Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem20 Structured version   Visualization version   GIF version

Theorem poimirlem20 35491
Description: Lemma for poimir 35504 establishing existence for poimirlem21 35492. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimirlem22.s 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
poimirlem22.1 (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))
poimirlem22.2 (𝜑𝑇𝑆)
poimirlem22.3 ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 0)
poimirlem21.4 (𝜑 → (2nd𝑇) = 𝑁)
Assertion
Ref Expression
poimirlem20 (𝜑 → ∃𝑧𝑆 𝑧𝑇)
Distinct variable groups:   𝑓,𝑗,𝑛,𝑝,𝑡,𝑦,𝑧   𝜑,𝑗,𝑛,𝑦   𝑗,𝐹,𝑛,𝑦   𝑗,𝑁,𝑛,𝑦   𝑇,𝑗,𝑛,𝑦   𝜑,𝑝,𝑡   𝑓,𝐾,𝑗,𝑛,𝑝,𝑡   𝑓,𝑁,𝑝,𝑡   𝑇,𝑓,𝑝   𝜑,𝑧   𝑓,𝐹,𝑝,𝑡,𝑧   𝑧,𝐾   𝑧,𝑁   𝑡,𝑇,𝑧   𝑆,𝑗,𝑛,𝑝,𝑡,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝑆(𝑓)   𝐾(𝑦)

Proof of Theorem poimirlem20
StepHypRef Expression
1 oveq2 7210 . . . . . . . . 9 (1 = if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0) → (((1st ‘(1st𝑇))‘𝑛) − 1) = (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0)))
21eleq1d 2818 . . . . . . . 8 (1 = if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0) → ((((1st ‘(1st𝑇))‘𝑛) − 1) ∈ (0..^𝐾) ↔ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0)) ∈ (0..^𝐾)))
3 oveq2 7210 . . . . . . . . 9 (0 = if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0) → (((1st ‘(1st𝑇))‘𝑛) − 0) = (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0)))
43eleq1d 2818 . . . . . . . 8 (0 = if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0) → ((((1st ‘(1st𝑇))‘𝑛) − 0) ∈ (0..^𝐾) ↔ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0)) ∈ (0..^𝐾)))
5 fveq2 6706 . . . . . . . . . . . 12 (𝑛 = ((2nd ‘(1st𝑇))‘𝑁) → ((1st ‘(1st𝑇))‘𝑛) = ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)))
65oveq1d 7217 . . . . . . . . . . 11 (𝑛 = ((2nd ‘(1st𝑇))‘𝑁) → (((1st ‘(1st𝑇))‘𝑛) − 1) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) − 1))
76adantl 485 . . . . . . . . . 10 ((𝜑𝑛 = ((2nd ‘(1st𝑇))‘𝑁)) → (((1st ‘(1st𝑇))‘𝑛) − 1) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) − 1))
8 poimirlem22.2 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑇𝑆)
9 elrabi 3589 . . . . . . . . . . . . . . . . . . . . 21 (𝑇 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
10 poimirlem22.s . . . . . . . . . . . . . . . . . . . . 21 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
119, 10eleq2s 2852 . . . . . . . . . . . . . . . . . . . 20 (𝑇𝑆𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
128, 11syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
13 xp1st 7782 . . . . . . . . . . . . . . . . . . 19 (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
1412, 13syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
15 xp1st 7782 . . . . . . . . . . . . . . . . . 18 ((1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
1614, 15syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
17 elmapi 8519 . . . . . . . . . . . . . . . . 17 ((1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)) → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
1816, 17syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
19 xp2nd 7783 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
2014, 19syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
21 fvex 6719 . . . . . . . . . . . . . . . . . . . 20 (2nd ‘(1st𝑇)) ∈ V
22 f1oeq1 6638 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (2nd ‘(1st𝑇)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)))
2321, 22elab 3580 . . . . . . . . . . . . . . . . . . 19 ((2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
2420, 23sylib 221 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
25 f1of 6650 . . . . . . . . . . . . . . . . . 18 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑇)):(1...𝑁)⟶(1...𝑁))
2624, 25syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)⟶(1...𝑁))
27 poimir.0 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℕ)
28 elfz1end 13125 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (1...𝑁))
2927, 28sylib 221 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ (1...𝑁))
