| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2ad | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 19-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon2ad.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
| Ref | Expression |
|---|---|
| necon2ad | ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnot 142 | . 2 ⊢ (𝜓 → ¬ ¬ 𝜓) | |
| 2 | necon2ad.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) | |
| 3 | 2 | necon3bd 2942 | . 2 ⊢ (𝜑 → (¬ ¬ 𝜓 → 𝐴 ≠ 𝐵)) |
| 4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2929 |
| This theorem is referenced by: necon2d 2951 prneimg 4806 tz7.2 5599 nordeq 6325 xpord3inddlem 8084 omxpenlem 8991 cflim2 10151 cfslb2n 10156 ltne 11207 sqrt2irr 16155 rpexp 16630 pcgcd1 16786 plttr 18243 odhash3 19486 nzrunit 20437 lbspss 21014 en2top 22898 fbfinnfr 23754 ufileu 23832 alexsubALTlem4 23963 lebnumlem1 24885 lebnumlem2 24886 lebnumlem3 24887 ivthlem2 25378 ivthlem3 25379 dvne0 25941 deg1nn0clb 26020 lgsmod 27259 nodenselem4 27624 nodenselem5 27625 nodenselem7 27627 noinfbnd2lem1 27667 sltne 27707 slerec 27758 cuteq1 27776 addsval 27903 axlowdimlem16 28933 upgrewlkle2 29583 wlkon2n0 29641 pthdivtx 29703 normgt0 31102 pmtrcnel 33053 lindsadd 37652 poimirlem16 37675 poimirlem17 37676 poimirlem19 37678 poimirlem21 37680 poimirlem27 37686 islln2a 39555 islpln2a 39586 islvol2aN 39630 dalem1 39697 trlnidatb 40215 ensucne0OLD 43562 lswn0 47474 nnsum4primeseven 47830 nnsum4primesevenALTV 47831 dignn0flhalflem1 48646 |
| Copyright terms: Public domain | W3C validator |