MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  map0g Structured version   Visualization version   GIF version

Theorem map0g 8808
Description: Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of [Suppes] p. 89. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
map0g ((𝐴𝑉𝐵𝑊) → ((𝐴m 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅)))

Proof of Theorem map0g
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 n0 4303 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑓 𝑓𝐴)
2 fconst6g 6712 . . . . . . . 8 (𝑓𝐴 → (𝐵 × {𝑓}):𝐵𝐴)
3 elmapg 8763 . . . . . . . 8 ((𝐴𝑉𝐵𝑊) → ((𝐵 × {𝑓}) ∈ (𝐴m 𝐵) ↔ (𝐵 × {𝑓}):𝐵𝐴))
42, 3imbitrrid 246 . . . . . . 7 ((𝐴𝑉𝐵𝑊) → (𝑓𝐴 → (𝐵 × {𝑓}) ∈ (𝐴m 𝐵)))
5 ne0i 4291 . . . . . . 7 ((𝐵 × {𝑓}) ∈ (𝐴m 𝐵) → (𝐴m 𝐵) ≠ ∅)
64, 5syl6 35 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (𝑓𝐴 → (𝐴m 𝐵) ≠ ∅))
76exlimdv 1934 . . . . 5 ((𝐴𝑉𝐵𝑊) → (∃𝑓 𝑓𝐴 → (𝐴m 𝐵) ≠ ∅))
81, 7biimtrid 242 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐴 ≠ ∅ → (𝐴m 𝐵) ≠ ∅))
98necon4d 2952 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝐴m 𝐵) = ∅ → 𝐴 = ∅))
10 f0 6704 . . . . . . 7 ∅:∅⟶𝐴
11 feq2 6630 . . . . . . 7 (𝐵 = ∅ → (∅:𝐵𝐴 ↔ ∅:∅⟶𝐴))
1210, 11mpbiri 258 . . . . . 6 (𝐵 = ∅ → ∅:𝐵𝐴)
13 elmapg 8763 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (∅ ∈ (𝐴m 𝐵) ↔ ∅:𝐵𝐴))
1412, 13imbitrrid 246 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝐵 = ∅ → ∅ ∈ (𝐴m 𝐵)))
15 ne0i 4291 . . . . 5 (∅ ∈ (𝐴m 𝐵) → (𝐴m 𝐵) ≠ ∅)
1614, 15syl6 35 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐵 = ∅ → (𝐴m 𝐵) ≠ ∅))
1716necon2d 2951 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝐴m 𝐵) = ∅ → 𝐵 ≠ ∅))
189, 17jcad 512 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴m 𝐵) = ∅ → (𝐴 = ∅ ∧ 𝐵 ≠ ∅)))
19 oveq1 7353 . . 3 (𝐴 = ∅ → (𝐴m 𝐵) = (∅ ↑m 𝐵))
20 map0b 8807 . . 3 (𝐵 ≠ ∅ → (∅ ↑m 𝐵) = ∅)
2119, 20sylan9eq 2786 . 2 ((𝐴 = ∅ ∧ 𝐵 ≠ ∅) → (𝐴m 𝐵) = ∅)
2218, 21impbid1 225 1 ((𝐴𝑉𝐵𝑊) → ((𝐴m 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wne 2928  c0 4283  {csn 4576   × cxp 5614  wf 6477  (class class class)co 7346  m cmap 8750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752
This theorem is referenced by:  map0  8811  mapdom2  9061  map0cor  48885
  Copyright terms: Public domain W3C validator