| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > map0g | Structured version Visualization version GIF version | ||
| Description: Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of [Suppes] p. 89. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| map0g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑m 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4333 | . . . . 5 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑓 𝑓 ∈ 𝐴) | |
| 2 | fconst6g 6772 | . . . . . . . 8 ⊢ (𝑓 ∈ 𝐴 → (𝐵 × {𝑓}):𝐵⟶𝐴) | |
| 3 | elmapg 8858 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐵 × {𝑓}) ∈ (𝐴 ↑m 𝐵) ↔ (𝐵 × {𝑓}):𝐵⟶𝐴)) | |
| 4 | 2, 3 | imbitrrid 246 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑓 ∈ 𝐴 → (𝐵 × {𝑓}) ∈ (𝐴 ↑m 𝐵))) |
| 5 | ne0i 4321 | . . . . . . 7 ⊢ ((𝐵 × {𝑓}) ∈ (𝐴 ↑m 𝐵) → (𝐴 ↑m 𝐵) ≠ ∅) | |
| 6 | 4, 5 | syl6 35 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑓 ∈ 𝐴 → (𝐴 ↑m 𝐵) ≠ ∅)) |
| 7 | 6 | exlimdv 1933 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑓 𝑓 ∈ 𝐴 → (𝐴 ↑m 𝐵) ≠ ∅)) |
| 8 | 1, 7 | biimtrid 242 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≠ ∅ → (𝐴 ↑m 𝐵) ≠ ∅)) |
| 9 | 8 | necon4d 2957 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑m 𝐵) = ∅ → 𝐴 = ∅)) |
| 10 | f0 6764 | . . . . . . 7 ⊢ ∅:∅⟶𝐴 | |
| 11 | feq2 6692 | . . . . . . 7 ⊢ (𝐵 = ∅ → (∅:𝐵⟶𝐴 ↔ ∅:∅⟶𝐴)) | |
| 12 | 10, 11 | mpbiri 258 | . . . . . 6 ⊢ (𝐵 = ∅ → ∅:𝐵⟶𝐴) |
| 13 | elmapg 8858 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∅ ∈ (𝐴 ↑m 𝐵) ↔ ∅:𝐵⟶𝐴)) | |
| 14 | 12, 13 | imbitrrid 246 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 = ∅ → ∅ ∈ (𝐴 ↑m 𝐵))) |
| 15 | ne0i 4321 | . . . . 5 ⊢ (∅ ∈ (𝐴 ↑m 𝐵) → (𝐴 ↑m 𝐵) ≠ ∅) | |
| 16 | 14, 15 | syl6 35 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 = ∅ → (𝐴 ↑m 𝐵) ≠ ∅)) |
| 17 | 16 | necon2d 2956 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑m 𝐵) = ∅ → 𝐵 ≠ ∅)) |
| 18 | 9, 17 | jcad 512 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑m 𝐵) = ∅ → (𝐴 = ∅ ∧ 𝐵 ≠ ∅))) |
| 19 | oveq1 7417 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ↑m 𝐵) = (∅ ↑m 𝐵)) | |
| 20 | map0b 8902 | . . 3 ⊢ (𝐵 ≠ ∅ → (∅ ↑m 𝐵) = ∅) | |
| 21 | 19, 20 | sylan9eq 2791 | . 2 ⊢ ((𝐴 = ∅ ∧ 𝐵 ≠ ∅) → (𝐴 ↑m 𝐵) = ∅) |
| 22 | 18, 21 | impbid1 225 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑m 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2933 ∅c0 4313 {csn 4606 × cxp 5657 ⟶wf 6532 (class class class)co 7410 ↑m cmap 8845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-map 8847 |
| This theorem is referenced by: map0 8906 mapdom2 9167 map0cor 48800 |
| Copyright terms: Public domain | W3C validator |