MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lfgrn1cycl Structured version   Visualization version   GIF version

Theorem lfgrn1cycl 27575
Description: In a loop-free graph there are no cycles with length 1 (consisting of one edge). (Contributed by Alexander van der Vekens, 7-Nov-2017.) (Revised by AV, 2-Feb-2021.)
Hypotheses
Ref Expression
lfgrn1cycl.v 𝑉 = (Vtx‘𝐺)
lfgrn1cycl.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
lfgrn1cycl (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (𝐹(Cycles‘𝐺)𝑃 → (♯‘𝐹) ≠ 1))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐼   𝑥,𝑉
Allowed substitution hints:   𝑃(𝑥)   𝐺(𝑥)

Proof of Theorem lfgrn1cycl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 cyclprop 27566 . . 3 (𝐹(Cycles‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
2 cycliswlk 27571 . . 3 (𝐹(Cycles‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
3 lfgrn1cycl.i . . . . . . . 8 𝐼 = (iEdg‘𝐺)
4 lfgrn1cycl.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
53, 4lfgrwlknloop 27463 . . . . . . 7 ((𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
6 1nn 11641 . . . . . . . . . . . . . 14 1 ∈ ℕ
7 eleq1 2898 . . . . . . . . . . . . . 14 ((♯‘𝐹) = 1 → ((♯‘𝐹) ∈ ℕ ↔ 1 ∈ ℕ))
86, 7mpbiri 260 . . . . . . . . . . . . 13 ((♯‘𝐹) = 1 → (♯‘𝐹) ∈ ℕ)
9 lbfzo0 13069 . . . . . . . . . . . . 13 (0 ∈ (0..^(♯‘𝐹)) ↔ (♯‘𝐹) ∈ ℕ)
108, 9sylibr 236 . . . . . . . . . . . 12 ((♯‘𝐹) = 1 → 0 ∈ (0..^(♯‘𝐹)))
11 fveq2 6663 . . . . . . . . . . . . . 14 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
12 fv0p1e1 11752 . . . . . . . . . . . . . 14 (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1))
1311, 12neeq12d 3075 . . . . . . . . . . . . 13 (𝑘 = 0 → ((𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘1)))
1413rspcv 3616 . . . . . . . . . . . 12 (0 ∈ (0..^(♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) → (𝑃‘0) ≠ (𝑃‘1)))
1510, 14syl 17 . . . . . . . . . . 11 ((♯‘𝐹) = 1 → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) → (𝑃‘0) ≠ (𝑃‘1)))
1615impcom 410 . . . . . . . . . 10 ((∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ∧ (♯‘𝐹) = 1) → (𝑃‘0) ≠ (𝑃‘1))
17 fveq2 6663 . . . . . . . . . . . 12 ((♯‘𝐹) = 1 → (𝑃‘(♯‘𝐹)) = (𝑃‘1))
1817neeq2d 3074 . . . . . . . . . . 11 ((♯‘𝐹) = 1 → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) ↔ (𝑃‘0) ≠ (𝑃‘1)))
1918adantl 484 . . . . . . . . . 10 ((∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ∧ (♯‘𝐹) = 1) → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) ↔ (𝑃‘0) ≠ (𝑃‘1)))
2016, 19mpbird 259 . . . . . . . . 9 ((∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ∧ (♯‘𝐹) = 1) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))
2120ex 415 . . . . . . . 8 (∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) → ((♯‘𝐹) = 1 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))))
2221necon2d 3037 . . . . . . 7 (∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (♯‘𝐹) ≠ 1))
235, 22syl 17 . . . . . 6 ((𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝐹(Walks‘𝐺)𝑃) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (♯‘𝐹) ≠ 1))
2423ex 415 . . . . 5 (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (𝐹(Walks‘𝐺)𝑃 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (♯‘𝐹) ≠ 1)))
2524com13 88 . . . 4 ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (𝐹(Walks‘𝐺)𝑃 → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (♯‘𝐹) ≠ 1)))
2625adantl 484 . . 3 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝐹(Walks‘𝐺)𝑃 → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (♯‘𝐹) ≠ 1)))
271, 2, 26sylc 65 . 2 (𝐹(Cycles‘𝐺)𝑃 → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (♯‘𝐹) ≠ 1))
2827com12 32 1 (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (𝐹(Cycles‘𝐺)𝑃 → (♯‘𝐹) ≠ 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1530  wcel 2107  wne 3014  wral 3136  {crab 3140  𝒫 cpw 4537   class class class wbr 5057  dom cdm 5548  wf 6344  cfv 6348  (class class class)co 7148  0cc0 10529  1c1 10530   + caddc 10532  cle 10668  cn 11630  2c2 11684  ..^cfzo 13025  chash 13682  Vtxcvtx 26773  iEdgciedg 26774  Walkscwlks 27370  Pathscpths 27485  Cyclesccycls 27558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1057  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-er 8281  df-map 8400  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-fzo 13026  df-hash 13683  df-word 13854  df-wlks 27373  df-trls 27466  df-pths 27489  df-cycls 27560
This theorem is referenced by:  umgrn1cycl  27577
  Copyright terms: Public domain W3C validator