Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem17 Structured version   Visualization version   GIF version

Theorem poimirlem17 35721
Description: Lemma for poimir 35737 establishing existence for poimirlem18 35722. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimirlem22.s 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
poimirlem22.1 (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))
poimirlem22.2 (𝜑𝑇𝑆)
poimirlem18.3 ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 𝐾)
poimirlem18.4 (𝜑 → (2nd𝑇) = 0)
Assertion
Ref Expression
poimirlem17 (𝜑 → ∃𝑧𝑆 𝑧𝑇)
Distinct variable groups:   𝑓,𝑗,𝑛,𝑝,𝑡,𝑦,𝑧   𝜑,𝑗,𝑛,𝑦   𝑗,𝐹,𝑛,𝑦   𝑗,𝑁,𝑛,𝑦   𝑇,𝑗,𝑛,𝑦   𝜑,𝑝,𝑡   𝑓,𝐾,𝑗,𝑛,𝑝,𝑡   𝑓,𝑁,𝑝,𝑡   𝑇,𝑓,𝑝   𝜑,𝑧   𝑓,𝐹,𝑝,𝑡,𝑧   𝑧,𝐾   𝑧,𝑁   𝑡,𝑇,𝑧   𝑆,𝑗,𝑛,𝑝,𝑡,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝑆(𝑓)   𝐾(𝑦)

Proof of Theorem poimirlem17
StepHypRef Expression
1 poimir.0 . . . . 5 (𝜑𝑁 ∈ ℕ)
2 poimirlem22.s . . . . 5 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
3 poimirlem22.1 . . . . 5 (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))
4 poimirlem22.2 . . . . 5 (𝜑𝑇𝑆)
5 poimirlem18.3 . . . . 5 ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 𝐾)
6 poimirlem18.4 . . . . 5 (𝜑 → (2nd𝑇) = 0)
71, 2, 3, 4, 5, 6poimirlem16 35720 . . . 4 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})))))
8 elfznn0 13278 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℕ0)
98nn0red 12224 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℝ)
109adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ∈ ℝ)
111nnzd 12354 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℤ)
12 peano2zm 12293 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
1311, 12syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 − 1) ∈ ℤ)
1413zred 12355 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 − 1) ∈ ℝ)
1514adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) ∈ ℝ)
161nnred 11918 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℝ)
1716adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ℝ)
18 elfzle2 13189 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ≤ (𝑁 − 1))
1918adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ≤ (𝑁 − 1))
2016ltm1d 11837 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 − 1) < 𝑁)
2120adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) < 𝑁)
2210, 15, 17, 19, 21lelttrd 11063 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 < 𝑁)
2322adantlr 711 . . . . . . . . . . . . 13 (((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 < 𝑁)
24 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ → (2nd𝑡) = (2nd ‘⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩))
25 opex 5373 . . . . . . . . . . . . . . . 16 ⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩ ∈ V
26 op2ndg 7817 . . . . . . . . . . . . . . . 16 ((⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩ ∈ V ∧ 𝑁 ∈ ℕ) → (2nd ‘⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) = 𝑁)
2725, 1, 26sylancr 586 . . . . . . . . . . . . . . 15 (𝜑 → (2nd ‘⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) = 𝑁)
2824, 27sylan9eqr 2801 . . . . . . . . . . . . . 14 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → (2nd𝑡) = 𝑁)
2928adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (2nd𝑡) = 𝑁)
3023, 29breqtrrd 5098 . . . . . . . . . . . 12 (((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 < (2nd𝑡))
3130iftrued 4464 . . . . . . . . . . 11 (((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = 𝑦)
3231csbeq1d 3832 . . . . . . . . . 10 (((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = 𝑦 / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))
33 vex 3426 . . . . . . . . . . . . 13 𝑦 ∈ V
34 oveq2 7263 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑦 → (1...𝑗) = (1...𝑦))
3534imaeq2d 5958 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑦 → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = ((2nd ‘(1st𝑡)) “ (1...𝑦)))
3635xpeq1d 5609 . . . . . . . . . . . . . . 15 (𝑗 = 𝑦 → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑡)) “ (1...𝑦)) × {1}))
37 oveq1 7262 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑦 → (𝑗 + 1) = (𝑦 + 1))
3837oveq1d 7270 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑦 → ((𝑗 + 1)...𝑁) = ((𝑦 + 1)...𝑁))
3938imaeq2d 5958 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑦 → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑡)) “ ((𝑦 + 1)...𝑁)))
4039xpeq1d 5609 . . . . . . . . . . . . . . 15 (𝑗 = 𝑦 → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑡)) “ ((𝑦 + 1)...𝑁)) × {0}))
4136, 40uneq12d 4094 . . . . . . . . . . . . . 14 (𝑗 = 𝑦 → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑡)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑦 + 1)...𝑁)) × {0})))
4241oveq2d 7271 . . . . . . . . . . . . 13 (𝑗 = 𝑦 → ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑦 + 1)...𝑁)) × {0}))))
4333, 42csbie 3864 . . . . . . . . . . . 12 𝑦 / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑦 + 1)...𝑁)) × {0})))
44 2fveq3 6761 . . . . . . . . . . . . . 14 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ → (1st ‘(1st𝑡)) = (1st ‘(1st ‘⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩)))
45 op1stg 7816 . . . . . . . . . . . . . . . . 17 ((⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩ ∈ V ∧ 𝑁 ∈ ℕ) → (1st ‘⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) = ⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩)
4625, 1, 45sylancr 586 . . . . . . . . . . . . . . . 16 (𝜑 → (1st ‘⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) = ⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩)
4746fveq2d 6760 . . . . . . . . . . . . . . 15 (𝜑 → (1st ‘(1st ‘⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩)) = (1st ‘⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩))
48 ovex 7288 . . . . . . . . . . . . . . . . 17 (1...𝑁) ∈ V
4948mptex 7081 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∈ V
50 fvex 6769 . . . . . . . . . . . . . . . . 17 (2nd ‘(1st𝑇)) ∈ V
5148mptex 7081 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ∈ V
5250, 51coex 7751 . . . . . . . . . . . . . . . 16 ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) ∈ V
