Step | Hyp | Ref
| Expression |
1 | | crctprop 29038 |
. . 3
β’ (πΉ(CircuitsβπΊ)π β (πΉ(TrailsβπΊ)π β§ (πβ0) = (πβ(β―βπΉ)))) |
2 | | istrl 28942 |
. . . . . . 7
β’ (πΉ(TrailsβπΊ)π β (πΉ(WalksβπΊ)π β§ Fun β‘πΉ)) |
3 | | uspgrupgr 28425 |
. . . . . . . . 9
β’ (πΊ β USPGraph β πΊ β
UPGraph) |
4 | | eqid 2732 |
. . . . . . . . . . . . 13
β’
(VtxβπΊ) =
(VtxβπΊ) |
5 | | eqid 2732 |
. . . . . . . . . . . . 13
β’
(iEdgβπΊ) =
(iEdgβπΊ) |
6 | 4, 5 | upgriswlk 28887 |
. . . . . . . . . . . 12
β’ (πΊ β UPGraph β (πΉ(WalksβπΊ)π β (πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))}))) |
7 | | preq2 4737 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ ((πβ2) = (πβ0) β {(πβ1), (πβ2)} = {(πβ1), (πβ0)}) |
8 | | prcom 4735 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ {(πβ1), (πβ0)} = {(πβ0), (πβ1)} |
9 | 7, 8 | eqtrdi 2788 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ ((πβ2) = (πβ0) β {(πβ1), (πβ2)} = {(πβ0), (πβ1)}) |
10 | 9 | eqcoms 2740 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ((πβ0) = (πβ2) β {(πβ1), (πβ2)} = {(πβ0), (πβ1)}) |
11 | 10 | eqeq2d 2743 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((πβ0) = (πβ2) β (((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)} β ((iEdgβπΊ)β(πΉβ1)) = {(πβ0), (πβ1)})) |
12 | 11 | anbi2d 629 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((πβ0) = (πβ2) β ((((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)}) β (((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ0), (πβ1)}))) |
13 | 12 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((((πβ0) = (πβ2) β§ ((β―βπΉ) = 2 β§ (Fun β‘πΉ β§ πΊ β USPGraph))) β§ πΉ β Word dom (iEdgβπΊ)) β ((((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)}) β (((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ0), (πβ1)}))) |
14 | | eqtr3 2758 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
((((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ0), (πβ1)}) β ((iEdgβπΊ)β(πΉβ0)) = ((iEdgβπΊ)β(πΉβ1))) |
15 | 4, 5 | uspgrf 28403 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (πΊ β USPGraph β
(iEdgβπΊ):dom
(iEdgβπΊ)β1-1β{π₯ β (π« (VtxβπΊ) β {β
}) β£
(β―βπ₯) β€
2}) |
16 | 15 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ ((Fun
β‘πΉ β§ πΊ β USPGraph) β (iEdgβπΊ):dom (iEdgβπΊ)β1-1β{π₯ β (π« (VtxβπΊ) β {β
}) β£
(β―βπ₯) β€
2}) |
17 | 16 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’
(((β―βπΉ)
= 2 β§ (Fun β‘πΉ β§ πΊ β USPGraph)) β (iEdgβπΊ):dom (iEdgβπΊ)β1-1β{π₯ β (π« (VtxβπΊ) β {β
}) β£
(β―βπ₯) β€
2}) |
18 | 17 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’
((((β―βπΉ)
= 2 β§ (Fun β‘πΉ β§ πΊ β USPGraph)) β§ πΉ β Word dom (iEdgβπΊ)) β (iEdgβπΊ):dom (iEdgβπΊ)β1-1β{π₯ β (π« (VtxβπΊ) β {β
}) β£
(β―βπ₯) β€
2}) |
19 | | df-f1 6545 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (πΉ:(0..^(β―βπΉ))β1-1βdom (iEdgβπΊ) β (πΉ:(0..^(β―βπΉ))βΆdom (iEdgβπΊ) β§ Fun β‘πΉ)) |
20 | 19 | simplbi2 501 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (πΉ:(0..^(β―βπΉ))βΆdom (iEdgβπΊ) β (Fun β‘πΉ β πΉ:(0..^(β―βπΉ))β1-1βdom (iEdgβπΊ))) |
21 | | wrdf 14465 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (πΉ β Word dom
