| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2ad | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 19-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon2ad.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
| Ref | Expression |
|---|---|
| necon2ad | ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnot 142 | . 2 ⊢ (𝜓 → ¬ ¬ 𝜓) | |
| 2 | necon2ad.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) | |
| 3 | 2 | necon3bd 2940 | . 2 ⊢ (𝜑 → (¬ ¬ 𝜓 → 𝐴 ≠ 𝐵)) |
| 4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2927 |
| This theorem is referenced by: necon2d 2949 prneimg 4821 tz7.2 5624 nordeq 6354 xpord3inddlem 8136 omxpenlem 9047 pr2neOLD 9965 cflim2 10223 cfslb2n 10228 ltne 11278 sqrt2irr 16224 rpexp 16699 pcgcd1 16855 plttr 18308 odhash3 19513 nzrunit 20440 lbspss 20996 en2top 22879 fbfinnfr 23735 ufileu 23813 alexsubALTlem4 23944 lebnumlem1 24867 lebnumlem2 24868 lebnumlem3 24869 ivthlem2 25360 ivthlem3 25361 dvne0 25923 deg1nn0clb 26002 lgsmod 27241 nodenselem4 27606 nodenselem5 27607 nodenselem7 27609 noinfbnd2lem1 27649 sltne 27689 slerec 27738 cuteq1 27753 addsval 27876 axlowdimlem16 28891 upgrewlkle2 29541 wlkon2n0 29601 pthdivtx 29664 normgt0 31063 pmtrcnel 33053 lindsadd 37614 poimirlem16 37637 poimirlem17 37638 poimirlem19 37640 poimirlem21 37642 poimirlem27 37648 islln2a 39518 islpln2a 39549 islvol2aN 39593 dalem1 39660 trlnidatb 40178 ensucne0OLD 43526 lswn0 47449 nnsum4primeseven 47805 nnsum4primesevenALTV 47806 dignn0flhalflem1 48608 |
| Copyright terms: Public domain | W3C validator |