3026, 29ffvelrnd 6894 . . . . . . . . . . . . . . . 16 (𝜑 → ((2nd ‘(1st𝑇))‘𝑁) ∈ (1...𝑁))
3118, 30ffvelrnd 6894 . . . . . . . . . . . . . . 15 (𝜑 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ∈ (0..^𝐾))
32 elfzonn0 13270 . . . . . . . . . . . . . . 15 (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ∈ (0..^𝐾) → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ∈ ℕ0)
3331, 32syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ∈ ℕ0)
34 fvex 6719 . . . . . . . . . . . . . . . . 17 ((2nd ‘(1st𝑇))‘𝑁) ∈ V
35 eleq1 2821 . . . . . . . . . . . . . . . . . . 19 (𝑛 = ((2nd ‘(1st𝑇))‘𝑁) → (𝑛 ∈ (1...𝑁) ↔ ((2nd ‘(1st𝑇))‘𝑁) ∈ (1...𝑁)))
3635anbi2d 632 . . . . . . . . . . . . . . . . . 18 (𝑛 = ((2nd ‘(1st𝑇))‘𝑁) → ((𝜑𝑛 ∈ (1...𝑁)) ↔ (𝜑 ∧ ((2nd ‘(1st𝑇))‘𝑁) ∈ (1...𝑁))))
37 fveq2 6706 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = ((2nd ‘(1st𝑇))‘𝑁) → (𝑝𝑛) = (𝑝‘((2nd ‘(1st𝑇))‘𝑁)))
3837neeq1d 2994 . . . . . . . . . . . . . . . . . . 19 (𝑛 = ((2nd ‘(1st𝑇))‘𝑁) → ((𝑝𝑛) ≠ 0 ↔ (𝑝‘((2nd ‘(1st𝑇))‘𝑁)) ≠ 0))
3938rexbidv 3209 . . . . . . . . . . . . . . . . . 18 (𝑛 = ((2nd ‘(1st𝑇))‘𝑁) → (∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 0 ↔ ∃𝑝 ∈ ran 𝐹(𝑝‘((2nd ‘(1st𝑇))‘𝑁)) ≠ 0))
4036, 39imbi12d 348 . . . . . . . . . . . . . . . . 17 (𝑛 = ((2nd ‘(1st𝑇))‘𝑁) → (((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 0) ↔ ((𝜑 ∧ ((2nd ‘(1st𝑇))‘𝑁) ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘((2nd ‘(1st𝑇))‘𝑁)) ≠ 0)))
41 poimirlem22.3 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 0)
4234, 40, 41vtocl 3467 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((2nd ‘(1st𝑇))‘𝑁) ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘((2nd ‘(1st𝑇))‘𝑁)) ≠ 0)
4330, 42mpdan 687 . . . . . . . . . . . . . . 15 (𝜑 → ∃𝑝 ∈ ran 𝐹(𝑝‘((2nd ‘(1st𝑇))‘𝑁)) ≠ 0)
44 fveq1 6705 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))) → (𝑝‘((2nd ‘(1st𝑇))‘𝑁)) = (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))‘((2nd ‘(1st𝑇))‘𝑁)))
4518ffnd 6535 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (1st ‘(1st𝑇)) Fn (1...𝑁))
4645adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (1st ‘(1st𝑇)) Fn (1...𝑁))
47 1ex 10812 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1 ∈ V
48 fnconstg 6596 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (1 ∈ V → (((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...𝑦)))
4947, 48ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...𝑦))
50 c0ex 10810 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 0 ∈ V
51 fnconstg 6596 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (0 ∈ V → (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)))
5250, 51ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁))
5349, 52pm3.2i 474 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...𝑦)) ∧ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)))
54 dff1o3 6656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁) ∧ Fun (2nd ‘(1st𝑇))))
5554simprbi 500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → Fun (2nd ‘(1st𝑇)))
5624, 55syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → Fun (2nd ‘(1st𝑇)))
57 imain 6454 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Fun (2nd ‘(1st𝑇)) → ((2nd ‘(1st𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = (((2nd ‘(1st𝑇)) “ (1...𝑦)) ∩ ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁))))
5856, 57syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((2nd ‘(1st𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = (((2nd ‘(1st𝑇)) “ (1...𝑦)) ∩ ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁))))
59 elfznn0 13188 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℕ0)
6059nn0red 12134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℝ)
6160ltp1d 11745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 < (𝑦 + 1))
62 fzdisj 13122 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 < (𝑦 + 1) → ((1...𝑦) ∩ ((𝑦 + 1)...𝑁)) = ∅)
6361, 62syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ (0...(𝑁 − 1)) → ((1...𝑦) ∩ ((𝑦 + 1)...𝑁)) = ∅)
6463imaeq2d 5918 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd ‘(1st𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = ((2nd ‘(1st𝑇)) “ ∅))
