| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2ad | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 19-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon2ad.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
| Ref | Expression |
|---|---|
| necon2ad | ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnot 142 | . 2 ⊢ (𝜓 → ¬ ¬ 𝜓) | |
| 2 | necon2ad.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) | |
| 3 | 2 | necon3bd 2947 | . 2 ⊢ (𝜑 → (¬ ¬ 𝜓 → 𝐴 ≠ 𝐵)) |
| 4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2934 |
| This theorem is referenced by: necon2d 2956 prneimg 4835 tz7.2 5642 nordeq 6376 xpord3inddlem 8158 omxpenlem 9092 pr2neOLD 10024 cflim2 10282 cfslb2n 10287 ltne 11337 sqrt2irr 16272 rpexp 16746 pcgcd1 16902 plttr 18357 odhash3 19562 nzrunit 20489 lbspss 21045 en2top 22928 fbfinnfr 23784 ufileu 23862 alexsubALTlem4 23993 lebnumlem1 24916 lebnumlem2 24917 lebnumlem3 24918 ivthlem2 25410 ivthlem3 25411 dvne0 25973 deg1nn0clb 26052 lgsmod 27291 nodenselem4 27656 nodenselem5 27657 nodenselem7 27659 noinfbnd2lem1 27699 sltne 27739 slerec 27788 cuteq1 27803 addsval 27926 axlowdimlem16 28941 upgrewlkle2 29591 wlkon2n0 29651 pthdivtx 29714 normgt0 31113 pmtrcnel 33105 lindsadd 37642 poimirlem16 37665 poimirlem17 37666 poimirlem19 37668 poimirlem21 37670 poimirlem27 37676 islln2a 39541 islpln2a 39572 islvol2aN 39616 dalem1 39683 trlnidatb 40201 ensucne0OLD 43529 lswn0 47438 nnsum4primeseven 47794 nnsum4primesevenALTV 47795 dignn0flhalflem1 48575 |
| Copyright terms: Public domain | W3C validator |