5349, 52op1st 7812 . . . . . . . . . . . . . . 15 (1st ‘⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩) = (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0)))
5447, 53eqtrdi 2795 . . . . . . . . . . . . . 14 (𝜑 → (1st ‘(1st ‘⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩)) = (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))))
5544, 54sylan9eqr 2801 . . . . . . . . . . . . 13 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → (1st ‘(1st𝑡)) = (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))))
56 fveq2 6756 . . . . . . . . . . . . . . . . . . 19 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ → (1st𝑡) = (1st ‘⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩))
5756, 46sylan9eqr 2801 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → (1st𝑡) = ⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩)
5857fveq2d 6760 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → (2nd ‘(1st𝑡)) = (2nd ‘⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩))
5949, 52op2nd 7813 . . . . . . . . . . . . . . . . 17 (2nd ‘⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩) = ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))
6058, 59eqtrdi 2795 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → (2nd ‘(1st𝑡)) = ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))))
6160imaeq1d 5957 . . . . . . . . . . . . . . 15 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → ((2nd ‘(1st𝑡)) “ (1...𝑦)) = (((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)))
6261xpeq1d 5609 . . . . . . . . . . . . . 14 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → (((2nd ‘(1st𝑡)) “ (1...𝑦)) × {1}) = ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}))
6360imaeq1d 5957 . . . . . . . . . . . . . . 15 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → ((2nd ‘(1st𝑡)) “ ((𝑦 + 1)...𝑁)) = (((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)))
6463xpeq1d 5609 . . . . . . . . . . . . . 14 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → (((2nd ‘(1st𝑡)) “ ((𝑦 + 1)...𝑁)) × {0}) = ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))
6562, 64uneq12d 4094 . . . . . . . . . . . . 13 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → ((((2nd ‘(1st𝑡)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑦 + 1)...𝑁)) × {0})) = (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})))
6655, 65oveq12d 7273 . . . . . . . . . . . 12 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑦 + 1)...𝑁)) × {0}))) = ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))))
6743, 66syl5eq 2791 . . . . . . . . . . 11 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → 𝑦 / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))))
6867adantr 480 . . . . . . . . . 10 (((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))))
6932, 68eqtrd 2778 . . . . . . . . 9 (((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))))
7069mpteq2dva 5170 . . . . . . . 8 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})))))
7170eqeq2d 2749 . . . . . . 7 ((𝜑𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))))))
7271ex 412 . . . . . 6 (𝜑 → (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})))))))
7372alrimiv 1931 . . . . 5 (𝜑 → ∀𝑡(𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})))))))
74 oveq2 7263 . . . . . . . . . . 11 (1 = if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0) → (((1st ‘(1st𝑇))‘𝑛) + 1) = (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0)))
7574eleq1d 2823 . . . . . . . . . 10 (1 = if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0) → ((((1st ‘(1st𝑇))‘𝑛) + 1) ∈ (0..^𝐾) ↔ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0)) ∈ (0..^𝐾)))
76 oveq2 7263 . . . . . . . . . . 11 (0 = if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0) → (((1st ‘(1st𝑇))‘𝑛) + 0) = (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0)))
7776eleq1d 2823 . . . . . . . . . 10 (0 = if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0) → ((((1st ‘(1st𝑇))‘𝑛) + 0) ∈ (0..^𝐾) ↔ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0)) ∈ (0..^𝐾)))
78 fveq2 6756 . . . . . . . . . . . . . 14 (𝑛 = ((2nd ‘(1st𝑇))‘1) → ((1st ‘(1st𝑇))‘𝑛) = ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)))
7978oveq1d 7270 . . . . . . . . . . . . 13 (𝑛 = ((2nd ‘(1st𝑇))‘1) → (((1st ‘(1st𝑇))‘𝑛) + 1) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1))
8079adantl 481 . . . . . . . . . . . 12 ((𝜑𝑛 = ((2nd ‘(1st𝑇))‘1)) → (((1st ‘(1st𝑇))‘𝑛) + 1) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1))
81 elrabi 3611 . . . . . . . . . . . . . . . . . . 19 (𝑇 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
8281, 2eleq2s 2857 . . . . . . . . . . . . . . . . . 18 (𝑇𝑆𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
83 xp1st 7836 . . . . . . . . . . . . . . . . . 18 (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
844, 82, 833syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
85 xp1st 7836 . . . . . . . . . . . . . . . . 17 ((1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
86 elmapi 8595 . . . . . . . . . . . . . . . . 17 ((1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)) → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
8784, 85, 863syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
884, 82syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
89 xp2nd 7837 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
9088, 83, 893syl 18 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
91 f1oeq1 6688 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (2nd ‘(1st𝑇)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)))
9250, 91elab 3602 . . . . . . . . . . . . . . . . . . 19 ((2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
9390, 92sylib 217 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
94 f1of 6700 . . . . . . . . . . . . . . . . . 18 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑇)):(1...𝑁)⟶(1...𝑁))
9593, 94syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)⟶(1...𝑁))
96 nnuz 12550 . . . . . . . . . . . . . . . . . . 19 ℕ = (ℤ‘1)
971, 96eleqtrdi 2849 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ (ℤ‘1))
98 eluzfz1 13192 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘1) → 1 ∈ (1...𝑁))
9997, 98syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ (1...𝑁))