65 ima0 5934 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((2nd ‘(1st𝑇)) “ ∅) = ∅
6664, 65eqtrdi 2790 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd ‘(1st𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = ∅)
6758, 66sylan9req 2795 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((2nd ‘(1st𝑇)) “ (1...𝑦)) ∩ ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁))) = ∅)
68 fnun 6479 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...𝑦)) ∧ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁))) ∧ (((2nd ‘(1st𝑇)) “ (1...𝑦)) ∩ ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁))) = ∅) → ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑇)) “ (1...𝑦)) ∪ ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁))))
6953, 67, 68sylancr 590 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑇)) “ (1...𝑦)) ∪ ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁))))
70 imaundi 6002 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((2nd ‘(1st𝑇)) “ ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))) = (((2nd ‘(1st𝑇)) “ (1...𝑦)) ∪ ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)))
71 nn0p1nn 12112 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℕ)
72 nnuz 12460 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ℕ = (ℤ‘1)
7371, 72eleqtrdi 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ (ℤ‘1))
7459, 73syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ (ℤ‘1))
7574adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (𝑦 + 1) ∈ (ℤ‘1))
7627nncnd 11829 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑𝑁 ∈ ℂ)
77 npcan1 11240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
7876, 77syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
7978adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁)
80 elfzuz3 13092 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈ (ℤ𝑦))
81 peano2uz 12480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 − 1) ∈ (ℤ𝑦) → ((𝑁 − 1) + 1) ∈ (ℤ𝑦))
8280, 81syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ𝑦))
8382adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) ∈ (ℤ𝑦))
8479, 83eqeltrrd 2835 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ𝑦))
85 fzsplit2 13120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑦 + 1) ∈ (ℤ‘1) ∧ 𝑁 ∈ (ℤ𝑦)) → (1...𝑁) = ((1...𝑦) ∪ ((𝑦 + 1)...𝑁)))
8675, 84, 85syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑁) = ((1...𝑦) ∪ ((𝑦 + 1)...𝑁)))
8786imaeq2d 5918 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = ((2nd ‘(1st𝑇)) “ ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))))
88 f1ofo 6657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁))
89 foima 6627 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁) → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (1...𝑁))
9024, 88, 893syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (1...𝑁))
9190adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (1...𝑁))
9287, 91eqtr3d 2776 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((2nd ‘(1st𝑇)) “ ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))) = (1...𝑁))
9370, 92eqtr3id 2788 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((2nd ‘(1st𝑇)) “ (1...𝑦)) ∪ ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁))) = (1...𝑁))
9493fneq2d 6462 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑇)) “ (1...𝑦)) ∪ ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁))) ↔ ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (1...𝑁)))
9569, 94mpbid 235 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (1...𝑁))
96 ovex 7235 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1...𝑁) ∈ V
9796a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑁) ∈ V)
98 inidm 4123 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1...𝑁) ∩ (1...𝑁)) = (1...𝑁)
99 eqidd 2735 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ ((2nd ‘(1st𝑇))‘𝑁) ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) = ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)))
100 f1ofn 6651 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑇)) Fn (1...𝑁))
10124, 100syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (2nd ‘(1st𝑇)) Fn (1...𝑁))
