MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrn2crct Structured version   Visualization version   GIF version

Theorem uspgrn2crct 27594
Description: In a simple pseudograph there are no circuits with length 2 (consisting of two edges). (Contributed by Alexander van der Vekens, 9-Nov-2017.) (Revised by AV, 3-Feb-2021.) (Proof shortened by AV, 31-Oct-2021.)
Assertion
Ref Expression
uspgrn2crct ((𝐺 ∈ USPGraph ∧ 𝐹(Circuits‘𝐺)𝑃) → (♯‘𝐹) ≠ 2)

Proof of Theorem uspgrn2crct
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crctprop 27581 . . 3 (𝐹(Circuits‘𝐺)𝑃 → (𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
2 istrl 27486 . . . . . . 7 (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹))
3 uspgrupgr 26969 . . . . . . . . 9 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
4 eqid 2798 . . . . . . . . . . . . 13 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2798 . . . . . . . . . . . . 13 (iEdg‘𝐺) = (iEdg‘𝐺)
64, 5upgriswlk 27430 . . . . . . . . . . . 12 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
7 preq2 4630 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃‘2) = (𝑃‘0) → {(𝑃‘1), (𝑃‘2)} = {(𝑃‘1), (𝑃‘0)})
8 prcom 4628 . . . . . . . . . . . . . . . . . . . . . . . . . 26 {(𝑃‘1), (𝑃‘0)} = {(𝑃‘0), (𝑃‘1)}
97, 8eqtrdi 2849 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃‘2) = (𝑃‘0) → {(𝑃‘1), (𝑃‘2)} = {(𝑃‘0), (𝑃‘1)})
109eqcoms 2806 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃‘0) = (𝑃‘2) → {(𝑃‘1), (𝑃‘2)} = {(𝑃‘0), (𝑃‘1)})
1110eqeq2d 2809 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃‘0) = (𝑃‘2) → (((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} ↔ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)}))
1211anbi2d 631 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃‘0) = (𝑃‘2) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) ↔ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)})))
1312ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑃‘0) = (𝑃‘2) ∧ ((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) ↔ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)})))
14 eqtr3 2820 . . . . . . . . . . . . . . . . . . . . . 22 ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)}) → ((iEdg‘𝐺)‘(𝐹‘0)) = ((iEdg‘𝐺)‘(𝐹‘1)))
154, 5uspgrf 26947 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐺 ∈ USPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
1615adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Fun 𝐹𝐺 ∈ USPGraph) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
1716adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph)) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
1817adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph)) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
19 df-f1 6329 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺) ↔ (𝐹:(0..^(♯‘𝐹))⟶dom (iEdg‘𝐺) ∧ Fun 𝐹))
2019simplbi2 504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐹:(0..^(♯‘𝐹))⟶dom (iEdg‘𝐺) → (Fun 𝐹𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺)))
21 wrdf 13862 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐹 ∈ Word dom (iEdg‘𝐺) → 𝐹:(0..^(♯‘𝐹))⟶dom (iEdg‘𝐺))
2220, 21syl11 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Fun 𝐹 → (𝐹 ∈ Word dom (iEdg‘𝐺) → 𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺)))
2322adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Fun 𝐹𝐺 ∈ USPGraph) → (𝐹 ∈ Word dom (iEdg‘𝐺) → 𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺)))
2423adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph)) → (𝐹 ∈ Word dom (iEdg‘𝐺) → 𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺)))
2524imp 410 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph)) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → 𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺))
26 2nn 11698 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 ∈ ℕ
27 lbfzo0 13072 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (0 ∈ (0..^2) ↔ 2 ∈ ℕ)
2826, 27mpbir 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 0 ∈ (0..^2)
29 1nn0 11901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1 ∈ ℕ0
30 1lt2 11796 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1 < 2
31 elfzo0 13073 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (1 ∈ (0..^2) ↔ (1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2))
3229, 26, 30, 31mpbir3an 1338 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1 ∈ (0..^2)
3328, 32pm3.2i 474 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (0 ∈ (0..^2) ∧ 1 ∈ (0..^2))
34 oveq2 7143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((♯‘𝐹) = 2 → (0..^(♯‘𝐹)) = (0..^2))
3534eleq2d 2875 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝐹) = 2 → (0 ∈ (0..^(♯‘𝐹)) ↔ 0 ∈ (0..^2)))
3634eleq2d 2875 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝐹) = 2 → (1 ∈ (0..^(♯‘𝐹)) ↔ 1 ∈ (0..^2)))
3735, 36anbi12d 633 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝐹) = 2 → ((0 ∈ (0..^(♯‘𝐹)) ∧ 1 ∈ (0..^(♯‘𝐹))) ↔ (0 ∈ (0..^2) ∧ 1 ∈ (0..^2))))
3833, 37mpbiri 261 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝐹) = 2 → (0 ∈ (0..^(♯‘𝐹)) ∧ 1 ∈ (0..^(♯‘𝐹))))
3938ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph)) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (0 ∈ (0..^(♯‘𝐹)) ∧ 1 ∈ (0..^(♯‘𝐹))))
40 f1cofveqaeq 6994 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺)) ∧ (0 ∈ (0..^(♯‘𝐹)) ∧ 1 ∈ (0..^(♯‘𝐹)))) → (((iEdg‘𝐺)‘(𝐹‘0)) = ((iEdg‘𝐺)‘(𝐹‘1)) → 0 = 1))
4118, 25, 39, 40syl21anc 836 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph)) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (((iEdg‘𝐺)‘(𝐹‘0)) = ((iEdg‘𝐺)‘(𝐹‘1)) → 0 = 1))
42 0ne1 11696 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ≠ 1
43 eqneqall 2998 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 = 1 → (0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘2)))
