![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lfgrn1cycl | Structured version Visualization version GIF version |
Description: In a loop-free graph there are no cycles with length 1 (consisting of one edge). (Contributed by Alexander van der Vekens, 7-Nov-2017.) (Revised by AV, 2-Feb-2021.) |
Ref | Expression |
---|---|
lfgrn1cycl.v | ⊢ 𝑉 = (Vtx‘𝐺) |
lfgrn1cycl.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
lfgrn1cycl | ⊢ (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (𝐹(Cycles‘𝐺)𝑃 → (♯‘𝐹) ≠ 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cyclprop 27095 | . . 3 ⊢ (𝐹(Cycles‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | |
2 | cycliswlk 27100 | . . 3 ⊢ (𝐹(Cycles‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
3 | lfgrn1cycl.i | . . . . . . . 8 ⊢ 𝐼 = (iEdg‘𝐺) | |
4 | lfgrn1cycl.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | 3, 4 | lfgrwlknloop 26990 | . . . . . . 7 ⊢ ((𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) |
6 | 1nn 11363 | . . . . . . . . . . . . . 14 ⊢ 1 ∈ ℕ | |
7 | eleq1 2894 | . . . . . . . . . . . . . 14 ⊢ ((♯‘𝐹) = 1 → ((♯‘𝐹) ∈ ℕ ↔ 1 ∈ ℕ)) | |
8 | 6, 7 | mpbiri 250 | . . . . . . . . . . . . 13 ⊢ ((♯‘𝐹) = 1 → (♯‘𝐹) ∈ ℕ) |
9 | lbfzo0 12803 | . . . . . . . . . . . . 13 ⊢ (0 ∈ (0..^(♯‘𝐹)) ↔ (♯‘𝐹) ∈ ℕ) | |
10 | 8, 9 | sylibr 226 | . . . . . . . . . . . 12 ⊢ ((♯‘𝐹) = 1 → 0 ∈ (0..^(♯‘𝐹))) |
11 | fveq2 6433 | . . . . . . . . . . . . . 14 ⊢ (𝑘 = 0 → (𝑃‘𝑘) = (𝑃‘0)) | |
12 | fv0p1e1 11481 | . . . . . . . . . . . . . 14 ⊢ (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1)) | |
13 | 11, 12 | neeq12d 3060 | . . . . . . . . . . . . 13 ⊢ (𝑘 = 0 → ((𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘1))) |
14 | 13 | rspcv 3522 | . . . . . . . . . . . 12 ⊢ (0 ∈ (0..^(♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) → (𝑃‘0) ≠ (𝑃‘1))) |
15 | 10, 14 | syl 17 | . . . . . . . . . . 11 ⊢ ((♯‘𝐹) = 1 → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) → (𝑃‘0) ≠ (𝑃‘1))) |
16 | 15 | impcom 398 | . . . . . . . . . 10 ⊢ ((∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ∧ (♯‘𝐹) = 1) → (𝑃‘0) ≠ (𝑃‘1)) |
17 | fveq2 6433 | . . . . . . . . . . . 12 ⊢ ((♯‘𝐹) = 1 → (𝑃‘(♯‘𝐹)) = (𝑃‘1)) | |
18 | 17 | neeq2d 3059 | . . . . . . . . . . 11 ⊢ ((♯‘𝐹) = 1 → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) ↔ (𝑃‘0) ≠ (𝑃‘1))) |
19 | 18 | adantl 475 | . . . . . . . . . 10 ⊢ ((∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ∧ (♯‘𝐹) = 1) → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) ↔ (𝑃‘0) ≠ (𝑃‘1))) |
20 | 16, 19 | mpbird 249 | . . . . . . . . 9 ⊢ ((∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ∧ (♯‘𝐹) = 1) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) |
21 | 20 | ex 403 | . . . . . . . 8 ⊢ (∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) → ((♯‘𝐹) = 1 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) |
22 | 21 | necon2d 3022 | . . . . . . 7 ⊢ (∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (♯‘𝐹) ≠ 1)) |
23 | 5, 22 | syl 17 | . . . . . 6 ⊢ ((𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝐹(Walks‘𝐺)𝑃) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (♯‘𝐹) ≠ 1)) |
24 | 23 | ex 403 | . . . . 5 ⊢ (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (𝐹(Walks‘𝐺)𝑃 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (♯‘𝐹) ≠ 1))) |
25 | 24 | com13 88 | . . . 4 ⊢ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (𝐹(Walks‘𝐺)𝑃 → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (♯‘𝐹) ≠ 1))) |
26 | 25 | adantl 475 | . . 3 ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝐹(Walks‘𝐺)𝑃 → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (♯‘𝐹) ≠ 1))) |
27 | 1, 2, 26 | sylc 65 | . 2 ⊢ (𝐹(Cycles‘𝐺)𝑃 → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (♯‘𝐹) ≠ 1)) |
28 | 27 | com12 32 | 1 ⊢ (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → (𝐹(Cycles‘𝐺)𝑃 → (♯‘𝐹) ≠ 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ≠ wne 2999 ∀wral 3117 {crab 3121 𝒫 cpw 4378 class class class wbr 4873 dom cdm 5342 ⟶wf 6119 ‘cfv 6123 (class class class)co 6905 0cc0 10252 1c1 10253 + caddc 10255 ≤ cle 10392 ℕcn 11350 2c2 11406 ..^cfzo 12760 ♯chash 13410 Vtxcvtx 26294 iEdgciedg 26295 Walkscwlks 26894 Pathscpths 27014 Cyclesccycls 27087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-ifp 1092 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-er 8009 df-map 8124 df-pm 8125 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-card 9078 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-nn 11351 df-2 11414 df-n0 11619 df-z 11705 df-uz 11969 df-fz 12620 df-fzo 12761 df-hash 13411 df-word 13575 df-wlks 26897 df-trls 26993 df-pths 27018 df-cycls 27089 |
This theorem is referenced by: umgrn1cycl 27106 |
Copyright terms: Public domain | W3C validator |