![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon2ad | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 19-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon2ad.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
Ref | Expression |
---|---|
necon2ad | ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 142 | . 2 ⊢ (𝜓 → ¬ ¬ 𝜓) | |
2 | necon2ad.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) | |
3 | 2 | necon3bd 2952 | . 2 ⊢ (𝜑 → (¬ ¬ 𝜓 → 𝐴 ≠ 𝐵)) |
4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ≠ wne 2938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2939 |
This theorem is referenced by: necon2d 2961 prneimg 4859 tz7.2 5672 nordeq 6405 xpord3inddlem 8178 omxpenlem 9112 pr2neOLD 10043 cflim2 10301 cfslb2n 10306 ltne 11356 sqrt2irr 16282 rpexp 16756 pcgcd1 16911 plttr 18400 odhash3 19609 nzrunit 20541 lbspss 21099 en2top 23008 fbfinnfr 23865 ufileu 23943 alexsubALTlem4 24074 lebnumlem1 25007 lebnumlem2 25008 lebnumlem3 25009 ivthlem2 25501 ivthlem3 25502 dvne0 26065 deg1nn0clb 26144 lgsmod 27382 nodenselem4 27747 nodenselem5 27748 nodenselem7 27750 noinfbnd2lem1 27790 sltne 27830 slerec 27879 cuteq1 27893 addsval 28010 axlowdimlem16 28987 upgrewlkle2 29639 wlkon2n0 29699 pthdivtx 29762 normgt0 31156 pmtrcnel 33092 lindsadd 37600 poimirlem16 37623 poimirlem17 37624 poimirlem19 37626 poimirlem21 37628 poimirlem27 37634 islln2a 39500 islpln2a 39531 islvol2aN 39575 dalem1 39642 trlnidatb 40160 ensucne0OLD 43520 lswn0 47369 nnsum4primeseven 47725 nnsum4primesevenALTV 47726 dignn0flhalflem1 48465 |
Copyright terms: Public domain | W3C validator |