102101adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (2nd ‘(1st𝑇)) Fn (1...𝑁))
103 fzss1 13134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑦 + 1) ∈ (ℤ‘1) → ((𝑦 + 1)...𝑁) ⊆ (1...𝑁))
10474, 103syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1)...𝑁) ⊆ (1...𝑁))
105104adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((𝑦 + 1)...𝑁) ⊆ (1...𝑁))
106 eluzp1p1 12449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑁 − 1) ∈ (ℤ𝑦) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑦 + 1)))
107 uzss 12444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑁 − 1) + 1) ∈ (ℤ‘(𝑦 + 1)) → (ℤ‘((𝑁 − 1) + 1)) ⊆ (ℤ‘(𝑦 + 1)))
10880, 106, 1073syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 ∈ (0...(𝑁 − 1)) → (ℤ‘((𝑁 − 1) + 1)) ⊆ (ℤ‘(𝑦 + 1)))
109108adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (ℤ‘((𝑁 − 1) + 1)) ⊆ (ℤ‘(𝑦 + 1)))
11027nnzd 12264 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑𝑁 ∈ ℤ)
111110uzidd 12437 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑𝑁 ∈ (ℤ𝑁))
11278fveq2d 6710 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (ℤ‘((𝑁 − 1) + 1)) = (ℤ𝑁))
113111, 112eleqtrrd 2837 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑𝑁 ∈ (ℤ‘((𝑁 − 1) + 1)))
114113adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ‘((𝑁 − 1) + 1)))
115109, 114sseldd 3892 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ‘(𝑦 + 1)))
116 eluzfz2 13103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ (ℤ‘(𝑦 + 1)) → 𝑁 ∈ ((𝑦 + 1)...𝑁))
117115, 116syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ((𝑦 + 1)...𝑁))
118 fnfvima 7038 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((2nd ‘(1st𝑇)) Fn (1...𝑁) ∧ ((𝑦 + 1)...𝑁) ⊆ (1...𝑁) ∧ 𝑁 ∈ ((𝑦 + 1)...𝑁)) → ((2nd ‘(1st𝑇))‘𝑁) ∈ ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)))
119102, 105, 117, 118syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((2nd ‘(1st𝑇))‘𝑁) ∈ ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)))
120 fvun2 6792 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...𝑦)) ∧ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) ∧ ((((2nd ‘(1st𝑇)) “ (1...𝑦)) ∩ ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁))) = ∅ ∧ ((2nd ‘(1st𝑇))‘𝑁) ∈ ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)))) → (((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘𝑁)) = ((((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd ‘(1st𝑇))‘𝑁)))
12149, 52, 120mp3an12 1453 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((2nd ‘(1st𝑇)) “ (1...𝑦)) ∩ ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁))) = ∅ ∧ ((2nd ‘(1st𝑇))‘𝑁) ∈ ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁))) → (((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘𝑁)) = ((((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd ‘(1st𝑇))‘𝑁)))
12267, 119, 121syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘𝑁)) = ((((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd ‘(1st𝑇))‘𝑁)))
12350fvconst2 7008 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((2nd ‘(1st𝑇))‘𝑁) ∈ ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) → ((((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd ‘(1st𝑇))‘𝑁)) = 0)
124119, 123syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd ‘(1st𝑇))‘𝑁)) = 0)
125122, 124eqtrd 2774 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘𝑁)) = 0)
126125adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ ((2nd ‘(1st𝑇))‘𝑁) ∈ (1...𝑁)) → (((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘𝑁)) = 0)
12746, 95, 97, 97, 98, 99, 126ofval 7468 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ ((2nd ‘(1st𝑇))‘𝑁) ∈ (1...𝑁)) → (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))‘((2nd ‘(1st𝑇))‘𝑁)) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) + 0))
12830, 127mpidan 689 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))‘((2nd ‘(1st𝑇))‘𝑁)) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) + 0))
12933nn0cnd 12135 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ∈ ℂ)
130129addid1d 11015 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) + 0) = ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)))
