MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lfgrn1cycl Structured version   Visualization version   GIF version

Theorem lfgrn1cycl 29834
Description: In a loop-free graph there are no cycles with length 1 (consisting of one edge). (Contributed by Alexander van der Vekens, 7-Nov-2017.) (Revised by AV, 2-Feb-2021.)
Hypotheses
Ref Expression
lfgrn1cycl.v 𝑉 = (Vtx‘𝐺)
lfgrn1cycl.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
lfgrn1cycl (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (𝐹(Cycles‘𝐺)𝑃 → (♯‘𝐹) ≠ 1))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐼   𝑥,𝑉
Allowed substitution hints:   𝑃(𝑥)   𝐺(𝑥)

Proof of Theorem lfgrn1cycl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 cyclprop 29825 . . 3 (𝐹(Cycles‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
2 cycliswlk 29830 . . 3 (𝐹(Cycles‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
3 lfgrn1cycl.i . . . . . . . 8 𝐼 = (iEdg‘𝐺)
4 lfgrn1cycl.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
53, 4lfgrwlknloop 29721 . . . . . . 7 ((𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
6 1nn 12274 . . . . . . . . . . . . . 14 1 ∈ ℕ
7 eleq1 2826 . . . . . . . . . . . . . 14 ((♯‘𝐹) = 1 → ((♯‘𝐹) ∈ ℕ ↔ 1 ∈ ℕ))
86, 7mpbiri 258 . . . . . . . . . . . . 13 ((♯‘𝐹) = 1 → (♯‘𝐹) ∈ ℕ)
9 lbfzo0 13735 . . . . . . . . . . . . 13 (0 ∈ (0..^(♯‘𝐹)) ↔ (♯‘𝐹) ∈ ℕ)
108, 9sylibr 234 . . . . . . . . . . . 12 ((♯‘𝐹) = 1 → 0 ∈ (0..^(♯‘𝐹)))
11 fveq2 6906 . . . . . . . . . . . . . 14 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
12 fv0p1e1 12386 . . . . . . . . . . . . . 14 (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1))
1311, 12neeq12d 2999 . . . . . . . . . . . . 13 (𝑘 = 0 → ((𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘1)))
1413rspcv 3617 . . . . . . . . . . . 12 (0 ∈ (0..^(♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) → (𝑃‘0) ≠ (𝑃‘1)))
1510, 14syl 17 . . . . . . . . . . 11 ((♯‘𝐹) = 1 → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) → (𝑃‘0) ≠ (𝑃‘1)))
1615impcom 407 . . . . . . . . . 10 ((∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ∧ (♯‘𝐹) = 1) → (𝑃‘0) ≠ (𝑃‘1))
17 fveq2 6906 . . . . . . . . . . . 12 ((♯‘𝐹) = 1 → (𝑃‘(♯‘𝐹)) = (𝑃‘1))
1817neeq2d 2998 . . . . . . . . . . 11 ((♯‘𝐹) = 1 → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) ↔ (𝑃‘0) ≠ (𝑃‘1)))
1918adantl 481 . . . . . . . . . 10 ((∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ∧ (♯‘𝐹) = 1) → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) ↔ (𝑃‘0) ≠ (𝑃‘1)))
2016, 19mpbird 257 . . . . . . . . 9 ((∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ∧ (♯‘𝐹) = 1) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))
2120ex 412 . . . . . . . 8 (∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) → ((♯‘𝐹) = 1 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))))
2221necon2d 2960 . . . . . . 7 (∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (♯‘𝐹) ≠ 1))
235, 22syl 17 . . . . . 6 ((𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝐹(Walks‘𝐺)𝑃) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (♯‘𝐹) ≠ 1))
2423ex 412 . . . . 5 (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (𝐹(Walks‘𝐺)𝑃 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (♯‘𝐹) ≠ 1)))
2524com13 88 . . . 4 ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (𝐹(Walks‘𝐺)𝑃 → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (♯‘𝐹) ≠ 1)))
2625adantl 481 . . 3 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝐹(Walks‘𝐺)𝑃 → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (♯‘𝐹) ≠ 1)))
271, 2, 26sylc 65 . 2 (𝐹(Cycles‘𝐺)𝑃 → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (♯‘𝐹) ≠ 1))
2827com12 32 1 (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (𝐹(Cycles‘𝐺)𝑃 → (♯‘𝐹) ≠ 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937  wral 3058  {crab 3432  𝒫 cpw 4604   class class class wbr 5147  dom cdm 5688  wf 6558  cfv 6562  (class class class)co 7430  0cc0 11152  1c1 11153   + caddc 11155  cle 11293  cn 12263  2c2 12318  ..^cfzo 13690  chash 14365  Vtxcvtx 29027  iEdgciedg 29028  Walkscwlks 29628  Pathscpths 29744  Cyclesccycls 29817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-fzo 13691  df-hash 14366  df-word 14549  df-wlks 29631  df-trls 29724  df-pths 29748  df-cycls 29819
This theorem is referenced by:  umgrn1cycl  29836
  Copyright terms: Public domain W3C validator