10095, 99ffvelrnd 6944 . . . . . . . . . . . . . . . 16 (𝜑 → ((2nd ‘(1st𝑇))‘1) ∈ (1...𝑁))
10187, 100ffvelrnd 6944 . . . . . . . . . . . . . . 15 (𝜑 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ (0..^𝐾))
102 elfzonn0 13360 . . . . . . . . . . . . . . 15 (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ (0..^𝐾) → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ ℕ0)
103 peano2nn0 12203 . . . . . . . . . . . . . . 15 (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ ℕ0 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ∈ ℕ0)
104101, 102, 1033syl 18 . . . . . . . . . . . . . 14 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ∈ ℕ0)
105 elfzo0 13356 . . . . . . . . . . . . . . . 16 (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ (0..^𝐾) ↔ (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ ℕ0𝐾 ∈ ℕ ∧ ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) < 𝐾))
106101, 105sylib 217 . . . . . . . . . . . . . . 15 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ ℕ0𝐾 ∈ ℕ ∧ ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) < 𝐾))
107106simp2d 1141 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ ℕ)
108104nn0red 12224 . . . . . . . . . . . . . . 15 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ∈ ℝ)
109107nnred 11918 . . . . . . . . . . . . . . 15 (𝜑𝐾 ∈ ℝ)
110 elfzolt2 13325 . . . . . . . . . . . . . . . . 17 (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ (0..^𝐾) → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) < 𝐾)
111101, 110syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) < 𝐾)
112101, 102syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ ℕ0)
113112nn0zd 12353 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ ℤ)
114107nnzd 12354 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ ℤ)
115 zltp1le 12300 . . . . . . . . . . . . . . . . 17 ((((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) < 𝐾 ↔ (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ≤ 𝐾))
116113, 114, 115syl2anc 583 . . . . . . . . . . . . . . . 16 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) < 𝐾 ↔ (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ≤ 𝐾))
117111, 116mpbid 231 . . . . . . . . . . . . . . 15 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ≤ 𝐾)
118 fvex 6769 . . . . . . . . . . . . . . . . . 18 ((2nd ‘(1st𝑇))‘1) ∈ V
119 eleq1 2826 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = ((2nd ‘(1st𝑇))‘1) → (𝑛 ∈ (1...𝑁) ↔ ((2nd ‘(1st𝑇))‘1) ∈ (1...𝑁)))
120119anbi2d 628 . . . . . . . . . . . . . . . . . . 19 (𝑛 = ((2nd ‘(1st𝑇))‘1) → ((𝜑𝑛 ∈ (1...𝑁)) ↔ (𝜑 ∧ ((2nd ‘(1st𝑇))‘1) ∈ (1...𝑁))))
121 fveq2 6756 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = ((2nd ‘(1st𝑇))‘1) → (𝑝𝑛) = (𝑝‘((2nd ‘(1st𝑇))‘1)))
122121neeq1d 3002 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = ((2nd ‘(1st𝑇))‘1) → ((𝑝𝑛) ≠ 𝐾 ↔ (𝑝‘((2nd ‘(1st𝑇))‘1)) ≠ 𝐾))
123122rexbidv 3225 . . . . . . . . . . . . . . . . . . 19 (𝑛 = ((2nd ‘(1st𝑇))‘1) → (∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 𝐾 ↔ ∃𝑝 ∈ ran 𝐹(𝑝‘((2nd ‘(1st𝑇))‘1)) ≠ 𝐾))
124120, 123imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑛 = ((2nd ‘(1st𝑇))‘1) → (((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 𝐾) ↔ ((𝜑 ∧ ((2nd ‘(1st𝑇))‘1) ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘((2nd ‘(1st𝑇))‘1)) ≠ 𝐾)))
125118, 124, 5vtocl 3488 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((2nd ‘(1st𝑇))‘1) ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘((2nd ‘(1st𝑇))‘1)) ≠ 𝐾)
126100, 125mpdan 683 . . . . . . . . . . . . . . . 16 (𝜑 → ∃𝑝 ∈ ran 𝐹(𝑝‘((2nd ‘(1st𝑇))‘1)) ≠ 𝐾)
127 fveq1 6755 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))) → (𝑝‘((2nd ‘(1st𝑇))‘1)) = (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))‘((2nd ‘(1st𝑇))‘1)))
12887ffnd 6585 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (1st ‘(1st𝑇)) Fn (1...𝑁))
129128adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (1st ‘(1st𝑇)) Fn (1...𝑁))
130 1ex 10902 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1 ∈ V
131 fnconstg 6646 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (1 ∈ V → (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))))
132130, 131ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1)))
133 c0ex 10900 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 0 ∈ V
134 fnconstg 6646 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (0 ∈ V → (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))
135133, 134ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))
136132, 135pm3.2i 470 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∧ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))
137 dff1o3 6706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁) ∧ Fun (2nd ‘(1st𝑇))))
138137simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → Fun (2nd ‘(1st𝑇)))
139 imain 6503 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Fun (2nd ‘(1st𝑇)) → ((2nd ‘(1st𝑇)) “ ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∩ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))))
14093, 138, 1393syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((2nd ‘(1st𝑇)) “ ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∩ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))))
141 nn0p1nn 12202 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℕ)
1428, 141syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ ℕ)
143142nnred 11918 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ ℝ)
144143ltp1d 11835 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) < ((𝑦 + 1) + 1))
145 fzdisj 13212 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑦 + 1) < ((𝑦 + 1) + 1) → ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁)) = ∅)
146145imaeq2d 5958 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑦 + 1) < ((𝑦 + 1) + 1) → ((2nd ‘(1st𝑇)) “ ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = ((2nd ‘(1st𝑇)) “ ∅))
147 ima0 5974 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((2nd ‘(1st𝑇)) “ ∅) = ∅
148146, 147eqtrdi 2795 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑦 + 1) < ((𝑦 + 1) + 1) → ((2nd ‘(1st𝑇)) “ ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = ∅)
149144, 148syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd ‘(1st𝑇)) “ ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = ∅)
