MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrn2crct Structured version   Visualization version   GIF version

Theorem uspgrn2crct 29786
Description: In a simple pseudograph there are no circuits with length 2 (consisting of two edges). (Contributed by Alexander van der Vekens, 9-Nov-2017.) (Revised by AV, 3-Feb-2021.) (Proof shortened by AV, 31-Oct-2021.)
Assertion
Ref Expression
uspgrn2crct ((𝐺 ∈ USPGraph ∧ 𝐹(Circuits‘𝐺)𝑃) → (♯‘𝐹) ≠ 2)

Proof of Theorem uspgrn2crct
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crctprop 29770 . . 3 (𝐹(Circuits‘𝐺)𝑃 → (𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
2 istrl 29673 . . . . . . 7 (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹))
3 uspgrupgr 29156 . . . . . . . . 9 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
4 eqid 2731 . . . . . . . . . . . . 13 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2731 . . . . . . . . . . . . 13 (iEdg‘𝐺) = (iEdg‘𝐺)
64, 5upgriswlk 29619 . . . . . . . . . . . 12 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
7 preq2 4684 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃‘2) = (𝑃‘0) → {(𝑃‘1), (𝑃‘2)} = {(𝑃‘1), (𝑃‘0)})
8 prcom 4682 . . . . . . . . . . . . . . . . . . . . . . . . . 26 {(𝑃‘1), (𝑃‘0)} = {(𝑃‘0), (𝑃‘1)}
97, 8eqtrdi 2782 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃‘2) = (𝑃‘0) → {(𝑃‘1), (𝑃‘2)} = {(𝑃‘0), (𝑃‘1)})
109eqcoms 2739 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃‘0) = (𝑃‘2) → {(𝑃‘1), (𝑃‘2)} = {(𝑃‘0), (𝑃‘1)})
1110eqeq2d 2742 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃‘0) = (𝑃‘2) → (((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} ↔ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)}))
1211anbi2d 630 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃‘0) = (𝑃‘2) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) ↔ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)})))
1312ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑃‘0) = (𝑃‘2) ∧ ((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) ↔ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)})))
14 eqtr3 2753 . . . . . . . . . . . . . . . . . . . . . 22 ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)}) → ((iEdg‘𝐺)‘(𝐹‘0)) = ((iEdg‘𝐺)‘(𝐹‘1)))
154, 5uspgrf 29132 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐺 ∈ USPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
1615adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Fun 𝐹𝐺 ∈ USPGraph) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
1716adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph)) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
1817adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph)) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
19 df-f1 6486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺) ↔ (𝐹:(0..^(♯‘𝐹))⟶dom (iEdg‘𝐺) ∧ Fun 𝐹))
2019simplbi2 500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐹:(0..^(♯‘𝐹))⟶dom (iEdg‘𝐺) → (Fun 𝐹𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺)))
21 wrdf 14425 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐹 ∈ Word dom (iEdg‘𝐺) → 𝐹:(0..^(♯‘𝐹))⟶dom (iEdg‘𝐺))
2220, 21syl11 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Fun 𝐹 → (𝐹 ∈ Word dom (iEdg‘𝐺) → 𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺)))
2322adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Fun 𝐹𝐺 ∈ USPGraph) → (𝐹 ∈ Word dom (iEdg‘𝐺) → 𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺)))
2423adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph)) → (𝐹 ∈ Word dom (iEdg‘𝐺) → 𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺)))
2524imp 406 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph)) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → 𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺))
26 2nn 12198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 ∈ ℕ
27 lbfzo0 13599 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (0 ∈ (0..^2) ↔ 2 ∈ ℕ)
2826, 27mpbir 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 0 ∈ (0..^2)
29 1nn0 12397 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1 ∈ ℕ0
30 1lt2 12291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1 < 2
31 elfzo0 13600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (1 ∈ (0..^2) ↔ (1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2))
3229, 26, 30, 31mpbir3an 1342 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1 ∈ (0..^2)
3328, 32pm3.2i 470 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (0 ∈ (0..^2) ∧ 1 ∈ (0..^2))
34 oveq2 7354 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((♯‘𝐹) = 2 → (0..^(♯‘𝐹)) = (0..^2))
3534eleq2d 2817 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝐹) = 2 → (0 ∈ (0..^(♯‘𝐹)) ↔ 0 ∈ (0..^2)))
3634eleq2d 2817 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝐹) = 2 → (1 ∈ (0..^(♯‘𝐹)) ↔ 1 ∈ (0..^2)))
3735, 36anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝐹) = 2 → ((0 ∈ (0..^(♯‘𝐹)) ∧ 1 ∈ (0..^(♯‘𝐹))) ↔ (0 ∈ (0..^2) ∧ 1 ∈ (0..^2))))
3833, 37mpbiri 258 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝐹) = 2 → (0 ∈ (0..^(♯‘𝐹)) ∧ 1 ∈ (0..^(♯‘𝐹))))
3938ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph)) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (0 ∈ (0..^(♯‘𝐹)) ∧ 1 ∈ (0..^(♯‘𝐹))))
40 f1cofveqaeq 7191 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ 𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺)) ∧ (0 ∈ (0..^(♯‘𝐹)) ∧ 1 ∈ (0..^(♯‘𝐹)))) → (((iEdg‘𝐺)‘(𝐹‘0)) = ((iEdg‘𝐺)‘(𝐹‘1)) → 0 = 1))
4118, 25, 39, 40syl21anc 837 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph)) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (((iEdg‘𝐺)‘(𝐹‘0)) = ((iEdg‘𝐺)‘(𝐹‘1)) → 0 = 1))
42 0ne1 12196 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ≠ 1
43 eqneqall 2939 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 = 1 → (0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘2)))
