MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  map0g Structured version   Visualization version   GIF version

Theorem map0g 8814
Description: Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of [Suppes] p. 89. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
map0g ((𝐴𝑉𝐵𝑊) → ((𝐴m 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅)))

Proof of Theorem map0g
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 n0 4302 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑓 𝑓𝐴)
2 fconst6g 6717 . . . . . . . 8 (𝑓𝐴 → (𝐵 × {𝑓}):𝐵𝐴)
3 elmapg 8769 . . . . . . . 8 ((𝐴𝑉𝐵𝑊) → ((𝐵 × {𝑓}) ∈ (𝐴m 𝐵) ↔ (𝐵 × {𝑓}):𝐵𝐴))
42, 3imbitrrid 246 . . . . . . 7 ((𝐴𝑉𝐵𝑊) → (𝑓𝐴 → (𝐵 × {𝑓}) ∈ (𝐴m 𝐵)))
5 ne0i 4290 . . . . . . 7 ((𝐵 × {𝑓}) ∈ (𝐴m 𝐵) → (𝐴m 𝐵) ≠ ∅)
64, 5syl6 35 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (𝑓𝐴 → (𝐴m 𝐵) ≠ ∅))
76exlimdv 1934 . . . . 5 ((𝐴𝑉𝐵𝑊) → (∃𝑓 𝑓𝐴 → (𝐴m 𝐵) ≠ ∅))
81, 7biimtrid 242 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐴 ≠ ∅ → (𝐴m 𝐵) ≠ ∅))
98necon4d 2953 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝐴m 𝐵) = ∅ → 𝐴 = ∅))
10 f0 6709 . . . . . . 7 ∅:∅⟶𝐴
11 feq2 6635 . . . . . . 7 (𝐵 = ∅ → (∅:𝐵𝐴 ↔ ∅:∅⟶𝐴))
1210, 11mpbiri 258 . . . . . 6 (𝐵 = ∅ → ∅:𝐵𝐴)
13 elmapg 8769 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (∅ ∈ (𝐴m 𝐵) ↔ ∅:𝐵𝐴))
1412, 13imbitrrid 246 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝐵 = ∅ → ∅ ∈ (𝐴m 𝐵)))
15 ne0i 4290 . . . . 5 (∅ ∈ (𝐴m 𝐵) → (𝐴m 𝐵) ≠ ∅)
1614, 15syl6 35 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐵 = ∅ → (𝐴m 𝐵) ≠ ∅))
1716necon2d 2952 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝐴m 𝐵) = ∅ → 𝐵 ≠ ∅))
189, 17jcad 512 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴m 𝐵) = ∅ → (𝐴 = ∅ ∧ 𝐵 ≠ ∅)))
19 oveq1 7359 . . 3 (𝐴 = ∅ → (𝐴m 𝐵) = (∅ ↑m 𝐵))
20 map0b 8813 . . 3 (𝐵 ≠ ∅ → (∅ ↑m 𝐵) = ∅)
2119, 20sylan9eq 2788 . 2 ((𝐴 = ∅ ∧ 𝐵 ≠ ∅) → (𝐴m 𝐵) = ∅)
2218, 21impbid1 225 1 ((𝐴𝑉𝐵𝑊) → ((𝐴m 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2113  wne 2929  c0 4282  {csn 4575   × cxp 5617  wf 6482  (class class class)co 7352  m cmap 8756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-map 8758
This theorem is referenced by:  map0  8817  mapdom2  9068  map0cor  48980
  Copyright terms: Public domain W3C validator