Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon2ad | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 19-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon2ad.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
Ref | Expression |
---|---|
necon2ad | ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 142 | . 2 ⊢ (𝜓 → ¬ ¬ 𝜓) | |
2 | necon2ad.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) | |
3 | 2 | necon3bd 2956 | . 2 ⊢ (𝜑 → (¬ ¬ 𝜓 → 𝐴 ≠ 𝐵)) |
4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2943 |
This theorem is referenced by: necon2d 2965 prneimg 4782 tz7.2 5564 nordeq 6270 omxpenlem 8813 pr2ne 9692 cflim2 9950 cfslb2n 9955 ltne 11002 sqrt2irr 15886 rpexp 16355 pcgcd1 16506 plttr 17975 odhash3 19096 lbspss 20259 nzrunit 20451 en2top 22043 fbfinnfr 22900 ufileu 22978 alexsubALTlem4 23109 lebnumlem1 24030 lebnumlem2 24031 lebnumlem3 24032 ivthlem2 24521 ivthlem3 24522 dvne0 25080 deg1nn0clb 25160 lgsmod 26376 axlowdimlem16 27228 upgrewlkle2 27876 wlkon2n0 27936 pthdivtx 27998 normgt0 29390 pmtrcnel 31260 nodenselem4 33817 nodenselem5 33818 nodenselem7 33820 noinfbnd2lem1 33860 slerec 33940 addsval 34053 lindsadd 35697 poimirlem16 35720 poimirlem17 35721 poimirlem19 35723 poimirlem21 35725 poimirlem27 35731 islln2a 37458 islpln2a 37489 islvol2aN 37533 dalem1 37600 trlnidatb 38118 ensucne0OLD 41035 lswn0 44784 nnsum4primeseven 45140 nnsum4primesevenALTV 45141 dignn0flhalflem1 45849 |
Copyright terms: Public domain | W3C validator |