![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon2ad | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 19-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon2ad.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
Ref | Expression |
---|---|
necon2ad | ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 142 | . 2 ⊢ (𝜓 → ¬ ¬ 𝜓) | |
2 | necon2ad.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) | |
3 | 2 | necon3bd 2953 | . 2 ⊢ (𝜑 → (¬ ¬ 𝜓 → 𝐴 ≠ 𝐵)) |
4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2940 |
This theorem is referenced by: necon2d 2962 prneimg 4855 tz7.2 5660 nordeq 6383 xpord3inddlem 8144 omxpenlem 9077 pr2neOLD 10004 cflim2 10262 cfslb2n 10267 ltne 11316 sqrt2irr 16197 rpexp 16664 pcgcd1 16815 plttr 18300 odhash3 19486 nzrunit 20414 lbspss 20838 en2top 22709 fbfinnfr 23566 ufileu 23644 alexsubALTlem4 23775 lebnumlem1 24708 lebnumlem2 24709 lebnumlem3 24710 ivthlem2 25202 ivthlem3 25203 dvne0 25764 deg1nn0clb 25844 lgsmod 27063 nodenselem4 27427 nodenselem5 27428 nodenselem7 27430 noinfbnd2lem1 27470 sltne 27510 slerec 27558 cuteq1 27572 addsval 27685 axlowdimlem16 28483 upgrewlkle2 29131 wlkon2n0 29191 pthdivtx 29254 normgt0 30648 pmtrcnel 32521 lindsadd 36785 poimirlem16 36808 poimirlem17 36809 poimirlem19 36811 poimirlem21 36813 poimirlem27 36819 islln2a 38692 islpln2a 38723 islvol2aN 38767 dalem1 38834 trlnidatb 39352 ensucne0OLD 42584 lswn0 46411 nnsum4primeseven 46767 nnsum4primesevenALTV 46768 dignn0flhalflem1 47389 |
Copyright terms: Public domain | W3C validator |