(iEdgβπΊ) β πΉ:(0..^(β―βπΉ))βΆdom (iEdgβπΊ)) |
22 | 20, 21 | syl11 33 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (Fun
β‘πΉ β (πΉ β Word dom (iEdgβπΊ) β πΉ:(0..^(β―βπΉ))β1-1βdom (iEdgβπΊ))) |
23 | 22 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ ((Fun
β‘πΉ β§ πΊ β USPGraph) β (πΉ β Word dom (iEdgβπΊ) β πΉ:(0..^(β―βπΉ))β1-1βdom (iEdgβπΊ))) |
24 | 23 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’
(((β―βπΉ)
= 2 β§ (Fun β‘πΉ β§ πΊ β USPGraph)) β (πΉ β Word dom (iEdgβπΊ) β πΉ:(0..^(β―βπΉ))β1-1βdom (iEdgβπΊ))) |
25 | 24 | imp 407 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’
((((β―βπΉ)
= 2 β§ (Fun β‘πΉ β§ πΊ β USPGraph)) β§ πΉ β Word dom (iEdgβπΊ)) β πΉ:(0..^(β―βπΉ))β1-1βdom (iEdgβπΊ)) |
26 | | 2nn 12281 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ 2 β
β |
27 | | lbfzo0 13668 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (0 β
(0..^2) β 2 β β) |
28 | 26, 27 | mpbir 230 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ 0 β
(0..^2) |
29 | | 1nn0 12484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ 1 β
β0 |
30 | | 1lt2 12379 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ 1 <
2 |
31 | | elfzo0 13669 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (1 β
(0..^2) β (1 β β0 β§ 2 β β β§ 1
< 2)) |
32 | 29, 26, 30, 31 | mpbir3an 1341 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ 1 β
(0..^2) |
33 | 28, 32 | pm3.2i 471 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (0 β
(0..^2) β§ 1 β (0..^2)) |
34 | | oveq2 7413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’
((β―βπΉ) =
2 β (0..^(β―βπΉ)) = (0..^2)) |
35 | 34 | eleq2d 2819 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’
((β―βπΉ) =
2 β (0 β (0..^(β―βπΉ)) β 0 β
(0..^2))) |
36 | 34 | eleq2d 2819 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’
((β―βπΉ) =
2 β (1 β (0..^(β―βπΉ)) β 1 β
(0..^2))) |
37 | 35, 36 | anbi12d 631 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’
((β―βπΉ) =
2 β ((0 β (0..^(β―βπΉ)) β§ 1 β (0..^(β―βπΉ))) β (0 β (0..^2)
β§ 1 β (0..^2)))) |
38 | 33, 37 | mpbiri 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’
((β―βπΉ) =
2 β (0 β (0..^(β―βπΉ)) β§ 1 β (0..^(β―βπΉ)))) |
39 | 38 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’
((((β―βπΉ)
= 2 β§ (Fun β‘πΉ β§ πΊ β USPGraph)) β§ πΉ β Word dom (iEdgβπΊ)) β (0 β
(0..^(β―βπΉ))
β§ 1 β (0..^(β―βπΉ)))) |
40 | | f1cofveqaeq 7253 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’
((((iEdgβπΊ):dom (iEdgβπΊ)β1-1β{π₯ β (π« (VtxβπΊ) β {β
}) β£
(β―βπ₯) β€ 2}
β§ πΉ:(0..^(β―βπΉ))β1-1βdom (iEdgβπΊ)) β§ (0 β (0..^(β―βπΉ)) β§ 1 β
(0..^(β―βπΉ))))
β (((iEdgβπΊ)β(πΉβ0)) = ((iEdgβπΊ)β(πΉβ1)) β 0 = 1)) |
41 | 18, 25, 39, 40 | syl21anc 836 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’
((((β―βπΉ)
= 2 β§ (Fun β‘πΉ β§ πΊ β USPGraph)) β§ πΉ β Word dom (iEdgβπΊ)) β (((iEdgβπΊ)β(πΉβ0)) = ((iEdgβπΊ)β(πΉβ1)) β 0 = 1)) |
42 | | 0ne1 12279 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ 0 β
1 |
43 | | eqneqall 2951 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (0 = 1
β (0 β 1 β (πβ0) β (πβ2))) |
44 | 41, 42, 43 | syl6mpi 67 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’