131130adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) + 0) = ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)))
132128, 131eqtrd 2774 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))‘((2nd ‘(1st𝑇))‘𝑁)) = ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)))
13344, 132sylan9eqr 2796 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) → (𝑝‘((2nd ‘(1st𝑇))‘𝑁)) = ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)))
134133adantllr 719 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑝 ∈ ran 𝐹) ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) → (𝑝‘((2nd ‘(1st𝑇))‘𝑁)) = ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)))
135 fveq2 6706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 = 𝑇 → (2nd𝑡) = (2nd𝑇))
136135breq2d 5055 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑡 = 𝑇 → (𝑦 < (2nd𝑡) ↔ 𝑦 < (2nd𝑇)))
137136ifbid 4452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑡 = 𝑇 → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)))
138 2fveq3 6711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑡 = 𝑇 → (1st ‘(1st𝑡)) = (1st ‘(1st𝑇)))
139 2fveq3 6711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑡 = 𝑇 → (2nd ‘(1st𝑡)) = (2nd ‘(1st𝑇)))
140139imaeq1d 5917 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...𝑗)))
141140xpeq1d 5569 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}))
142139imaeq1d 5917 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)))
143142xpeq1d 5569 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))
144141, 143uneq12d 4068 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑡 = 𝑇 → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))
145138, 144oveq12d 7220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑡 = 𝑇 → ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
146137, 145csbeq12dv 3811 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
147146mpteq2dv 5140 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = 𝑇 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
148147eqeq2d 2745 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑇 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
149148, 10elrab2 3598 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑇𝑆 ↔ (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
150149simprbi 500 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑇𝑆𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
1518, 150syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
15260adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ∈ ℝ)
153 peano2zm 12203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
154110, 153syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝑁 − 1) ∈ ℤ)
155154zred 12265 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝑁 − 1) ∈ ℝ)
156155adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) ∈ ℝ)
15727nnred 11828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑𝑁 ∈ ℝ)
158157adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ℝ)
159 elfzle2 13099 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ≤ (𝑁 − 1))
160159adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ≤ (𝑁 − 1))
161157ltm1d 11747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝑁 − 1) < 𝑁)
162161adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) < 𝑁)
163152, 156, 158, 160, 162lelttrd 10973 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 < 𝑁)
164 poimirlem21.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (2nd𝑇) = 𝑁)
165164adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (2nd𝑇) = 𝑁)
166163, 165breqtrrd 5071 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 < (2nd𝑇))
167166iftrued 4437 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) = 𝑦)
168167csbeq1d 3806 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = 𝑦 / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
169 vex 3405 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑦 ∈ V
170 oveq2 7210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑗 = 𝑦 → (1...𝑗) = (1...𝑦))
171170imaeq2d 5918 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑗 = 𝑦 → ((2nd ‘(1st𝑇)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...𝑦)))