150140, 149sylan9req 2800 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∩ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = ∅)
151 fnun 6529 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∧ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) ∧ (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∩ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = ∅) → ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∪ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))))
152136, 150, 151sylancr 586 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∪ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))))
153 imaundi 6042 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((2nd ‘(1st𝑇)) “ ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))) = (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∪ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))
154142peano2nnd 11920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1) + 1) ∈ ℕ)
155154, 96eleqtrdi 2849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1) + 1) ∈ (ℤ‘1))
1561nncnd 11919 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑𝑁 ∈ ℂ)
157 npcan1 11330 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
158156, 157syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
159158adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁)
160 elfzuz3 13182 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈ (ℤ𝑦))
161 eluzp1p1 12539 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 − 1) ∈ (ℤ𝑦) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑦 + 1)))
162160, 161syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑦 + 1)))
163162adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑦 + 1)))
164159, 163eqeltrrd 2840 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ‘(𝑦 + 1)))
165 fzsplit2 13210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑦 + 1) + 1) ∈ (ℤ‘1) ∧ 𝑁 ∈ (ℤ‘(𝑦 + 1))) → (1...𝑁) = ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁)))
166155, 164, 165syl2an2 682 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑁) = ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁)))
167166imaeq2d 5958 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = ((2nd ‘(1st𝑇)) “ ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))))
168 f1ofo 6707 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁))
169 foima 6677 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁) → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (1...𝑁))
17093, 168, 1693syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (1...𝑁))
171170adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (1...𝑁))
172167, 171eqtr3d 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((2nd ‘(1st𝑇)) “ ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))) = (1...𝑁))
173153, 172eqtr3id 2793 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∪ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = (1...𝑁))
174173fneq2d 6511 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∪ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) ↔ ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (1...𝑁)))
175152, 174mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (1...𝑁))
17648a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑁) ∈ V)
177 inidm 4149 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1...𝑁) ∩ (1...𝑁)) = (1...𝑁)
178 eqidd 2739 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ ((2nd ‘(1st𝑇))‘1) ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) = ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)))
179 f1ofn 6701 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑇)) Fn (1...𝑁))
18093, 179syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (2nd ‘(1st𝑇)) Fn (1...𝑁))
181180adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (2nd ‘(1st𝑇)) Fn (1...𝑁))
182 fzss2 13225 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ (ℤ‘(𝑦 + 1)) → (1...(𝑦 + 1)) ⊆ (1...𝑁))
183164, 182syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (1...(𝑦 + 1)) ⊆ (1...𝑁))
184142, 96eleqtrdi 2849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ (ℤ‘1))
185 eluzfz1 13192 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑦 + 1) ∈ (ℤ‘1) → 1 ∈ (1...(𝑦 + 1)))
186184, 185syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ (0...(𝑁 − 1)) → 1 ∈ (1...(𝑦 + 1)))
187186adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 1 ∈ (1...(𝑦 + 1)))
188 fnfvima 7091 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((2nd ‘(1st𝑇)) Fn (1...𝑁) ∧ (1...(𝑦 + 1)) ⊆ (1...𝑁) ∧ 1 ∈ (1...(𝑦 + 1))) → ((2nd ‘(1st𝑇))‘1) ∈ ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))))
189181, 183, 187, 188syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((2nd ‘(1st𝑇))‘1) ∈ ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))))
190 fvun1 6841 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∧ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) ∧ ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∩ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = ∅ ∧ ((2nd ‘(1st𝑇))‘1) ∈ ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))))) → (((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘1)) = ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1})‘((2nd ‘(1st𝑇))‘1)))
191132, 135, 190mp3an12 1449 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) ∩ ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = ∅ ∧ ((2nd ‘(1st𝑇))‘1) ∈ ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1)))) → (((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘1)) = ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1})‘((2nd ‘(1st𝑇))‘1)))
192150, 189, 191syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘1)) = ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1})‘((2nd ‘(1st𝑇))‘1)))
193130fvconst2 7061 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((2nd ‘(1st𝑇))‘1) ∈ ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) → ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1})‘((2nd ‘(1st𝑇))‘1)) = 1)
194189, 193syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1})‘((2nd ‘(1st𝑇))‘1)) = 1)
195192, 194eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘1)) = 1)
