . . . . . . . 12 ((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)):(1...(𝑁 − 1))–1-1-onto→((1 + 1)...𝑁) ↔ (∀𝑛 ∈ (1...(𝑁 − 1))(𝑛 + 1) ∈ ((1 + 1)...𝑁) ∧ ∀𝑦 ∈ ((1 + 1)...𝑁)∃!𝑛 ∈ (1...(𝑁 − 1))𝑦 = (𝑛 + 1)))
324293, 321, 323sylanbrc 583 . . . . . . . . . . 11 (𝜑 → (𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)):(1...(𝑁 − 1))–1-1-onto→((1 + 1)...𝑁))
325 f1osng 6651 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 1 ∈ V) → {⟨𝑁, 1⟩}:{𝑁}–1-1-onto→{1})
3261, 128, 325sylancl 586 . . . . . . . . . . 11 (𝜑 → {⟨𝑁, 1⟩}:{𝑁}–1-1-onto→{1})
32714, 16ltnled 10779 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 − 1) < 𝑁 ↔ ¬ 𝑁 ≤ (𝑁 − 1)))
32820, 327mpbid 233 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑁 ≤ (𝑁 − 1))
329 elfzle2 12904 . . . . . . . . . . . . 13 (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1))
330328, 329nsyl 142 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑁 ∈ (1...(𝑁 − 1)))
331 disjsn 4645 . . . . . . . . . . . 12 (((1...(𝑁 − 1)) ∩ {𝑁}) = ∅ ↔ ¬ 𝑁 ∈ (1...(𝑁 − 1)))
332330, 331sylibr 235 . . . . . . . . . . 11 (𝜑 → ((1...(𝑁 − 1)) ∩ {𝑁}) = ∅)
333 1re 10633 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
334333ltp1i 11536 . . . . . . . . . . . . . . 15 1 < (1 + 1)
335296zrei 11979 . . . . . . . . . . . . . . . 16 (1 + 1) ∈ ℝ
336333, 335ltnlei 10753 . . . . . . . . . . . . . . 15 (1 < (1 + 1) ↔ ¬ (1 + 1) ≤ 1)
337334, 336mpbi 231 . . . . . . . . . . . . . 14 ¬ (1 + 1) ≤ 1
338 elfzle1 12903 . . . . . . . . . . . . . 14 (1 ∈ ((1 + 1)...𝑁) → (1 + 1) ≤ 1)
339337, 338mto 198 . . . . . . . . . . . . 13 ¬ 1 ∈ ((1 + 1)...𝑁)
340 disjsn 4645 . . . . . . . . . . . . 13 ((((1 + 1)...𝑁) ∩ {1}) = ∅ ↔ ¬ 1 ∈ ((1 + 1)...𝑁))
341339, 340mpbir 232 . . . . . . . . . . . 12 (((1 + 1)...𝑁) ∩ {1}) = ∅
342341a1i 11 . . . . . . . . . . 11 (𝜑 → (((1 + 1)...𝑁) ∩ {1}) = ∅)
343 f1oun 6630 . . . . . . . . . . 11 ((((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)):(1...(𝑁 − 1))–1-1-onto→((1 + 1)...𝑁) ∧ {⟨𝑁, 1⟩}:{𝑁}–1-1-onto→{1}) ∧ (((1...(𝑁 − 1)) ∩ {𝑁}) = ∅ ∧ (((1 + 1)...𝑁) ∩ {1}) = ∅)) → ((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)) ∪ {⟨𝑁, 1⟩}):((1...(𝑁 − 1)) ∪ {𝑁})–1-1-onto→(((1 + 1)...𝑁) ∪ {1}))
344324, 326, 332, 342, 343syl22anc 836 . . . . . . . . . 10 (𝜑 → ((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)) ∪ {⟨𝑁, 1⟩}):((1...(𝑁 − 1)) ∪ {𝑁})–1-1-onto→(((1 + 1)...𝑁) ∪ {1}))
345 elex 3517 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ V)
3461, 345syl 17 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ V)
347128a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ V)
348158, 97eqeltrd 2917 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑁 − 1) + 1) ∈ (ℤ‘1))
349 uzid 12250 . . . . . . . . . . . . . . . . 17 ((𝑁 − 1) ∈ ℤ → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)))
350 peano2uz 12293 . . . . . . . . . . . . . . . . 17 ((𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
35113, 349, 3503syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
352158, 351eqeltrrd 2918 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ (ℤ‘(𝑁 − 1)))
353 fzsplit2 12925 . . . . . . . . . . . . . . 15 ((((𝑁 − 1) + 1) ∈ (ℤ‘1) ∧ 𝑁 ∈ (ℤ‘(𝑁 − 1))) → (1...𝑁) = ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)))
354348, 352, 353syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)))
355158oveq1d 7166 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑁 − 1) + 1)...𝑁) = (𝑁...𝑁))
356 fzsn 12942 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁})
35711, 356syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁...𝑁) = {𝑁})
358355, 357eqtrd 2860 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑁 − 1) + 1)...𝑁) = {𝑁})