172171xpeq1d 5569 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗 = 𝑦 → (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}))
173 oveq1 7209 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑗 = 𝑦 → (𝑗 + 1) = (𝑦 + 1))
174173oveq1d 7217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑗 = 𝑦 → ((𝑗 + 1)...𝑁) = ((𝑦 + 1)...𝑁))
175174imaeq2d 5918 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑗 = 𝑦 → ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)))
176175xpeq1d 5569 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗 = 𝑦 → (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))
177172, 176uneq12d 4068 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 = 𝑦 → ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))
178177oveq2d 7218 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑗 = 𝑦 → ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))))
179169, 178csbie 3838 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑦 / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))
180168, 179eqtrdi 2790 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))))
181180mpteq2dva 5139 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))))
182151, 181eqtrd 2774 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))))
183182rneqd 5796 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ran 𝐹 = ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))))
184183eleq2d 2819 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑝 ∈ ran 𝐹𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))))))
185 eqid 2734 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))))
186 ovex 7235 . . . . . . . . . . . . . . . . . . . . . 22 ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))) ∈ V
187185, 186elrnmpti 5818 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) ↔ ∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))))
188184, 187bitrdi 290 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑝 ∈ ran 𝐹 ↔ ∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))))
189188biimpa 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ ran 𝐹) → ∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))))
190134, 189r19.29a 3201 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ ran 𝐹) → (𝑝‘((2nd ‘(1st𝑇))‘𝑁)) = ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)))
191190neeq1d 2994 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ran 𝐹) → ((𝑝‘((2nd ‘(1st𝑇))‘𝑁)) ≠ 0 ↔ ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ≠ 0))
192191biimpd 232 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ran 𝐹) → ((𝑝‘((2nd ‘(1st𝑇))‘𝑁)) ≠ 0 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ≠ 0))
193192rexlimdva 3196 . . . . . . . . . . . . . . 15 (𝜑 → (∃𝑝 ∈ ran 𝐹(𝑝‘((2nd ‘(1st𝑇))‘𝑁)) ≠ 0 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ≠ 0))
19443, 193mpd 15 . . . . . . . . . . . . . 14 (𝜑 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ≠ 0)
195 elnnne0 12087 . . . . . . . . . . . . . 14 (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ∈ ℕ ↔ (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ∈ ℕ0 ∧ ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ≠ 0))
19633, 194, 195sylanbrc 586 . . . . . . . . . . . . 13 (𝜑 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ∈ ℕ)
197 nnm1nn0 12114 . . . . . . . . . . . . 13 (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ∈ ℕ → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) − 1) ∈ ℕ0)
198196, 197syl 17 . . . . . . . . . . . 12 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) − 1) ∈ ℕ0)
199 elfzo0 13266 . . . . . . . . . . . . . 14 (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ∈ (0..^𝐾) ↔ (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ∈ ℕ0𝐾 ∈ ℕ ∧ ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) < 𝐾))
20031, 199sylib 221 . . . . . . . . . . . . 13 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ∈ ℕ0𝐾 ∈ ℕ ∧ ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) < 𝐾))
201200simp2d 1145 . . . . . . . . . . . 12 (𝜑𝐾 ∈ ℕ)
202198nn0red 12134 . . . . . . . . . . . . 13 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) − 1) ∈ ℝ)