196195adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ ((2nd ‘(1st𝑇))‘1) ∈ (1...𝑁)) → (((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘1)) = 1)
197129, 175, 176, 176, 177, 178, 196ofval 7522 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ ((2nd ‘(1st𝑇))‘1) ∈ (1...𝑁)) → (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))‘((2nd ‘(1st𝑇))‘1)) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1))
198100, 197mpidan 685 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))‘((2nd ‘(1st𝑇))‘1)) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1))
199127, 198sylan9eqr 2801 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))) → (𝑝‘((2nd ‘(1st𝑇))‘1)) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1))
200199adantllr 715 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑝 ∈ ran 𝐹) ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))) → (𝑝‘((2nd ‘(1st𝑇))‘1)) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1))
201 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑡 = 𝑇 → (2nd𝑡) = (2nd𝑇))
202201breq2d 5082 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 = 𝑇 → (𝑦 < (2nd𝑡) ↔ 𝑦 < (2nd𝑇)))
203202ifbid 4479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑡 = 𝑇 → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)))
204 2fveq3 6761 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 = 𝑇 → (1st ‘(1st𝑡)) = (1st ‘(1st𝑇)))
205 2fveq3 6761 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑡 = 𝑇 → (2nd ‘(1st𝑡)) = (2nd ‘(1st𝑇)))
206205imaeq1d 5957 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...𝑗)))
207206xpeq1d 5609 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}))
208205imaeq1d 5957 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)))
209208xpeq1d 5609 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))
210207, 209uneq12d 4094 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 = 𝑇 → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))
211204, 210oveq12d 7273 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑡 = 𝑇 → ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
212203, 211csbeq12dv 3837 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
213212mpteq2dv 5172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑡 = 𝑇 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
214213eqeq2d 2749 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = 𝑇 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
215214, 2elrab2 3620 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑇𝑆 ↔ (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
216215simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑇𝑆𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
2174, 216syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
218217rneqd 5836 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ran 𝐹 = ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
219218eleq2d 2824 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑝 ∈ ran 𝐹𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
220 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
221 ovex 7288 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ V
222221csbex 5230 . . . . . . . . . . . . . . . . . . . . . . . 24 if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ V
223220, 222elrnmpti 5858 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ ∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
224219, 223bitrdi 286 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑝 ∈ ran 𝐹 ↔ ∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
2256adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (2nd𝑇) = 0)
226 elfzle1 13188 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ (0...(𝑁 − 1)) → 0 ≤ 𝑦)
227226adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 0 ≤ 𝑦)
228225, 227eqbrtrd 5092 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (2nd𝑇) ≤ 𝑦)
229 0re 10908 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 0 ∈ ℝ
2306, 229eqeltrdi 2847 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (2nd𝑇) ∈ ℝ)
231 lenlt 10984 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((2nd𝑇) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((2nd𝑇) ≤ 𝑦 ↔ ¬ 𝑦 < (2nd𝑇)))
232230, 9, 231syl2an 595 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((2nd𝑇) ≤ 𝑦 ↔ ¬ 𝑦 < (2nd𝑇)))
233228, 232mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ¬ 𝑦 < (2nd𝑇))
234233iffalsed 4467 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) = (𝑦 + 1))
235234csbeq1d 3832 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑦 + 1) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
236 ovex 7288 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 + 1) ∈ V
237 oveq2 7263 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑗 = (𝑦 + 1) → (1...𝑗) = (1...(𝑦 + 1)))
238237imaeq2d 5958 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗 = (𝑦 + 1) → ((2nd ‘(1st𝑇)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))))
239238xpeq1d 5609 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 = (𝑦 + 1) → (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}))
240 oveq1 7262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑗 = (𝑦 + 1) → (𝑗 + 1) = ((𝑦 + 1) + 1))
241240oveq1d 7270 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑗 = (𝑦 + 1) → ((𝑗 + 1)...𝑁) = (((𝑦 + 1) + 1)...𝑁))
242241imaeq2d 5958 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗 = (𝑦 + 1) → ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))
243242xpeq1d 5609 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 = (𝑦 + 1) → (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))
244239, 243uneq12d 4094 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑗 = (𝑦 + 1) → ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))
245244oveq2d 7271 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 = (𝑦 + 1) → ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))
246236, 245csbie 3864 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 + 1) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))
247235, 246eqtrdi 2795 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))
248247eqeq2d 2749 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (𝑝 = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) ↔ 𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))))
