![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon2ad | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 19-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon2ad.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
Ref | Expression |
---|---|
necon2ad | ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 142 | . 2 ⊢ (𝜓 → ¬ ¬ 𝜓) | |
2 | necon2ad.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) | |
3 | 2 | necon3bd 2960 | . 2 ⊢ (𝜑 → (¬ ¬ 𝜓 → 𝐴 ≠ 𝐵)) |
4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2947 |
This theorem is referenced by: necon2d 2969 prneimg 4879 tz7.2 5683 nordeq 6414 xpord3inddlem 8195 omxpenlem 9139 pr2neOLD 10074 cflim2 10332 cfslb2n 10337 ltne 11387 sqrt2irr 16297 rpexp 16769 pcgcd1 16924 plttr 18412 odhash3 19618 nzrunit 20550 lbspss 21104 en2top 23013 fbfinnfr 23870 ufileu 23948 alexsubALTlem4 24079 lebnumlem1 25012 lebnumlem2 25013 lebnumlem3 25014 ivthlem2 25506 ivthlem3 25507 dvne0 26070 deg1nn0clb 26149 lgsmod 27385 nodenselem4 27750 nodenselem5 27751 nodenselem7 27753 noinfbnd2lem1 27793 sltne 27833 slerec 27882 cuteq1 27896 addsval 28013 axlowdimlem16 28990 upgrewlkle2 29642 wlkon2n0 29702 pthdivtx 29765 normgt0 31159 pmtrcnel 33082 lindsadd 37573 poimirlem16 37596 poimirlem17 37597 poimirlem19 37599 poimirlem21 37601 poimirlem27 37607 islln2a 39474 islpln2a 39505 islvol2aN 39549 dalem1 39616 trlnidatb 40134 ensucne0OLD 43492 lswn0 47318 nnsum4primeseven 47674 nnsum4primesevenALTV 47675 dignn0flhalflem1 48349 |
Copyright terms: Public domain | W3C validator |