20333nn0red 12134 . . . . . . . . . . . . 13 (𝜑 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ∈ ℝ)
204201nnred 11828 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ ℝ)
205203ltm1d 11747 . . . . . . . . . . . . 13 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) − 1) < ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)))
206 elfzolt2 13235 . . . . . . . . . . . . . 14 (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ∈ (0..^𝐾) → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) < 𝐾)
20731, 206syl 17 . . . . . . . . . . . . 13 (𝜑 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) < 𝐾)
208202, 203, 204, 205, 207lttrd 10976 . . . . . . . . . . . 12 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) − 1) < 𝐾)
209 elfzo0 13266 . . . . . . . . . . . 12 ((((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) − 1) ∈ (0..^𝐾) ↔ ((((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) − 1) ∈ ℕ0𝐾 ∈ ℕ ∧ (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) − 1) < 𝐾))
210198, 201, 208, 209syl3anbrc 1345 . . . . . . . . . . 11 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) − 1) ∈ (0..^𝐾))
211210adantr 484 . . . . . . . . . 10 ((𝜑𝑛 = ((2nd ‘(1st𝑇))‘𝑁)) → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) − 1) ∈ (0..^𝐾))
2127, 211eqeltrd 2834 . . . . . . . . 9 ((𝜑𝑛 = ((2nd ‘(1st𝑇))‘𝑁)) → (((1st ‘(1st𝑇))‘𝑛) − 1) ∈ (0..^𝐾))
213212adantlr 715 . . . . . . . 8 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑛 = ((2nd ‘(1st𝑇))‘𝑁)) → (((1st ‘(1st𝑇))‘𝑛) − 1) ∈ (0..^𝐾))
21418ffvelrnda 6893 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) ∈ (0..^𝐾))
215 elfzonn0 13270 . . . . . . . . . . . . 13 (((1st ‘(1st𝑇))‘𝑛) ∈ (0..^𝐾) → ((1st ‘(1st𝑇))‘𝑛) ∈ ℕ0)
216214, 215syl 17 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) ∈ ℕ0)
217216nn0cnd 12135 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) ∈ ℂ)
218217subid1d 11161 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → (((1st ‘(1st𝑇))‘𝑛) − 0) = ((1st ‘(1st𝑇))‘𝑛))
219218, 214eqeltrd 2834 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (((1st ‘(1st𝑇))‘𝑛) − 0) ∈ (0..^𝐾))
220219adantr 484 . . . . . . . 8 (((𝜑𝑛 ∈ (1...𝑁)) ∧ ¬ 𝑛 = ((2nd ‘(1st𝑇))‘𝑁)) → (((1st ‘(1st𝑇))‘𝑛) − 0) ∈ (0..^𝐾))
2212, 4, 213, 220ifbothda 4467 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0)) ∈ (0..^𝐾))
222221fmpttd 6921 . . . . . 6 (𝜑 → (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))):(1...𝑁)⟶(0..^𝐾))
223 ovex 7235 . . . . . . 7 (0..^𝐾) ∈ V
224223, 96elmap 8541 . . . . . 6 ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∈ ((0..^𝐾) ↑m (1...𝑁)) ↔ (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))):(1...𝑁)⟶(0..^𝐾))
225222, 224sylibr 237 . . . . 5 (𝜑 → (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∈ ((0..^𝐾) ↑m (1...𝑁)))
226 simpr 488 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ((1 + 1)...𝑁)) → 𝑛 ∈ ((1 + 1)...𝑁))
227 1z 12190 . . . . . . . . . . . . . . . 16 1 ∈ ℤ
228 peano2z 12201 . . . . . . . . . . . . . . . 16 (1 ∈ ℤ → (1 + 1) ∈ ℤ)
229227, 228ax-mp 5 . . . . . . . . . . . . . . 15 (1 + 1) ∈ ℤ
230110, 229jctil 523 . . . . . . . . . . . . . 14 (𝜑 → ((1 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ))
231 elfzelz 13095 . . . . . . . . . . . . . . 15 (𝑛 ∈ ((1 + 1)...𝑁) → 𝑛 ∈ ℤ)
232231, 227jctir 524 . . . . . . . . . . . . . 14 (𝑛 ∈ ((1 + 1)...𝑁) → (𝑛 ∈ ℤ ∧ 1 ∈ ℤ))
233 fzsubel 13131 . . . . . . . . . . . . . 14 ((((1 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑛 ∈ ((1 + 1)...𝑁) ↔ (𝑛 − 1) ∈ (((1 + 1) − 1)...(𝑁 − 1))))
234230, 232, 233syl2an 599 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ((1 + 1)...𝑁)) → (𝑛 ∈ ((1 + 1)...𝑁) ↔ (𝑛 − 1) ∈ (((1 + 1) − 1)...(𝑁 − 1))))
235226, 234mpbid 235 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ((1 + 1)...𝑁)) → (𝑛 − 1) ∈ (((1 + 1) − 1)...(𝑁 − 1)))
236 ax-1cn 10770 . . . . . . . . . . . . . 14 1 ∈ ℂ
237236, 236pncan3oi 11077 . . . . . . . . . . . . 13 ((1 + 1) − 1) = 1
238237oveq1i 7212 . . . . . . . . . . . 12 (((1 + 1) − 1)...(𝑁 − 1)) = (1...(𝑁 − 1))
239235, 238eleqtrdi 2844 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ((1 + 1)...𝑁)) → (𝑛 − 1) ∈ (1...(𝑁 − 1)))
