MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lfgrn1cycl Structured version   Visualization version   GIF version

Theorem lfgrn1cycl 27104
Description: In a loop-free graph there are no cycles with length 1 (consisting of one edge). (Contributed by Alexander van der Vekens, 7-Nov-2017.) (Revised by AV, 2-Feb-2021.)
Hypotheses
Ref Expression
lfgrn1cycl.v 𝑉 = (Vtx‘𝐺)
lfgrn1cycl.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
lfgrn1cycl (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (𝐹(Cycles‘𝐺)𝑃 → (♯‘𝐹) ≠ 1))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐼   𝑥,𝑉
Allowed substitution hints:   𝑃(𝑥)   𝐺(𝑥)

Proof of Theorem lfgrn1cycl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 cyclprop 27095 . . 3 (𝐹(Cycles‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
2 cycliswlk 27100 . . 3 (𝐹(Cycles‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
3 lfgrn1cycl.i . . . . . . . 8 𝐼 = (iEdg‘𝐺)
4 lfgrn1cycl.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
53, 4lfgrwlknloop 26990 . . . . . . 7 ((𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
6 1nn 11363 . . . . . . . . . . . . . 14 1 ∈ ℕ
7 eleq1 2894 . . . . . . . . . . . . . 14 ((♯‘𝐹) = 1 → ((♯‘𝐹) ∈ ℕ ↔ 1 ∈ ℕ))
86, 7mpbiri 250 . . . . . . . . . . . . 13 ((♯‘𝐹) = 1 → (♯‘𝐹) ∈ ℕ)
9 lbfzo0 12803 . . . . . . . . . . . . 13 (0 ∈ (0..^(♯‘𝐹)) ↔ (♯‘𝐹) ∈ ℕ)
108, 9sylibr 226 . . . . . . . . . . . 12 ((♯‘𝐹) = 1 → 0 ∈ (0..^(♯‘𝐹)))
11 fveq2 6433 . . . . . . . . . . . . . 14 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
12 fv0p1e1 11481 . . . . . . . . . . . . . 14 (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1))
1311, 12neeq12d 3060 . . . . . . . . . . . . 13 (𝑘 = 0 → ((𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘1)))
1413rspcv 3522 . . . . . . . . . . . 12 (0 ∈ (0..^(♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) → (𝑃‘0) ≠ (𝑃‘1)))
1510, 14syl 17 . . . . . . . . . . 11 ((♯‘𝐹) = 1 → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) → (𝑃‘0) ≠ (𝑃‘1)))
1615impcom 398 . . . . . . . . . 10 ((∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ∧ (♯‘𝐹) = 1) → (𝑃‘0) ≠ (𝑃‘1))
17 fveq2 6433 . . . . . . . . . . . 12 ((♯‘𝐹) = 1 → (𝑃‘(♯‘𝐹)) = (𝑃‘1))
1817neeq2d 3059 . . . . . . . . . . 11 ((♯‘𝐹) = 1 → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) ↔ (𝑃‘0) ≠ (𝑃‘1)))
1918adantl 475 . . . . . . . . . 10 ((∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ∧ (♯‘𝐹) = 1) → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) ↔ (𝑃‘0) ≠ (𝑃‘1)))
2016, 19mpbird 249 . . . . . . . . 9 ((∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ∧ (♯‘𝐹) = 1) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))
2120ex 403 . . . . . . . 8 (∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) → ((♯‘𝐹) = 1 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))))
2221necon2d 3022 . . . . . . 7 (∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (♯‘𝐹) ≠ 1))
235, 22syl 17 . . . . . 6 ((𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝐹(Walks‘𝐺)𝑃) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (♯‘𝐹) ≠ 1))
2423ex 403 . . . . 5 (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (𝐹(Walks‘𝐺)𝑃 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (♯‘𝐹) ≠ 1)))
2524com13 88 . . . 4 ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (𝐹(Walks‘𝐺)𝑃 → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (♯‘𝐹) ≠ 1)))
2625adantl 475 . . 3 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝐹(Walks‘𝐺)𝑃 → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (♯‘𝐹) ≠ 1)))
271, 2, 26sylc 65 . 2 (𝐹(Cycles‘𝐺)𝑃 → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (♯‘𝐹) ≠ 1))
2827com12 32 1 (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (𝐹(Cycles‘𝐺)𝑃 → (♯‘𝐹) ≠ 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1658  wcel 2166  wne 2999  wral 3117  {crab 3121  𝒫 cpw 4378   class class class wbr 4873  dom cdm 5342  wf 6119  cfv 6123  (class class class)co 6905  0cc0 10252  1c1 10253   + caddc 10255  cle 10392  cn 11350  2c2 11406  ..^cfzo 12760  chash 13410  Vtxcvtx 26294  iEdgciedg 26295  Walkscwlks 26894  Pathscpths 27014  Cyclesccycls 27087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-ifp 1092  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-er 8009  df-map 8124  df-pm 8125  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-n0 11619  df-z 11705  df-uz 11969  df-fz 12620  df-fzo 12761  df-hash 13411  df-word 13575  df-wlks 26897  df-trls 26993  df-pths 27018  df-cycls 27089
This theorem is referenced by:  umgrn1cycl  27106
  Copyright terms: Public domain W3C validator