359358uneq2d 4142 . . . . . . . . . . . . . 14 (𝜑 → ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)) = ((1...(𝑁 − 1)) ∪ {𝑁}))
360354, 359eqtr2d 2861 . . . . . . . . . . . . 13 (𝜑 → ((1...(𝑁 − 1)) ∪ {𝑁}) = (1...𝑁))
361 iftrue 4475 . . . . . . . . . . . . . 14 (𝑛 = 𝑁 → if(𝑛 = 𝑁, 1, (𝑛 + 1)) = 1)
362361adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑛 = 𝑁) → if(𝑛 = 𝑁, 1, (𝑛 + 1)) = 1)
363346, 347, 360, 362fmptapd 6928 . . . . . . . . . . . 12 (𝜑 → ((𝑛 ∈ (1...(𝑁 − 1)) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ∪ {⟨𝑁, 1⟩}) = (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))
364 eleq1 2904 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑁 → (𝑛 ∈ (1...(𝑁 − 1)) ↔ 𝑁 ∈ (1...(𝑁 − 1))))
365364notbid 319 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑁 → (¬ 𝑛 ∈ (1...(𝑁 − 1)) ↔ ¬ 𝑁 ∈ (1...(𝑁 − 1))))
366330, 365syl5ibrcom 248 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑛 = 𝑁 → ¬ 𝑛 ∈ (1...(𝑁 − 1))))
367366necon2ad 3035 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑛 ∈ (1...(𝑁 − 1)) → 𝑛𝑁))
368367imp 407 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...(𝑁 − 1))) → 𝑛𝑁)
369 ifnefalse 4481 . . . . . . . . . . . . . . 15 (𝑛𝑁 → if(𝑛 = 𝑁, 1, (𝑛 + 1)) = (𝑛 + 1))
370368, 369syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(𝑁 − 1))) → if(𝑛 = 𝑁, 1, (𝑛 + 1)) = (𝑛 + 1))
371370mpteq2dva 5157 . . . . . . . . . . . . 13 (𝜑 → (𝑛 ∈ (1...(𝑁 − 1)) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) = (𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)))
372371uneq1d 4141 . . . . . . . . . . . 12 (𝜑 → ((𝑛 ∈ (1...(𝑁 − 1)) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ∪ {⟨𝑁, 1⟩}) = ((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)) ∪ {⟨𝑁, 1⟩}))
373363, 372eqtr3d 2862 . . . . . . . . . . 11 (𝜑 → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) = ((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)) ∪ {⟨𝑁, 1⟩}))
374354, 359eqtrd 2860 . . . . . . . . . . 11 (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ {𝑁}))
375 uzid 12250 . . . . . . . . . . . . . 14 (1 ∈ ℤ → 1 ∈ (ℤ‘1))
376 peano2uz 12293 . . . . . . . . . . . . . 14 (1 ∈ (ℤ‘1) → (1 + 1) ∈ (ℤ‘1))
377283, 375, 376mp2b 10 . . . . . . . . . . . . 13 (1 + 1) ∈ (ℤ‘1)
378 fzsplit2 12925 . . . . . . . . . . . . 13 (((1 + 1) ∈ (ℤ‘1) ∧ 𝑁 ∈ (ℤ‘1)) → (1...𝑁) = ((1...1) ∪ ((1 + 1)...𝑁)))
379377, 97, 378sylancr 587 . . . . . . . . . . . 12 (𝜑 → (1...𝑁) = ((1...1) ∪ ((1 + 1)...𝑁)))
380 fzsn 12942 . . . . . . . . . . . . . . 15 (1 ∈ ℤ → (1...1) = {1})
381283, 380ax-mp 5 . . . . . . . . . . . . . 14 (1...1) = {1}
382381uneq1i 4138 . . . . . . . . . . . . 13 ((1...1) ∪ ((1 + 1)...𝑁)) = ({1} ∪ ((1 + 1)...𝑁))
383382equncomi 4134 . . . . . . . . . . . 12 ((1...1) ∪ ((1 + 1)...𝑁)) = (((1 + 1)...𝑁) ∪ {1})
384379, 383syl6eq 2876 . . . . . . . . . . 11 (𝜑 → (1...𝑁) = (((1 + 1)...𝑁) ∪ {1}))
385373, 374, 384f1oeq123d 6606 . . . . . . . . . 10 (𝜑 → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))):(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)) ∪ {⟨𝑁, 1⟩}):((1...(𝑁 − 1)) ∪ {𝑁})–1-1-onto→(((1 + 1)...𝑁) ∪ {1})))
386344, 385mpbird 258 . . . . . . . . 9 (𝜑 → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))):(1...𝑁)–1-1-onto→(1...𝑁))
387 f1oco 6633 . . . . . . . . 9 (((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) ∧ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))):(1...𝑁)–1-1-onto→(1...𝑁)) → ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))):(1...𝑁)–1-1-onto→(1...𝑁))
38893, 386, 387syl2anc 584 . . . . . . . 8 (𝜑 → ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))):(1...𝑁)–1-1-onto→(1...𝑁))
389 f1oeq1 6600 . . . . . . . . 9 (𝑓 = ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))):(1...𝑁)–1-1-onto→(1...𝑁)))