4441, 42, 43syl6mpi 67 . . . . . . . . . . . . . . . . . . . . . . 23 ((((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph)) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (((iEdg‘𝐺)‘(𝐹‘0)) = ((iEdg‘𝐺)‘(𝐹‘1)) → (𝑃‘0) ≠ (𝑃‘2)))
4544adantll 714 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑃‘0) = (𝑃‘2) ∧ ((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (((iEdg‘𝐺)‘(𝐹‘0)) = ((iEdg‘𝐺)‘(𝐹‘1)) → (𝑃‘0) ≠ (𝑃‘2)))
4614, 45syl5 34 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑃‘0) = (𝑃‘2) ∧ ((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)}) → (𝑃‘0) ≠ (𝑃‘2)))
4713, 46sylbid 240 . . . . . . . . . . . . . . . . . . . 20 ((((𝑃‘0) = (𝑃‘2) ∧ ((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2)))
4847expimpd 453 . . . . . . . . . . . . . . . . . . 19 (((𝑃‘0) = (𝑃‘2) ∧ ((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph))) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2)))
4948ex 412 . . . . . . . . . . . . . . . . . 18 ((𝑃‘0) = (𝑃‘2) → (((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph)) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2))))
50 2a1 28 . . . . . . . . . . . . . . . . . 18 ((𝑃‘0) ≠ (𝑃‘2) → (((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph)) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2))))
5149, 50pm2.61ine 3011 . . . . . . . . . . . . . . . . 17 (((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph)) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2)))
52 fzo0to2pr 13650 . . . . . . . . . . . . . . . . . . . . . . 23 (0..^2) = {0, 1}
5334, 52eqtrdi 2782 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐹) = 2 → (0..^(♯‘𝐹)) = {0, 1})
5453raleqdv 3292 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) = 2 → (∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
55 2wlklem 29644 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
5654, 55bitrdi 287 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) = 2 → (∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))
5756anbi2d 630 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐹) = 2 → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
58 fveq2 6822 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) = 2 → (𝑃‘(♯‘𝐹)) = (𝑃‘2))
5958neeq2d 2988 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐹) = 2 → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) ↔ (𝑃‘0) ≠ (𝑃‘2)))
6057, 59imbi12d 344 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐹) = 2 → (((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) ↔ ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2))))
6160adantr 480 . . . . . . . . . . . . . . . . 17 (((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph)) → (((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) ↔ ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2))))
6251, 61mpbird 257 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) = 2 ∧ (Fun 𝐹𝐺 ∈ USPGraph)) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))))
6362ex 412 . . . . . . . . . . . . . . 15 ((♯‘𝐹) = 2 → ((Fun 𝐹𝐺 ∈ USPGraph) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))))
6463com13 88 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → ((Fun 𝐹𝐺 ∈ USPGraph) → ((♯‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))))
6564expd 415 . . . . . . . . . . . . 13 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (Fun 𝐹 → (𝐺 ∈ USPGraph → ((♯‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))))))
66653adant2 1131 . . . . . . . . . . . 12 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (Fun 𝐹 → (𝐺 ∈ USPGraph → ((♯‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))))))
676, 66biimtrdi 253 . . . . . . . . . . 11 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 → (Fun 𝐹 → (𝐺 ∈ USPGraph → ((♯‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))))))
6867impd 410 . . . . . . . . . 10 (𝐺 ∈ UPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹) → (𝐺 ∈ USPGraph → ((♯‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))))))
6968com23 86 . . . . . . . . 9 (𝐺 ∈ UPGraph → (𝐺 ∈ USPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹) → ((♯‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))))))
703, 69mpcom 38 . . . . . . . 8 (𝐺 ∈ USPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹) → ((♯‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))))
7170com12 32 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹) → (𝐺 ∈ USPGraph → ((♯‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))))
722, 71sylbi 217 . . . . . 6 (𝐹(Trails‘𝐺)𝑃 → (𝐺 ∈ USPGraph → ((♯‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))))
7372imp 406 . . . . 5 ((𝐹(Trails‘𝐺)𝑃𝐺 ∈ USPGraph) → ((♯‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))))
7473necon2d 2951 . . . 4 ((𝐹(Trails‘𝐺)𝑃𝐺 ∈ USPGraph) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (♯‘𝐹) ≠ 2))
7574impancom 451 . . 3 ((𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝐺 ∈ USPGraph → (♯‘𝐹) ≠ 2))
761, 75syl 17 . 2 (𝐹(Circuits‘𝐺)𝑃 → (𝐺 ∈ USPGraph → (♯‘𝐹) ≠ 2))
7776impcom 407 1 ((𝐺 ∈ USPGraph ∧ 𝐹(Circuits‘𝐺)𝑃) → (♯‘𝐹) ≠ 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  {crab 3395  cdif 3894  c0 4280  𝒫 cpw 4547  {csn 4573  {cpr 4575   class class class wbr 5089  ccnv 5613  dom cdm 5614  Fun wfun 6475  wf 6477  1-1wf1 6478  cfv 6481  (class class class)co 7346  0cc0 11006  1c1 11007   + caddc 11009   < clt 11146  cle 11147  cn 12125  2c2 12180  0cn0 12381  ...cfz 13407  ..^cfzo 13554  chash 14237  Word cword 14420  Vtxcvtx 28974  iEdgciedg 28975  UPGraphcupgr 29058  USPGraphcuspgr 29126  Walkscwlks 29575  Trailsctrls 29667  Circuitsccrcts 29762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-edg 29026  df-uhgr 29036  df-upgr 29060  df-uspgr 29128  df-wlks 29578  df-trls 29669  df-crcts 29764
This theorem is referenced by:  usgrn2cycl  29787
  Copyright terms: Public domain W3C validator