| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2ad | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 19-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon2ad.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
| Ref | Expression |
|---|---|
| necon2ad | ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnot 142 | . 2 ⊢ (𝜓 → ¬ ¬ 𝜓) | |
| 2 | necon2ad.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) | |
| 3 | 2 | necon3bd 2943 | . 2 ⊢ (𝜑 → (¬ ¬ 𝜓 → 𝐴 ≠ 𝐵)) |
| 4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2930 |
| This theorem is referenced by: necon2d 2952 prneimg 4805 tz7.2 5602 nordeq 6330 xpord3inddlem 8090 omxpenlem 8998 cflim2 10161 cfslb2n 10166 ltne 11217 sqrt2irr 16160 rpexp 16635 pcgcd1 16791 plttr 18248 odhash3 19490 nzrunit 20441 lbspss 21018 en2top 22901 fbfinnfr 23757 ufileu 23835 alexsubALTlem4 23966 lebnumlem1 24888 lebnumlem2 24889 lebnumlem3 24890 ivthlem2 25381 ivthlem3 25382 dvne0 25944 deg1nn0clb 26023 lgsmod 27262 nodenselem4 27627 nodenselem5 27628 nodenselem7 27630 noinfbnd2lem1 27670 sltne 27710 slerec 27761 cuteq1 27779 addsval 27906 axlowdimlem16 28937 upgrewlkle2 29587 wlkon2n0 29645 pthdivtx 29707 normgt0 31109 pmtrcnel 33065 lindsadd 37673 poimirlem16 37696 poimirlem17 37697 poimirlem19 37699 poimirlem21 37701 poimirlem27 37707 islln2a 39636 islpln2a 39667 islvol2aN 39711 dalem1 39778 trlnidatb 40296 ensucne0OLD 43647 lswn0 47568 nnsum4primeseven 47924 nnsum4primesevenALTV 47925 dignn0flhalflem1 48740 |
| Copyright terms: Public domain | W3C validator |