4441, 42, 43syl6mpi 67 . . . . . . . . . . . . . . . . . . . . . . 23 ((((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph)) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (((iEdg‘𝐺)‘(𝐹‘0)) = ((iEdg‘𝐺)‘(𝐹‘1)) → (𝑃‘0) ≠ (𝑃‘2)))
4544adantll 713 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑃‘0) = (𝑃‘2) ∧ ((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (((iEdg‘𝐺)‘(𝐹‘0)) = ((iEdg‘𝐺)‘(𝐹‘1)) → (𝑃‘0) ≠ (𝑃‘2)))
4614, 45syl5 34 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑃‘0) = (𝑃‘2) ∧ ((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)}) → (𝑃‘0) ≠ (𝑃‘2)))
4713, 46sylbid 243 . . . . . . . . . . . . . . . . . . . 20 ((((𝑃‘0) = (𝑃‘2) ∧ ((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2)))
4847expimpd 457 . . . . . . . . . . . . . . . . . . 19 (((𝑃‘0) = (𝑃‘2) ∧ ((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph))) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2)))
4948ex 416 . . . . . . . . . . . . . . . . . 18 ((𝑃‘0) = (𝑃‘2) → (((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph)) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2))))
50 2a1 28 . . . . . . . . . . . . . . . . . 18 ((𝑃‘0) ≠ (𝑃‘2) → (((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph)) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2))))
5149, 50pm2.61ine 3070 . . . . . . . . . . . . . . . . 17 (((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph)) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2)))
52 fzo0to2pr 13117 . . . . . . . . . . . . . . . . . . . . . . 23 (0..^2) = {0, 1}
5334, 52eqtrdi 2849 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐹) = 2 → (0..^(♯‘𝐹)) = {0, 1})
5453raleqdv 3364 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) = 2 → (∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
55 2wlklem 27457 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
5654, 55syl6bb 290 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) = 2 → (∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))
5756anbi2d 631 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐹) = 2 → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
58 fveq2 6645 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) = 2 → (𝑃‘(♯‘𝐹)) = (𝑃‘2))
5958neeq2d 3047 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐹) = 2 → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) ↔ (𝑃‘0) ≠ (𝑃‘2)))
6057, 59imbi12d 348 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐹) = 2 → (((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) ↔ ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2))))
6160adantr 484 . . . . . . . . . . . . . . . . 17 (((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph)) → (((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) ↔ ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2))))
6251, 61mpbird 260 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph)) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))))
6362ex 416 . . . . . . . . . . . . . . 15 ((♯‘𝐹) = 2 → ((Fun 𝐹𝐺 ∈ USPGraph) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))))
6463com13 88 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → ((Fun 𝐹𝐺 ∈ USPGraph) → ((♯‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))))
6564expd 419 . . . . . . . . . . . . 13 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (Fun 𝐹 → (𝐺 ∈ USPGraph → ((♯‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))))))
66653adant2 1128 . . . . . . . . . . . 12 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (Fun 𝐹 → (𝐺 ∈ USPGraph → ((♯‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))))))
676, 66syl6bi 256 . . . . . . . . . . 11 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 → (Fun 𝐹 → (𝐺 ∈ USPGraph → ((♯‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))))))
6867impd 414 . . . . . . . . . 10 (𝐺 ∈ UPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹) → (𝐺 ∈ USPGraph → ((♯‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))))))
6968com23 86 . . . . . . . . 9 (𝐺 ∈ UPGraph → (𝐺 ∈ USPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹) → ((♯‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))))))
703, 69mpcom 38 . . . . . . . 8 (𝐺 ∈ USPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹) → ((♯‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))))
7170com12 32 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹) → (𝐺 ∈ USPGraph → ((♯‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))))
722, 71sylbi 220 . . . . . 6 (𝐹(Trails‘𝐺)𝑃 → (𝐺 ∈ USPGraph → ((♯‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))))
7372imp 410 . . . . 5 ((𝐹(Trails‘𝐺)𝑃𝐺 ∈ USPGraph) → ((♯‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))))
7473necon2d 3010 . . . 4 ((𝐹(Trails‘𝐺)𝑃𝐺 ∈ USPGraph) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (♯‘𝐹) ≠ 2))
7574impancom 455 . . 3 ((𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝐺 ∈ USPGraph → (♯‘𝐹) ≠ 2))
761, 75syl 17 . 2 (𝐹(Circuits‘𝐺)𝑃 → (𝐺 ∈ USPGraph → (♯‘𝐹) ≠ 2))
7776impcom 411 1 ((𝐺 ∈ USPGraph ∧ 𝐹(Circuits‘𝐺)𝑃) → (♯‘𝐹) ≠ 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  {crab 3110  cdif 3878  c0 4243  𝒫 cpw 4497  {csn 4525  {cpr 4527   class class class wbr 5030  ccnv 5518  dom cdm 5519  Fun wfun 6318  wf 6320  1-1wf1 6321  cfv 6324  (class class class)co 7135  0cc0 10526  1c1 10527   + caddc 10529   < clt 10664  cle 10665  cn 11625  2c2 11680  0cn0 11885  ...cfz 12885  ..^cfzo 13028  chash 13686  Word cword 13857  Vtxcvtx 26789  iEdgciedg 26790  UPGraphcupgr 26873  USPGraphcuspgr 26941  Walkscwlks 27386  Trailsctrls 27480  Circuitsccrcts 27573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-edg 26841  df-uhgr 26851  df-upgr 26875  df-uspgr 26943  df-wlks 27389  df-trls 27482  df-crcts 27575
This theorem is referenced by:  usgrn2cycl  27595
  Copyright terms: Public domain W3C validator