![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > map0g | Structured version Visualization version GIF version |
Description: Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of [Suppes] p. 89. (Contributed by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
map0g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑m 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4338 | . . . . 5 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑓 𝑓 ∈ 𝐴) | |
2 | fconst6g 6770 | . . . . . . . 8 ⊢ (𝑓 ∈ 𝐴 → (𝐵 × {𝑓}):𝐵⟶𝐴) | |
3 | elmapg 8829 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐵 × {𝑓}) ∈ (𝐴 ↑m 𝐵) ↔ (𝐵 × {𝑓}):𝐵⟶𝐴)) | |
4 | 2, 3 | imbitrrid 245 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑓 ∈ 𝐴 → (𝐵 × {𝑓}) ∈ (𝐴 ↑m 𝐵))) |
5 | ne0i 4326 | . . . . . . 7 ⊢ ((𝐵 × {𝑓}) ∈ (𝐴 ↑m 𝐵) → (𝐴 ↑m 𝐵) ≠ ∅) | |
6 | 4, 5 | syl6 35 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑓 ∈ 𝐴 → (𝐴 ↑m 𝐵) ≠ ∅)) |
7 | 6 | exlimdv 1928 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑓 𝑓 ∈ 𝐴 → (𝐴 ↑m 𝐵) ≠ ∅)) |
8 | 1, 7 | biimtrid 241 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≠ ∅ → (𝐴 ↑m 𝐵) ≠ ∅)) |
9 | 8 | necon4d 2956 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑m 𝐵) = ∅ → 𝐴 = ∅)) |
10 | f0 6762 | . . . . . . 7 ⊢ ∅:∅⟶𝐴 | |
11 | feq2 6689 | . . . . . . 7 ⊢ (𝐵 = ∅ → (∅:𝐵⟶𝐴 ↔ ∅:∅⟶𝐴)) | |
12 | 10, 11 | mpbiri 258 | . . . . . 6 ⊢ (𝐵 = ∅ → ∅:𝐵⟶𝐴) |
13 | elmapg 8829 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∅ ∈ (𝐴 ↑m 𝐵) ↔ ∅:𝐵⟶𝐴)) | |
14 | 12, 13 | imbitrrid 245 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 = ∅ → ∅ ∈ (𝐴 ↑m 𝐵))) |
15 | ne0i 4326 | . . . . 5 ⊢ (∅ ∈ (𝐴 ↑m 𝐵) → (𝐴 ↑m 𝐵) ≠ ∅) | |
16 | 14, 15 | syl6 35 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 = ∅ → (𝐴 ↑m 𝐵) ≠ ∅)) |
17 | 16 | necon2d 2955 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑m 𝐵) = ∅ → 𝐵 ≠ ∅)) |
18 | 9, 17 | jcad 512 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑m 𝐵) = ∅ → (𝐴 = ∅ ∧ 𝐵 ≠ ∅))) |
19 | oveq1 7408 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ↑m 𝐵) = (∅ ↑m 𝐵)) | |
20 | map0b 8873 | . . 3 ⊢ (𝐵 ≠ ∅ → (∅ ↑m 𝐵) = ∅) | |
21 | 19, 20 | sylan9eq 2784 | . 2 ⊢ ((𝐴 = ∅ ∧ 𝐵 ≠ ∅) → (𝐴 ↑m 𝐵) = ∅) |
22 | 18, 21 | impbid1 224 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑m 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ≠ wne 2932 ∅c0 4314 {csn 4620 × cxp 5664 ⟶wf 6529 (class class class)co 7401 ↑m cmap 8816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-map 8818 |
This theorem is referenced by: map0 8877 mapdom2 9144 map0cor 47709 |
Copyright terms: Public domain | W3C validator |