249248rexbidva 3224 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) ↔ ∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))))
250224, 249bitrd 278 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑝 ∈ ran 𝐹 ↔ ∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))))
251250biimpa 476 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ ran 𝐹) → ∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))
252200, 251r19.29a 3217 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ ran 𝐹) → (𝑝‘((2nd ‘(1st𝑇))‘1)) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1))
253 eqtr3 2764 . . . . . . . . . . . . . . . . . . . 20 (((𝑝‘((2nd ‘(1st𝑇))‘1)) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ∧ 𝐾 = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1)) → (𝑝‘((2nd ‘(1st𝑇))‘1)) = 𝐾)
254253ex 412 . . . . . . . . . . . . . . . . . . 19 ((𝑝‘((2nd ‘(1st𝑇))‘1)) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) → (𝐾 = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) → (𝑝‘((2nd ‘(1st𝑇))‘1)) = 𝐾))
255252, 254syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ ran 𝐹) → (𝐾 = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) → (𝑝‘((2nd ‘(1st𝑇))‘1)) = 𝐾))
256255necon3d 2963 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ran 𝐹) → ((𝑝‘((2nd ‘(1st𝑇))‘1)) ≠ 𝐾𝐾 ≠ (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1)))
257256rexlimdva 3212 . . . . . . . . . . . . . . . 16 (𝜑 → (∃𝑝 ∈ ran 𝐹(𝑝‘((2nd ‘(1st𝑇))‘1)) ≠ 𝐾𝐾 ≠ (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1)))
258126, 257mpd 15 . . . . . . . . . . . . . . 15 (𝜑𝐾 ≠ (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1))
259108, 109, 117, 258leneltd 11059 . . . . . . . . . . . . . 14 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) < 𝐾)
260 elfzo0 13356 . . . . . . . . . . . . . 14 ((((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ∈ (0..^𝐾) ↔ ((((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ∈ ℕ0𝐾 ∈ ℕ ∧ (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) < 𝐾))
261104, 107, 259, 260syl3anbrc 1341 . . . . . . . . . . . . 13 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ∈ (0..^𝐾))
262261adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 = ((2nd ‘(1st𝑇))‘1)) → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘1)) + 1) ∈ (0..^𝐾))
26380, 262eqeltrd 2839 . . . . . . . . . . 11 ((𝜑𝑛 = ((2nd ‘(1st𝑇))‘1)) → (((1st ‘(1st𝑇))‘𝑛) + 1) ∈ (0..^𝐾))
264263adantlr 711 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑛 = ((2nd ‘(1st𝑇))‘1)) → (((1st ‘(1st𝑇))‘𝑛) + 1) ∈ (0..^𝐾))
26587ffvelrnda 6943 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) ∈ (0..^𝐾))
266 elfzonn0 13360 . . . . . . . . . . . . . . 15 (((1st ‘(1st𝑇))‘𝑛) ∈ (0..^𝐾) → ((1st ‘(1st𝑇))‘𝑛) ∈ ℕ0)
267265, 266syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) ∈ ℕ0)
268267nn0cnd 12225 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) ∈ ℂ)
269268addid1d 11105 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → (((1st ‘(1st𝑇))‘𝑛) + 0) = ((1st ‘(1st𝑇))‘𝑛))
270269, 265eqeltrd 2839 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → (((1st ‘(1st𝑇))‘𝑛) + 0) ∈ (0..^𝐾))
271270adantr 480 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...𝑁)) ∧ ¬ 𝑛 = ((2nd ‘(1st𝑇))‘1)) → (((1st ‘(1st𝑇))‘𝑛) + 0) ∈ (0..^𝐾))
27275, 77, 264, 271ifbothda 4494 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0)) ∈ (0..^𝐾))
273272fmpttd 6971 . . . . . . . 8 (𝜑 → (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))):(1...𝑁)⟶(0..^𝐾))
274 ovex 7288 . . . . . . . . 9 (0..^𝐾) ∈ V
275274, 48elmap 8617 . . . . . . . 8 ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∈ ((0..^𝐾) ↑m (1...𝑁)) ↔ (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))):(1...𝑁)⟶(0..^𝐾))
276273, 275sylibr 233 . . . . . . 7 (𝜑 → (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∈ ((0..^𝐾) ↑m (1...𝑁)))
277 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...(𝑁 − 1))) → 𝑛 ∈ (1...(𝑁 − 1)))
278 1z 12280 . . . . . . . . . . . . . . . . 17 1 ∈ ℤ
27913, 278jctil 519 . . . . . . . . . . . . . . . 16 (𝜑 → (1 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ))
280 elfzelz 13185 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (1...(𝑁 − 1)) → 𝑛 ∈ ℤ)
281280, 278jctir 520 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (1...(𝑁 − 1)) → (𝑛 ∈ ℤ ∧ 1 ∈ ℤ))
282 fzaddel 13219 . . . . . . . . . . . . . . . 16 (((1 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑛 ∈ (1...(𝑁 − 1)) ↔ (𝑛 + 1) ∈ ((1 + 1)...((𝑁 − 1) + 1))))
283279, 281, 282syl2an 595 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...(𝑁 − 1))) → (𝑛 ∈ (1...(𝑁 − 1)) ↔ (𝑛 + 1) ∈ ((1 + 1)...((𝑁 − 1) + 1))))
284277, 283mpbid 231 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(𝑁 − 1))) → (𝑛 + 1) ∈ ((1 + 1)...((𝑁 − 1) + 1)))
285158oveq2d 7271 . . . . . . . . . . . . . . 15 (𝜑 → ((1 + 1)...((𝑁 − 1) + 1)) = ((1 + 1)...𝑁))
286285adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(𝑁 − 1))) → ((1 + 1)...((𝑁 − 1) + 1)) = ((1 + 1)...𝑁))
287284, 286eleqtrd 2841 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(𝑁 − 1))) → (𝑛 + 1) ∈ ((1 + 1)...𝑁))
288287ralrimiva 3107 . . . . . . . . . . . 12 (𝜑 → ∀𝑛 ∈ (1...(𝑁 − 1))(𝑛 + 1) ∈ ((1 + 1)...𝑁))
289 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ((1 + 1)...𝑁)) → 𝑦 ∈ ((1 + 1)...𝑁))
290 peano2z 12291 . . . . . . . . . . . . . . . . . . 19 (1 ∈ ℤ → (1 + 1) ∈ ℤ)
291278, 290ax-mp 5 . . . . . . . . . . . . . . . . . 18 (1 + 1) ∈ ℤ
29211, 291jctil 519 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ))
293 elfzelz 13185 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ((1 + 1)...𝑁) → 𝑦 ∈ ℤ)
294293, 278jctir 520 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ((1 + 1)...𝑁) → (𝑦 ∈ ℤ ∧ 1 ∈ ℤ))
295 fzsubel 13221 . . . . . . . . . . . . . . . . 17 ((((1 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑦 ∈ ((1 + 1)...𝑁) ↔ (𝑦 − 1) ∈ (((1 + 1) − 1)...(𝑁 − 1))))
296292, 294, 295syl2an 595 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ((1 + 1)...𝑁)) → (𝑦 ∈ ((1 + 1)...𝑁) ↔ (𝑦 − 1) ∈ (((1 + 1) − 1)...(𝑁 − 1))))
297289, 296mpbid 231 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ((1 + 1)...𝑁)) → (𝑦 − 1) ∈ (((1 + 1) − 1)...(𝑁 − 1)))
298 ax-1cn 10860 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
