![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon2ad | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 19-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon2ad.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
Ref | Expression |
---|---|
necon2ad | ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 142 | . 2 ⊢ (𝜓 → ¬ ¬ 𝜓) | |
2 | necon2ad.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) | |
3 | 2 | necon3bd 2952 | . 2 ⊢ (𝜑 → (¬ ¬ 𝜓 → 𝐴 ≠ 𝐵)) |
4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2939 |
This theorem is referenced by: necon2d 2961 prneimg 4854 tz7.2 5659 nordeq 6382 xpord3inddlem 8142 omxpenlem 9075 pr2neOLD 10002 cflim2 10260 cfslb2n 10265 ltne 11315 sqrt2irr 16196 rpexp 16663 pcgcd1 16814 plttr 18299 odhash3 19485 nzrunit 20413 lbspss 20837 en2top 22708 fbfinnfr 23565 ufileu 23643 alexsubALTlem4 23774 lebnumlem1 24707 lebnumlem2 24708 lebnumlem3 24709 ivthlem2 25201 ivthlem3 25202 dvne0 25763 deg1nn0clb 25843 lgsmod 27062 nodenselem4 27426 nodenselem5 27427 nodenselem7 27429 noinfbnd2lem1 27469 sltne 27509 slerec 27557 cuteq1 27571 addsval 27684 axlowdimlem16 28482 upgrewlkle2 29130 wlkon2n0 29190 pthdivtx 29253 normgt0 30647 pmtrcnel 32520 lindsadd 36784 poimirlem16 36807 poimirlem17 36808 poimirlem19 36810 poimirlem21 36812 poimirlem27 36818 islln2a 38691 islpln2a 38722 islvol2aN 38766 dalem1 38833 trlnidatb 39351 ensucne0OLD 42583 lswn0 46410 nnsum4primeseven 46766 nnsum4primesevenALTV 46767 dignn0flhalflem1 47388 |
Copyright terms: Public domain | W3C validator |