39052, 389elab 3670 . . . . . . . 8 (((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))):(1...𝑁)–1-1-onto→(1...𝑁))
391388, 390sylibr 235 . . . . . . 7 (𝜑 → ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
392 opelxpi 5590 . . . . . . 7 (((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∈ ((0..^𝐾) ↑m (1...𝑁)) ∧ ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → ⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩ ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
393281, 391, 392syl2anc 584 . . . . . 6 (𝜑 → ⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩ ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
3941nnnn0d 11947 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
395 nn0fz0 12998 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
396394, 395sylib 219 . . . . . 6 (𝜑𝑁 ∈ (0...𝑁))
397 opelxpi 5590 . . . . . 6 ((⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩ ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ 𝑁 ∈ (0...𝑁)) → ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
398393, 396, 397syl2anc 584 . . . . 5 (𝜑 → ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
399 elrab3t 3682 . . . . 5 ((∀𝑡(𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})))))) ∧ ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) → (⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))))))
40073, 398, 399syl2anc 584 . . . 4 (𝜑 → (⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))))))
4017, 400mpbird 258 . . 3 (𝜑 → ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))})
402401, 2syl6eleqr 2928 . 2 (𝜑 → ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ∈ 𝑆)
403 fveqeq2 6675 . . . . . 6 (⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ = 𝑇 → ((2nd ‘⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) = 𝑁 ↔ (2nd𝑇) = 𝑁))
40427, 403syl5ibcom 246 . . . . 5 (𝜑 → (⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ = 𝑇 → (2nd𝑇) = 𝑁))
4051nnne0d 11679 . . . . . 6 (𝜑𝑁 ≠ 0)
406 neeq1 3082 . . . . . 6 ((2nd𝑇) = 𝑁 → ((2nd𝑇) ≠ 0 ↔ 𝑁 ≠ 0))
407405, 406syl5ibrcom 248 . . . . 5 (𝜑 → ((2nd𝑇) = 𝑁 → (2nd𝑇) ≠ 0))
408404, 407syld 47 . . . 4 (𝜑 → (⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ = 𝑇 → (2nd𝑇) ≠ 0))
409408necon2d 3043 . . 3 (𝜑 → ((2nd𝑇) = 0 → ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ≠ 𝑇))
4106, 409mpd 15 . 2 (𝜑 → ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ≠ 𝑇)
411 neeq1 3082 . . 3 (𝑧 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ → (𝑧𝑇 ↔ ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ≠ 𝑇))
412411rspcev 3626 . 2 ((⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ∈ 𝑆 ∧ ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ≠ 𝑇) → ∃𝑧𝑆 𝑧𝑇)
413402, 410, 412syl2anc 584 1 (𝜑 → ∃𝑧𝑆 𝑧𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1081  wal 1528   = wceq 1530  wcel 2106  {cab 2802  wne 3020  wral 3142  wrex 3143  ∃!wreu 3144  {crab 3146  Vcvv 3499  csb 3886  cun 3937  cin 3938  wss 3939  c0 4294  ifcif 4469  {csn 4563  cop 4569   class class class wbr 5062  cmpt 5142   × cxp 5551  ccnv 5552  ran crn 5554  cima 5556  ccom 5557  Fun wfun 6345   Fn wfn 6346  wf 6347  ontowfo 6349  1-1-ontowf1o 6350  cfv 6351  (class class class)co 7151  f cof 7400  1st c1st 7681  2nd c2nd 7682  m cmap 8399  cc 10527  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   < clt 10667  cle 10668  cmin 10862  cn 11630  0cn0 11889  cz 11973  cuz 12235  ...cfz 12885  ..^cfzo 13026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-map 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12886  df-fzo 13027
This theorem is referenced by:  poimirlem18  34778
  Copyright terms: Public domain W3C validator