| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2ad | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 19-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon2ad.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
| Ref | Expression |
|---|---|
| necon2ad | ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnot 142 | . 2 ⊢ (𝜓 → ¬ ¬ 𝜓) | |
| 2 | necon2ad.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) | |
| 3 | 2 | necon3bd 2939 | . 2 ⊢ (𝜑 → (¬ ¬ 𝜓 → 𝐴 ≠ 𝐵)) |
| 4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon2d 2948 prneimg 4808 tz7.2 5606 nordeq 6330 xpord3inddlem 8094 omxpenlem 9002 cflim2 10176 cfslb2n 10181 ltne 11231 sqrt2irr 16176 rpexp 16651 pcgcd1 16807 plttr 18264 odhash3 19473 nzrunit 20427 lbspss 21004 en2top 22888 fbfinnfr 23744 ufileu 23822 alexsubALTlem4 23953 lebnumlem1 24876 lebnumlem2 24877 lebnumlem3 24878 ivthlem2 25369 ivthlem3 25370 dvne0 25932 deg1nn0clb 26011 lgsmod 27250 nodenselem4 27615 nodenselem5 27616 nodenselem7 27618 noinfbnd2lem1 27658 sltne 27698 slerec 27748 cuteq1 27766 addsval 27892 axlowdimlem16 28920 upgrewlkle2 29570 wlkon2n0 29628 pthdivtx 29690 normgt0 31089 pmtrcnel 33044 lindsadd 37592 poimirlem16 37615 poimirlem17 37616 poimirlem19 37618 poimirlem21 37620 poimirlem27 37626 islln2a 39496 islpln2a 39527 islvol2aN 39571 dalem1 39638 trlnidatb 40156 ensucne0OLD 43503 lswn0 47429 nnsum4primeseven 47785 nnsum4primesevenALTV 47786 dignn0flhalflem1 48601 |
| Copyright terms: Public domain | W3C validator |