((((β―βπΉ)
= 2 β§ (Fun β‘πΉ β§ πΊ β USPGraph)) β§ πΉ β Word dom (iEdgβπΊ)) β (((iEdgβπΊ)β(πΉβ0)) = ((iEdgβπΊ)β(πΉβ1)) β (πβ0) β (πβ2))) |
45 | 44 | adantll 712 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((((πβ0) = (πβ2) β§ ((β―βπΉ) = 2 β§ (Fun β‘πΉ β§ πΊ β USPGraph))) β§ πΉ β Word dom (iEdgβπΊ)) β (((iEdgβπΊ)β(πΉβ0)) = ((iEdgβπΊ)β(πΉβ1)) β (πβ0) β (πβ2))) |
46 | 14, 45 | syl5 34 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((((πβ0) = (πβ2) β§ ((β―βπΉ) = 2 β§ (Fun β‘πΉ β§ πΊ β USPGraph))) β§ πΉ β Word dom (iEdgβπΊ)) β ((((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ0), (πβ1)}) β (πβ0) β (πβ2))) |
47 | 13, 46 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((((πβ0) = (πβ2) β§ ((β―βπΉ) = 2 β§ (Fun β‘πΉ β§ πΊ β USPGraph))) β§ πΉ β Word dom (iEdgβπΊ)) β ((((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)}) β (πβ0) β (πβ2))) |
48 | 47 | expimpd 454 |
. . . . . . . . . . . . . . . . . . 19
β’ (((πβ0) = (πβ2) β§ ((β―βπΉ) = 2 β§ (Fun β‘πΉ β§ πΊ β USPGraph))) β ((πΉ β Word dom
(iEdgβπΊ) β§
(((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)})) β (πβ0) β (πβ2))) |
49 | 48 | ex 413 |
. . . . . . . . . . . . . . . . . 18
β’ ((πβ0) = (πβ2) β (((β―βπΉ) = 2 β§ (Fun β‘πΉ β§ πΊ β USPGraph)) β ((πΉ β Word dom
(iEdgβπΊ) β§
(((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)})) β (πβ0) β (πβ2)))) |
50 | | 2a1 28 |
. . . . . . . . . . . . . . . . . 18
β’ ((πβ0) β (πβ2) β
(((β―βπΉ) = 2
β§ (Fun β‘πΉ β§ πΊ β USPGraph)) β ((πΉ β Word dom
(iEdgβπΊ) β§
(((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)})) β (πβ0) β (πβ2)))) |
51 | 49, 50 | pm2.61ine 3025 |
. . . . . . . . . . . . . . . . 17
β’
(((β―βπΉ)
= 2 β§ (Fun β‘πΉ β§ πΊ β USPGraph)) β ((πΉ β Word dom
(iEdgβπΊ) β§
(((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)})) β (πβ0) β (πβ2))) |
52 | | fzo0to2pr 13713 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (0..^2) =
{0, 1} |
53 | 34, 52 | eqtrdi 2788 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
((β―βπΉ) =
2 β (0..^(β―βπΉ)) = {0, 1}) |
54 | 53 | raleqdv 3325 |
. . . . . . . . . . . . . . . . . . . . 21
β’
((β―βπΉ) =
2 β (βπ β
(0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))} β βπ β {0, 1} ((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))})) |
55 | | 2wlklem 28913 |
. . . . . . . . . . . . . . . . . . . . 21
β’
(βπ β
{0, 1} ((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))} β (((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)})) |
56 | 54, 55 | bitrdi 286 |
. . . . . . . . . . . . . . . . . . . 20
β’
((β―βπΉ) =
2 β (βπ β
(0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))} β (((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)}))) |
57 | 56 | anbi2d 629 |
. . . . . . . . . . . . . . . . . . 19
β’
((β―βπΉ) =
2 β ((πΉ β Word
dom (iEdgβπΊ) β§
βπ β
(0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β (πΉ β Word dom (iEdgβπΊ) β§ (((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)})))) |
58 | | fveq2 6888 |
. . . . . . . . . . . . . . . . . . . 20
β’
((β―βπΉ) =
2 β (πβ(β―βπΉ)) = (πβ2)) |
59 | 58 | neeq2d 3001 |
. . . . . . . . . . . . . . . . . . 19
β’
((β―βπΉ) =
2 β ((πβ0) β
