MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  map0g Structured version   Visualization version   GIF version

Theorem map0g 8857
Description: Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of [Suppes] p. 89. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
map0g ((𝐴𝑉𝐵𝑊) → ((𝐴m 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅)))

Proof of Theorem map0g
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 n0 4316 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑓 𝑓𝐴)
2 fconst6g 6749 . . . . . . . 8 (𝑓𝐴 → (𝐵 × {𝑓}):𝐵𝐴)
3 elmapg 8812 . . . . . . . 8 ((𝐴𝑉𝐵𝑊) → ((𝐵 × {𝑓}) ∈ (𝐴m 𝐵) ↔ (𝐵 × {𝑓}):𝐵𝐴))
42, 3imbitrrid 246 . . . . . . 7 ((𝐴𝑉𝐵𝑊) → (𝑓𝐴 → (𝐵 × {𝑓}) ∈ (𝐴m 𝐵)))
5 ne0i 4304 . . . . . . 7 ((𝐵 × {𝑓}) ∈ (𝐴m 𝐵) → (𝐴m 𝐵) ≠ ∅)
64, 5syl6 35 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (𝑓𝐴 → (𝐴m 𝐵) ≠ ∅))
76exlimdv 1933 . . . . 5 ((𝐴𝑉𝐵𝑊) → (∃𝑓 𝑓𝐴 → (𝐴m 𝐵) ≠ ∅))
81, 7biimtrid 242 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐴 ≠ ∅ → (𝐴m 𝐵) ≠ ∅))
98necon4d 2949 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝐴m 𝐵) = ∅ → 𝐴 = ∅))
10 f0 6741 . . . . . . 7 ∅:∅⟶𝐴
11 feq2 6667 . . . . . . 7 (𝐵 = ∅ → (∅:𝐵𝐴 ↔ ∅:∅⟶𝐴))
1210, 11mpbiri 258 . . . . . 6 (𝐵 = ∅ → ∅:𝐵𝐴)
13 elmapg 8812 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (∅ ∈ (𝐴m 𝐵) ↔ ∅:𝐵𝐴))
1412, 13imbitrrid 246 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝐵 = ∅ → ∅ ∈ (𝐴m 𝐵)))
15 ne0i 4304 . . . . 5 (∅ ∈ (𝐴m 𝐵) → (𝐴m 𝐵) ≠ ∅)
1614, 15syl6 35 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐵 = ∅ → (𝐴m 𝐵) ≠ ∅))
1716necon2d 2948 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝐴m 𝐵) = ∅ → 𝐵 ≠ ∅))
189, 17jcad 512 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴m 𝐵) = ∅ → (𝐴 = ∅ ∧ 𝐵 ≠ ∅)))
19 oveq1 7394 . . 3 (𝐴 = ∅ → (𝐴m 𝐵) = (∅ ↑m 𝐵))
20 map0b 8856 . . 3 (𝐵 ≠ ∅ → (∅ ↑m 𝐵) = ∅)
2119, 20sylan9eq 2784 . 2 ((𝐴 = ∅ ∧ 𝐵 ≠ ∅) → (𝐴m 𝐵) = ∅)
2218, 21impbid1 225 1 ((𝐴𝑉𝐵𝑊) → ((𝐴m 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  c0 4296  {csn 4589   × cxp 5636  wf 6507  (class class class)co 7387  m cmap 8799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801
This theorem is referenced by:  map0  8860  mapdom2  9112  map0cor  48840
  Copyright terms: Public domain W3C validator