Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon2ad | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 19-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon2ad.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
Ref | Expression |
---|---|
necon2ad | ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 142 | . 2 ⊢ (𝜓 → ¬ ¬ 𝜓) | |
2 | necon2ad.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) | |
3 | 2 | necon3bd 2955 | . 2 ⊢ (𝜑 → (¬ ¬ 𝜓 → 𝐴 ≠ 𝐵)) |
4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2942 |
This theorem is referenced by: necon2d 2964 prneimg 4797 tz7.2 5592 nordeq 6308 omxpenlem 8917 pr2neOLD 9841 cflim2 10099 cfslb2n 10104 ltne 11152 sqrt2irr 16037 rpexp 16504 pcgcd1 16655 plttr 18137 odhash3 19257 lbspss 20427 nzrunit 20621 en2top 22218 fbfinnfr 23075 ufileu 23153 alexsubALTlem4 23284 lebnumlem1 24207 lebnumlem2 24208 lebnumlem3 24209 ivthlem2 24699 ivthlem3 24700 dvne0 25258 deg1nn0clb 25338 lgsmod 26554 nodenselem4 26918 nodenselem5 26919 nodenselem7 26921 axlowdimlem16 27461 upgrewlkle2 28109 wlkon2n0 28170 pthdivtx 28233 normgt0 29625 pmtrcnel 31493 noinfbnd2lem1 34007 slerec 34087 addsval 34200 lindsadd 35842 poimirlem16 35865 poimirlem17 35866 poimirlem19 35868 poimirlem21 35870 poimirlem27 35876 islln2a 37752 islpln2a 37783 islvol2aN 37827 dalem1 37894 trlnidatb 38412 ensucne0OLD 41371 lswn0 45161 nnsum4primeseven 45517 nnsum4primesevenALTV 45518 dignn0flhalflem1 46226 |
Copyright terms: Public domain | W3C validator |