Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon2ad | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 19-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon2ad.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
Ref | Expression |
---|---|
necon2ad | ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 142 | . 2 ⊢ (𝜓 → ¬ ¬ 𝜓) | |
2 | necon2ad.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) | |
3 | 2 | necon3bd 2957 | . 2 ⊢ (𝜑 → (¬ ¬ 𝜓 → 𝐴 ≠ 𝐵)) |
4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2944 |
This theorem is referenced by: necon2d 2966 prneimg 4785 tz7.2 5573 nordeq 6285 omxpenlem 8860 pr2ne 9761 cflim2 10019 cfslb2n 10024 ltne 11072 sqrt2irr 15958 rpexp 16427 pcgcd1 16578 plttr 18060 odhash3 19181 lbspss 20344 nzrunit 20538 en2top 22135 fbfinnfr 22992 ufileu 23070 alexsubALTlem4 23201 lebnumlem1 24124 lebnumlem2 24125 lebnumlem3 24126 ivthlem2 24616 ivthlem3 24617 dvne0 25175 deg1nn0clb 25255 lgsmod 26471 axlowdimlem16 27325 upgrewlkle2 27973 wlkon2n0 28034 pthdivtx 28097 normgt0 29489 pmtrcnel 31358 nodenselem4 33890 nodenselem5 33891 nodenselem7 33893 noinfbnd2lem1 33933 slerec 34013 addsval 34126 lindsadd 35770 poimirlem16 35793 poimirlem17 35794 poimirlem19 35796 poimirlem21 35798 poimirlem27 35804 islln2a 37531 islpln2a 37562 islvol2aN 37606 dalem1 37673 trlnidatb 38191 ensucne0OLD 41137 lswn0 44896 nnsum4primeseven 45252 nnsum4primesevenALTV 45253 dignn0flhalflem1 45961 |
Copyright terms: Public domain | W3C validator |