Step | Hyp | Ref
| Expression |
1 | | cyclprop 29314 |
. . 3
β’ (πΉ(CyclesβπΊ)π β (πΉ(PathsβπΊ)π β§ (πβ0) = (πβ(β―βπΉ)))) |
2 | | cycliswlk 29319 |
. . 3
β’ (πΉ(CyclesβπΊ)π β πΉ(WalksβπΊ)π) |
3 | | lfgrn1cycl.i |
. . . . . . . 8
β’ πΌ = (iEdgβπΊ) |
4 | | lfgrn1cycl.v |
. . . . . . . 8
β’ π = (VtxβπΊ) |
5 | 3, 4 | lfgrwlknloop 29210 |
. . . . . . 7
β’ ((πΌ:dom πΌβΆ{π₯ β π« π β£ 2 β€ (β―βπ₯)} β§ πΉ(WalksβπΊ)π) β βπ β (0..^(β―βπΉ))(πβπ) β (πβ(π + 1))) |
6 | | 1nn 12228 |
. . . . . . . . . . . . . 14
β’ 1 β
β |
7 | | eleq1 2820 |
. . . . . . . . . . . . . 14
β’
((β―βπΉ) =
1 β ((β―βπΉ)
β β β 1 β β)) |
8 | 6, 7 | mpbiri 257 |
. . . . . . . . . . . . 13
β’
((β―βπΉ) =
1 β (β―βπΉ)
β β) |
9 | | lbfzo0 13677 |
. . . . . . . . . . . . 13
β’ (0 β
(0..^(β―βπΉ))
β (β―βπΉ)
β β) |
10 | 8, 9 | sylibr 233 |
. . . . . . . . . . . 12
β’
((β―βπΉ) =
1 β 0 β (0..^(β―βπΉ))) |
11 | | fveq2 6892 |
. . . . . . . . . . . . . 14
β’ (π = 0 β (πβπ) = (πβ0)) |
12 | | fv0p1e1 12340 |
. . . . . . . . . . . . . 14
β’ (π = 0 β (πβ(π + 1)) = (πβ1)) |
13 | 11, 12 | neeq12d 3001 |
. . . . . . . . . . . . 13
β’ (π = 0 β ((πβπ) β (πβ(π + 1)) β (πβ0) β (πβ1))) |
14 | 13 | rspcv 3609 |
. . . . . . . . . . . 12
β’ (0 β
(0..^(β―βπΉ))
β (βπ β
(0..^(β―βπΉ))(πβπ) β (πβ(π + 1)) β (πβ0) β (πβ1))) |
15 | 10, 14 | syl 17 |
. . . . . . . . . . 11
β’
((β―βπΉ) =
1 β (βπ β
(0..^(β―βπΉ))(πβπ) β (πβ(π + 1)) β (πβ0) β (πβ1))) |
16 | 15 | impcom 407 |
. . . . . . . . . 10
β’
((βπ β
(0..^(β―βπΉ))(πβπ) β (πβ(π + 1)) β§ (β―βπΉ) = 1) β (πβ0) β (πβ1)) |
17 | | fveq2 6892 |
. . . . . . . . . . . 12
β’
((β―βπΉ) =
1 β (πβ(β―βπΉ)) = (πβ1)) |
18 | 17 | neeq2d 3000 |
. . . . . . . . . . 11
β’
((β―βπΉ) =
1 β ((πβ0) β
(πβ(β―βπΉ)) β (πβ0) β (πβ1))) |
19 | 18 | adantl 481 |
. . . . . . . . . 10
β’
((βπ β
(0..^(β―βπΉ))(πβπ) β (πβ(π + 1)) β§ (β―βπΉ) = 1) β ((πβ0) β (πβ(β―βπΉ)) β (πβ0) β (πβ1))) |
20 | 16, 19 | mpbird 256 |
. . . . . . . . 9
β’
((βπ β
(0..^(β―βπΉ))(πβπ) β (πβ(π + 1)) β§ (β―βπΉ) = 1) β (πβ0) β (πβ(β―βπΉ))) |
21 | 20 | ex 412 |
. . . . . . . 8
β’
(βπ β
(0..^(β―βπΉ))(πβπ) β (πβ(π + 1)) β ((β―βπΉ) = 1 β (πβ0) β (πβ(β―βπΉ)))) |
22 | 21 | necon2d 2962 |
. . . . . . 7
β’
(βπ β
(0..^(β―βπΉ))(πβπ) β (πβ(π + 1)) β ((πβ0) = (πβ(β―βπΉ)) β (β―βπΉ) β 1)) |
23 | 5, 22 | syl 17 |
. . . . . 6
β’ ((πΌ:dom πΌβΆ{π₯ β π« π β£ 2 β€ (β―βπ₯)} β§ πΉ(WalksβπΊ)π) β ((πβ0) = (πβ(β―βπΉ)) β (β―βπΉ) β 1)) |
24 | 23 | ex 412 |
. . . . 5
β’ (πΌ:dom πΌβΆ{π₯ β π« π β£ 2 β€ (β―βπ₯)} β (πΉ(WalksβπΊ)π β ((πβ0) = (πβ(β―βπΉ)) β (β―βπΉ) β 1))) |
25 | 24 | com13 88 |
. . . 4
β’ ((πβ0) = (πβ(β―βπΉ)) β (πΉ(WalksβπΊ)π β (πΌ:dom πΌβΆ{π₯ β π« π β£ 2 β€ (β―βπ₯)} β (β―βπΉ) β 1))) |
26 | 25 | adantl 481 |
. . 3
β’ ((πΉ(PathsβπΊ)π β§ (πβ0) = (πβ(β―βπΉ))) β (πΉ(WalksβπΊ)π β (πΌ:dom πΌβΆ{π₯ β π« π β£ 2 β€ (β―βπ₯)} β (β―βπΉ) β 1))) |
27 | 1, 2, 26 | sylc 65 |
. 2
β’ (πΉ(CyclesβπΊ)π β (πΌ:dom πΌβΆ{π₯ β π« π β£ 2 β€ (β―βπ₯)} β (β―βπΉ) β 1)) |
28 | 27 | com12 32 |
1
β’ (πΌ:dom πΌβΆ{π₯ β π« π β£ 2 β€ (β―βπ₯)} β (πΉ(CyclesβπΊ)π β (β―βπΉ) β 1)) |