| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2ad | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 19-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon2ad.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
| Ref | Expression |
|---|---|
| necon2ad | ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnot 142 | . 2 ⊢ (𝜓 → ¬ ¬ 𝜓) | |
| 2 | necon2ad.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) | |
| 3 | 2 | necon3bd 2939 | . 2 ⊢ (𝜑 → (¬ ¬ 𝜓 → 𝐴 ≠ 𝐵)) |
| 4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon2d 2948 prneimg 4818 tz7.2 5621 nordeq 6351 xpord3inddlem 8133 omxpenlem 9042 pr2neOLD 9958 cflim2 10216 cfslb2n 10221 ltne 11271 sqrt2irr 16217 rpexp 16692 pcgcd1 16848 plttr 18301 odhash3 19506 nzrunit 20433 lbspss 20989 en2top 22872 fbfinnfr 23728 ufileu 23806 alexsubALTlem4 23937 lebnumlem1 24860 lebnumlem2 24861 lebnumlem3 24862 ivthlem2 25353 ivthlem3 25354 dvne0 25916 deg1nn0clb 25995 lgsmod 27234 nodenselem4 27599 nodenselem5 27600 nodenselem7 27602 noinfbnd2lem1 27642 sltne 27682 slerec 27731 cuteq1 27746 addsval 27869 axlowdimlem16 28884 upgrewlkle2 29534 wlkon2n0 29594 pthdivtx 29657 normgt0 31056 pmtrcnel 33046 lindsadd 37607 poimirlem16 37630 poimirlem17 37631 poimirlem19 37633 poimirlem21 37635 poimirlem27 37641 islln2a 39511 islpln2a 39542 islvol2aN 39586 dalem1 39653 trlnidatb 40171 ensucne0OLD 43519 lswn0 47445 nnsum4primeseven 47801 nnsum4primesevenALTV 47802 dignn0flhalflem1 48604 |
| Copyright terms: Public domain | W3C validator |