299298, 298pncan3oi 11167 . . . . . . . . . . . . . . . 16 ((1 + 1) − 1) = 1
300299oveq1i 7265 . . . . . . . . . . . . . . 15 (((1 + 1) − 1)...(𝑁 − 1)) = (1...(𝑁 − 1))
301297, 300eleqtrdi 2849 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ((1 + 1)...𝑁)) → (𝑦 − 1) ∈ (1...(𝑁 − 1)))
302293zcnd 12356 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ((1 + 1)...𝑁) → 𝑦 ∈ ℂ)
303 elfznn 13214 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (1...(𝑁 − 1)) → 𝑛 ∈ ℕ)
304303nncnd 11919 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (1...(𝑁 − 1)) → 𝑛 ∈ ℂ)
305 subadd2 11155 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑦 − 1) = 𝑛 ↔ (𝑛 + 1) = 𝑦))
306298, 305mp3an2 1447 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑦 − 1) = 𝑛 ↔ (𝑛 + 1) = 𝑦))
307306bicomd 222 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑛 + 1) = 𝑦 ↔ (𝑦 − 1) = 𝑛))
308 eqcom 2745 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑛 + 1) ↔ (𝑛 + 1) = 𝑦)
309 eqcom 2745 . . . . . . . . . . . . . . . . . 18 (𝑛 = (𝑦 − 1) ↔ (𝑦 − 1) = 𝑛)
310307, 308, 3093bitr4g 313 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑦 = (𝑛 + 1) ↔ 𝑛 = (𝑦 − 1)))
311302, 304, 310syl2an 595 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ((1 + 1)...𝑁) ∧ 𝑛 ∈ (1...(𝑁 − 1))) → (𝑦 = (𝑛 + 1) ↔ 𝑛 = (𝑦 − 1)))
312311ralrimiva 3107 . . . . . . . . . . . . . . 15 (𝑦 ∈ ((1 + 1)...𝑁) → ∀𝑛 ∈ (1...(𝑁 − 1))(𝑦 = (𝑛 + 1) ↔ 𝑛 = (𝑦 − 1)))
313312adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ((1 + 1)...𝑁)) → ∀𝑛 ∈ (1...(𝑁 − 1))(𝑦 = (𝑛 + 1) ↔ 𝑛 = (𝑦 − 1)))
314 reu6i 3658 . . . . . . . . . . . . . 14 (((𝑦 − 1) ∈ (1...(𝑁 − 1)) ∧ ∀𝑛 ∈ (1...(𝑁 − 1))(𝑦 = (𝑛 + 1) ↔ 𝑛 = (𝑦 − 1))) → ∃!𝑛 ∈ (1...(𝑁 − 1))𝑦 = (𝑛 + 1))
315301, 313, 314syl2anc 583 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((1 + 1)...𝑁)) → ∃!𝑛 ∈ (1...(𝑁 − 1))𝑦 = (𝑛 + 1))
316315ralrimiva 3107 . . . . . . . . . . . 12 (𝜑 → ∀𝑦 ∈ ((1 + 1)...𝑁)∃!𝑛 ∈ (1...(𝑁 − 1))𝑦 = (𝑛 + 1))
317 eqid 2738 . . . . . . . . . . . . 13 (𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)) = (𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1))
318317f1ompt 6967 . . . . . . . . . . . 12 ((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)):(1...(𝑁 − 1))–1-1-onto→((1 + 1)...𝑁) ↔ (∀𝑛 ∈ (1...(𝑁 − 1))(𝑛 + 1) ∈ ((1 + 1)...𝑁) ∧ ∀𝑦 ∈ ((1 + 1)...𝑁)∃!𝑛 ∈ (1...(𝑁 − 1))𝑦 = (𝑛 + 1)))
319288, 316, 318sylanbrc 582 . . . . . . . . . . 11 (𝜑 → (𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)):(1...(𝑁 − 1))–1-1-onto→((1 + 1)...𝑁))
320 f1osng 6740 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 1 ∈ V) → {⟨𝑁, 1⟩}:{𝑁}–1-1-onto→{1})
3211, 130, 320sylancl 585 . . . . . . . . . . 11 (𝜑 → {⟨𝑁, 1⟩}:{𝑁}–1-1-onto→{1})
32214, 16ltnled 11052 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 − 1) < 𝑁 ↔ ¬ 𝑁 ≤ (𝑁 − 1)))
32320, 322mpbid 231 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑁 ≤ (𝑁 − 1))
324 elfzle2 13189 . . . . . . . . . . . . 13 (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1))
325323, 324nsyl 140 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑁 ∈ (1...(𝑁 − 1)))
326 disjsn 4644 . . . . . . . . . . . 12 (((1...(𝑁 − 1)) ∩ {𝑁}) = ∅ ↔ ¬ 𝑁 ∈ (1...(𝑁 − 1)))
327325, 326sylibr 233 . . . . . . . . . . 11 (𝜑 → ((1...(𝑁 − 1)) ∩ {𝑁}) = ∅)
328 1re 10906 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
329328ltp1i 11809 . . . . . . . . . . . . . . 15 1 < (1 + 1)
330291zrei 12255 . . . . . . . . . . . . . . . 16 (1 + 1) ∈ ℝ
331328, 330ltnlei 11026 . . . . . . . . . . . . . . 15 (1 < (1 + 1) ↔ ¬ (1 + 1) ≤ 1)
332329, 331mpbi 229 . . . . . . . . . . . . . 14 ¬ (1 + 1) ≤ 1
333 elfzle1 13188 . . . . . . . . . . . . . 14 (1 ∈ ((1 + 1)...𝑁) → (1 + 1) ≤ 1)
334332, 333mto 196 . . . . . . . . . . . . 13 ¬ 1 ∈ ((1 + 1)...𝑁)
335 disjsn 4644 . . . . . . . . . . . . 13 ((((1 + 1)...𝑁) ∩ {1}) = ∅ ↔ ¬ 1 ∈ ((1 + 1)...𝑁))
336334, 335mpbir 230 . . . . . . . . . . . 12 (((1 + 1)...𝑁) ∩ {1}) = ∅
337336a1i 11 . . . . . . . . . . 11 (𝜑 → (((1 + 1)...𝑁) ∩ {1}) = ∅)
338 f1oun 6719 . . . . . . . . . . 11 ((((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)):(1...(𝑁 − 1))–1-1-onto→((1 + 1)...𝑁) ∧ {⟨𝑁, 1⟩}:{𝑁}–1-1-onto→{1}) ∧ (((1...(𝑁 − 1)) ∩ {𝑁}) = ∅ ∧ (((1 + 1)...𝑁) ∩ {1}) = ∅)) → ((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)) ∪ {⟨𝑁, 1⟩}):((1...(𝑁 − 1)) ∪ {𝑁})–1-1-onto→(((1 + 1)...𝑁) ∪ {1}))
339319, 321, 327, 337, 338syl22anc 835 . . . . . . . . . 10 (𝜑 → ((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)) ∪ {⟨𝑁, 1⟩}):((1...(𝑁 − 1)) ∪ {𝑁})–1-1-onto→(((1 + 1)...𝑁) ∪ {1}))
340130a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ V)
341158, 97eqeltrd 2839 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑁 − 1) + 1) ∈ (ℤ‘1))
342 uzid 12526 . . . . . . . . . . . . . . . . 17 ((𝑁 − 1) ∈ ℤ → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)))
343 peano2uz 12570 . . . . . . . . . . . . . . . . 17 ((𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
34413, 342, 3433syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
345158, 344eqeltrrd 2840 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ (ℤ‘(𝑁 − 1)))
346 fzsplit2 13210 . . . . . . . . . . . . . . 15 ((((𝑁 − 1) + 1) ∈ (ℤ‘1) ∧ 𝑁 ∈ (ℤ‘(𝑁 − 1))) → (1...𝑁) = ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)))
347341, 345, 346syl2anc 583 . . . . . . . . . . . . . 14 (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)))
348158oveq1d 7270 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑁 − 1) + 1)...𝑁) = (𝑁...𝑁))
349 fzsn 13227 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁})
35011, 349syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁...𝑁) = {𝑁})
351348, 350eqtrd 2778 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑁 − 1) + 1)...𝑁) = {𝑁})
352351uneq2d 4093 . . . . . . . . . . . . . 14 (𝜑 → ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)) = ((1...(𝑁 − 1)) ∪ {𝑁}))
353347, 352eqtr2d 2779 . . . . . . . . . . . . 13 (𝜑 → ((1...(𝑁 − 1)) ∪ {𝑁}) = (1...𝑁))
354 iftrue 4462 . . . . . . . . . . . . . 14 (𝑛 = 𝑁 → if(𝑛 = 𝑁, 1, (𝑛 + 1)) = 1)
355354adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛 = 𝑁) → if(𝑛 = 𝑁, 1, (𝑛 + 1)) = 1)
3561, 340, 353, 355fmptapd 7025 . . . . . . . . . . . 12 (𝜑 → ((𝑛 ∈ (1...(𝑁 − 1)) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ∪ {⟨𝑁, 1⟩}) = (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))