(πβ(β―βπΉ)) β (πβ0) β (πβ2))) |
60 | 57, 59 | imbi12d 344 |
. . . . . . . . . . . . . . . . . 18
β’
((β―βπΉ) =
2 β (((πΉ β Word
dom (iEdgβπΊ) β§
βπ β
(0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β (πβ0) β (πβ(β―βπΉ))) β ((πΉ β Word dom (iEdgβπΊ) β§ (((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)})) β (πβ0) β (πβ2)))) |
61 | 60 | adantr 481 |
. . . . . . . . . . . . . . . . 17
β’
(((β―βπΉ)
= 2 β§ (Fun β‘πΉ β§ πΊ β USPGraph)) β (((πΉ β Word dom
(iEdgβπΊ) β§
βπ β
(0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β (πβ0) β (πβ(β―βπΉ))) β ((πΉ β Word dom (iEdgβπΊ) β§ (((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)})) β (πβ0) β (πβ2)))) |
62 | 51, 61 | mpbird 256 |
. . . . . . . . . . . . . . . 16
β’
(((β―βπΉ)
= 2 β§ (Fun β‘πΉ β§ πΊ β USPGraph)) β ((πΉ β Word dom
(iEdgβπΊ) β§
βπ β
(0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β (πβ0) β (πβ(β―βπΉ)))) |
63 | 62 | ex 413 |
. . . . . . . . . . . . . . 15
β’
((β―βπΉ) =
2 β ((Fun β‘πΉ β§ πΊ β USPGraph) β ((πΉ β Word dom (iEdgβπΊ) β§ βπ β
(0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β (πβ0) β (πβ(β―βπΉ))))) |
64 | 63 | com13 88 |
. . . . . . . . . . . . . 14
β’ ((πΉ β Word dom
(iEdgβπΊ) β§
βπ β
(0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β ((Fun β‘πΉ β§ πΊ β USPGraph) β
((β―βπΉ) = 2
β (πβ0) β
(πβ(β―βπΉ))))) |
65 | 64 | expd 416 |
. . . . . . . . . . . . 13
β’ ((πΉ β Word dom
(iEdgβπΊ) β§
βπ β
(0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β (Fun β‘πΉ β (πΊ β USPGraph β
((β―βπΉ) = 2
β (πβ0) β
(πβ(β―βπΉ)))))) |
66 | 65 | 3adant2 1131 |
. . . . . . . . . . . 12
β’ ((πΉ β Word dom
(iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ) β§ βπ β
(0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β (Fun β‘πΉ β (πΊ β USPGraph β
((β―βπΉ) = 2
β (πβ0) β
(πβ(β―βπΉ)))))) |
67 | 6, 66 | syl6bi 252 |
. . . . . . . . . . 11
β’ (πΊ β UPGraph β (πΉ(WalksβπΊ)π β (Fun β‘πΉ β (πΊ β USPGraph β
((β―βπΉ) = 2
β (πβ0) β
(πβ(β―βπΉ))))))) |
68 | 67 | impd 411 |
. . . . . . . . . 10
β’ (πΊ β UPGraph β ((πΉ(WalksβπΊ)π β§ Fun β‘πΉ) β (πΊ β USPGraph β
((β―βπΉ) = 2
β (πβ0) β
(πβ(β―βπΉ)))))) |
69 | 68 | com23 86 |
. . . . . . . . 9
β’ (πΊ β UPGraph β (πΊ β USPGraph β ((πΉ(WalksβπΊ)π β§ Fun β‘πΉ) β ((β―βπΉ) = 2 β (πβ0) β (πβ(β―βπΉ)))))) |
70 | 3, 69 | mpcom 38 |
. . . . . . . 8
β’ (πΊ β USPGraph β ((πΉ(WalksβπΊ)π β§ Fun β‘πΉ) β ((β―βπΉ) = 2 β (πβ0) β (πβ(β―βπΉ))))) |
71 | 70 | com12 32 |
. . . . . . 7
β’ ((πΉ(WalksβπΊ)π β§ Fun β‘πΉ) β (πΊ β USPGraph β
((β―βπΉ) = 2
β (πβ0) β
(πβ(β―βπΉ))))) |
72 | 2, 71 | sylbi 216 |
. . . . . 6
β’ (πΉ(TrailsβπΊ)π β (πΊ β USPGraph β
((β―βπΉ) = 2
β (πβ0) β
(πβ(β―βπΉ))))) |
73 | 72 | imp 407 |
. . . . 5
β’ ((πΉ(TrailsβπΊ)π β§ πΊ β USPGraph) β
((β―βπΉ) = 2
β (πβ0) β
(πβ(β―βπΉ)))) |
74 | 73 | necon2d 2963 |
. . . 4
β’ ((πΉ(TrailsβπΊ)π β§ πΊ β USPGraph) β ((πβ0) = (πβ(β―βπΉ)) β (β―βπΉ) β 2)) |
75 | 74 | impancom 452 |
. . 3
β’ ((πΉ(TrailsβπΊ)π β§ (πβ0) = (πβ(β―βπΉ))) β (πΊ β USPGraph β (β―βπΉ) β 2)) |
76 | 1, 75 | syl 17 |
. 2
β’ (πΉ(CircuitsβπΊ)π β (πΊ β USPGraph β (β―βπΉ) β 2)) |
77 | 76 | impcom 408 |
1
β’ ((πΊ β USPGraph β§ πΉ(CircuitsβπΊ)π) β (β―βπΉ) β 2) |