357 eleq1 2826 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑁 → (𝑛 ∈ (1...(𝑁 − 1)) ↔ 𝑁 ∈ (1...(𝑁 − 1))))
358357notbid 317 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑁 → (¬ 𝑛 ∈ (1...(𝑁 − 1)) ↔ ¬ 𝑁 ∈ (1...(𝑁 − 1))))
359325, 358syl5ibrcom 246 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑛 = 𝑁 → ¬ 𝑛 ∈ (1...(𝑁 − 1))))
360359necon2ad 2957 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑛 ∈ (1...(𝑁 − 1)) → 𝑛𝑁))
361360imp 406 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...(𝑁 − 1))) → 𝑛𝑁)
362 ifnefalse 4468 . . . . . . . . . . . . . . 15 (𝑛𝑁 → if(𝑛 = 𝑁, 1, (𝑛 + 1)) = (𝑛 + 1))
363361, 362syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(𝑁 − 1))) → if(𝑛 = 𝑁, 1, (𝑛 + 1)) = (𝑛 + 1))
364363mpteq2dva 5170 . . . . . . . . . . . . 13 (𝜑 → (𝑛 ∈ (1...(𝑁 − 1)) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) = (𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)))
365364uneq1d 4092 . . . . . . . . . . . 12 (𝜑 → ((𝑛 ∈ (1...(𝑁 − 1)) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ∪ {⟨𝑁, 1⟩}) = ((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)) ∪ {⟨𝑁, 1⟩}))
366356, 365eqtr3d 2780 . . . . . . . . . . 11 (𝜑 → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) = ((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)) ∪ {⟨𝑁, 1⟩}))
367347, 352eqtrd 2778 . . . . . . . . . . 11 (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ {𝑁}))
368 uzid 12526 . . . . . . . . . . . . . 14 (1 ∈ ℤ → 1 ∈ (ℤ‘1))
369 peano2uz 12570 . . . . . . . . . . . . . 14 (1 ∈ (ℤ‘1) → (1 + 1) ∈ (ℤ‘1))
370278, 368, 369mp2b 10 . . . . . . . . . . . . 13 (1 + 1) ∈ (ℤ‘1)
371 fzsplit2 13210 . . . . . . . . . . . . 13 (((1 + 1) ∈ (ℤ‘1) ∧ 𝑁 ∈ (ℤ‘1)) → (1...𝑁) = ((1...1) ∪ ((1 + 1)...𝑁)))
372370, 97, 371sylancr 586 . . . . . . . . . . . 12 (𝜑 → (1...𝑁) = ((1...1) ∪ ((1 + 1)...𝑁)))
373 fzsn 13227 . . . . . . . . . . . . . . 15 (1 ∈ ℤ → (1...1) = {1})
374278, 373ax-mp 5 . . . . . . . . . . . . . 14 (1...1) = {1}
375374uneq1i 4089 . . . . . . . . . . . . 13 ((1...1) ∪ ((1 + 1)...𝑁)) = ({1} ∪ ((1 + 1)...𝑁))
376375equncomi 4085 . . . . . . . . . . . 12 ((1...1) ∪ ((1 + 1)...𝑁)) = (((1 + 1)...𝑁) ∪ {1})
377372, 376eqtrdi 2795 . . . . . . . . . . 11 (𝜑 → (1...𝑁) = (((1 + 1)...𝑁) ∪ {1}))
378366, 367, 377f1oeq123d 6694 . . . . . . . . . 10 (𝜑 → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))):(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)) ∪ {⟨𝑁, 1⟩}):((1...(𝑁 − 1)) ∪ {𝑁})–1-1-onto→(((1 + 1)...𝑁) ∪ {1})))
379339, 378mpbird 256 . . . . . . . . 9 (𝜑 → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))):(1...𝑁)–1-1-onto→(1...𝑁))
380 f1oco 6722 . . . . . . . . 9 (((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) ∧ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))):(1...𝑁)–1-1-onto→(1...𝑁)) → ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))):(1...𝑁)–1-1-onto→(1...𝑁))
38193, 379, 380syl2anc 583 . . . . . . . 8 (𝜑 → ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))):(1...𝑁)–1-1-onto→(1...𝑁))
382 f1oeq1 6688 . . . . . . . . 9 (𝑓 = ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))):(1...𝑁)–1-1-onto→(1...𝑁)))
38352, 382elab 3602 . . . . . . . 8 (((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))):(1...𝑁)–1-1-onto→(1...𝑁))
384381, 383sylibr 233 . . . . . . 7 (𝜑 → ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
385276, 384opelxpd 5618 . . . . . 6 (𝜑 → ⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩ ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
3861nnnn0d 12223 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
387 nn0fz0 13283 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
388386, 387sylib 217 . . . . . 6 (𝜑𝑁 ∈ (0...𝑁))
389385, 388opelxpd 5618 . . . . 5 (𝜑 → ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
390 elrab3t 3616 . . . . 5 ((∀𝑡(𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})))))) ∧ ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) → (⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))))))
39173, 389, 390syl2anc 583 . . . 4 (𝜑 → (⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))))))
3927, 391mpbird 256 . . 3 (𝜑 → ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))})
393392, 2eleqtrrdi 2850 . 2 (𝜑 → ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ∈ 𝑆)
394 fveqeq2 6765 . . . . . 6 (⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ = 𝑇 → ((2nd ‘⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩) = 𝑁 ↔ (2nd𝑇) = 𝑁))
39527, 394syl5ibcom 244 . . . . 5 (𝜑 → (⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ = 𝑇 → (2nd𝑇) = 𝑁))
3961nnne0d 11953 . . . . . 6 (𝜑𝑁 ≠ 0)
397 neeq1 3005 . . . . . 6 ((2nd𝑇) = 𝑁 → ((2nd𝑇) ≠ 0 ↔ 𝑁 ≠ 0))
398396, 397syl5ibrcom 246 . . . . 5 (𝜑 → ((2nd𝑇) = 𝑁 → (2nd𝑇) ≠ 0))
399395, 398syld 47 . . . 4 (𝜑 → (⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ = 𝑇 → (2nd𝑇) ≠ 0))
400399necon2d 2965 . . 3 (𝜑 → ((2nd𝑇) = 0 → ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ≠ 𝑇))
4016, 400mpd 15 . 2 (𝜑 → ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ≠ 𝑇)
402 neeq1 3005 . . 3 (𝑧 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ → (𝑧𝑇 ↔ ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ≠ 𝑇))
403402rspcev 3552 . 2 ((⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ∈ 𝑆 ∧ ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st𝑇))‘1), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))⟩, 𝑁⟩ ≠ 𝑇) → ∃𝑧𝑆 𝑧𝑇)
404393, 401, 403syl2anc 583 1 (𝜑 → ∃𝑧𝑆 𝑧𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085  wal 1537   = wceq 1539  wcel 2108  {cab 2715  wne 2942  wral 3063  wrex 3064  ∃!wreu 3065  {crab 3067  Vcvv 3422  csb 3828  cun 3881  cin 3882  wss 3883  c0 4253  ifcif 4456  {csn 4558  cop 4564   class class class wbr 5070  cmpt 5153   × cxp 5578  ccnv 5579  ran crn 5581  cima 5583  ccom 5584  Fun wfun 6412   Fn wfn 6413  wf 6414  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  f cof 7509  1st c1st 7802  2nd c2nd 7803  m cmap 8573  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cmin 11135  cn 11903  0cn0 12163  cz 12249  cuz 12511  ...cfz 13168  ..^cfzo 13311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312
This theorem is referenced by:  poimirlem18  35722
  Copyright terms: Public domain W3C validator