240239ralrimiva 3098 . . . . . . . . . 10 (𝜑 → ∀𝑛 ∈ ((1 + 1)...𝑁)(𝑛 − 1) ∈ (1...(𝑁 − 1)))
241 simpr 488 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (1...(𝑁 − 1))) → 𝑦 ∈ (1...(𝑁 − 1)))
242154, 227jctil 523 . . . . . . . . . . . . . . 15 (𝜑 → (1 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ))
243 elfzelz 13095 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (1...(𝑁 − 1)) → 𝑦 ∈ ℤ)
244243, 227jctir 524 . . . . . . . . . . . . . . 15 (𝑦 ∈ (1...(𝑁 − 1)) → (𝑦 ∈ ℤ ∧ 1 ∈ ℤ))
245 fzaddel 13129 . . . . . . . . . . . . . . 15 (((1 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑦 ∈ (1...(𝑁 − 1)) ↔ (𝑦 + 1) ∈ ((1 + 1)...((𝑁 − 1) + 1))))
246242, 244, 245syl2an 599 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (1...(𝑁 − 1))) → (𝑦 ∈ (1...(𝑁 − 1)) ↔ (𝑦 + 1) ∈ ((1 + 1)...((𝑁 − 1) + 1))))
247241, 246mpbid 235 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (1...(𝑁 − 1))) → (𝑦 + 1) ∈ ((1 + 1)...((𝑁 − 1) + 1)))
24878oveq2d 7218 . . . . . . . . . . . . . 14 (𝜑 → ((1 + 1)...((𝑁 − 1) + 1)) = ((1 + 1)...𝑁))
249248adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (1...(𝑁 − 1))) → ((1 + 1)...((𝑁 − 1) + 1)) = ((1 + 1)...𝑁))
250247, 249eleqtrd 2836 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (1...(𝑁 − 1))) → (𝑦 + 1) ∈ ((1 + 1)...𝑁))
251231zcnd 12266 . . . . . . . . . . . . . . 15 (𝑛 ∈ ((1 + 1)...𝑁) → 𝑛 ∈ ℂ)
252243zcnd 12266 . . . . . . . . . . . . . . 15 (𝑦 ∈ (1...(𝑁 − 1)) → 𝑦 ∈ ℂ)
253 subadd2 11065 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑛 − 1) = 𝑦 ↔ (𝑦 + 1) = 𝑛))
254236, 253mp3an2 1451 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑛 − 1) = 𝑦 ↔ (𝑦 + 1) = 𝑛))
255 eqcom 2741 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑛 − 1) ↔ (𝑛 − 1) = 𝑦)
256 eqcom 2741 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑦 + 1) ↔ (𝑦 + 1) = 𝑛)
257254, 255, 2563bitr4g 317 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1)))
258251, 252, 257syl2anr 600 . . . . . . . . . . . . . 14 ((𝑦 ∈ (1...(𝑁 − 1)) ∧ 𝑛 ∈ ((1 + 1)...𝑁)) → (𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1)))
259258ralrimiva 3098 . . . . . . . . . . . . 13 (𝑦 ∈ (1...(𝑁 − 1)) → ∀𝑛 ∈ ((1 + 1)...𝑁)(𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1)))
260259adantl 485 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (1...(𝑁 − 1))) → ∀𝑛 ∈ ((1 + 1)...𝑁)(𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1)))
261 reu6i 3634 . . . . . . . . . . . 12 (((𝑦 + 1) ∈ ((1 + 1)...𝑁) ∧ ∀𝑛 ∈ ((1 + 1)...𝑁)(𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1))) → ∃!𝑛 ∈ ((1 + 1)...𝑁)𝑦 = (𝑛 − 1))
262250, 260, 261syl2anc 587 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (1...(𝑁 − 1))) → ∃!𝑛 ∈ ((1 + 1)...𝑁)𝑦 = (𝑛 − 1))
263262ralrimiva 3098 . . . . . . . . . 10 (𝜑 → ∀𝑦 ∈ (1...(𝑁 − 1))∃!𝑛 ∈ ((1 + 1)...𝑁)𝑦 = (𝑛 − 1))
264 eqid 2734 . . . . . . . . . . 11 (𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) = (𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1))
265264f1ompt 6917 . . . . . . . . . 10 ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)):((1 + 1)...𝑁)–1-1-onto→(1...(𝑁 − 1)) ↔ (∀𝑛 ∈ ((1 + 1)...𝑁)(𝑛 − 1) ∈ (1...(𝑁 − 1)) ∧ ∀𝑦 ∈ (1...(𝑁 − 1))∃!𝑛 ∈ ((1 + 1)...𝑁)𝑦 = (𝑛 − 1)))
266240, 263, 265sylanbrc 586 . . . . . . . . 9 (𝜑 → (𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)):((1 + 1)...𝑁)–1-1-onto→(1...(𝑁 − 1)))
267 f1osng 6690 . . . . . . . . . 10 ((1 ∈ V ∧ 𝑁 ∈ ℕ) → {⟨1, 𝑁⟩}:{1}–1-1-onto→{𝑁})
26847, 27, 267sylancr 590 . . . . . . . . 9 (𝜑 → {⟨1, 𝑁⟩}:{1}–1-1-onto→{𝑁})
269155, 157ltnled 10962 . . . . . . . . . . . 12 (𝜑 → ((𝑁 − 1) < 𝑁 ↔ ¬ 𝑁 ≤ (𝑁 − 1)))
270161, 269mpbid 235 . . . . . . . . . . 11 (𝜑 → ¬ 𝑁 ≤ (𝑁 − 1))
271 elfzle2 13099 . . . . . . . . . . 11 (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1))
272270, 271nsyl 142 . . . . . . . . . 10 (𝜑 → ¬ 𝑁 ∈ (1...(𝑁 − 1)))
273 disjsn 4617 . . . . . . . . . 10 (((1...(𝑁 − 1)) ∩ {𝑁}) = ∅ ↔ ¬ 𝑁 ∈ (1...(𝑁 − 1)))
274272, 273sylibr 237 . . . . . . . . 9 (𝜑 → ((1...(𝑁 − 1)) ∩ {𝑁}) = ∅)
275 1re 10816 . . . . . . . . . . . . . 14 1 ∈ ℝ
276275ltp1i 11719 . . . . . . . . . . . . 13 1 < (1 + 1)
277229zrei 12165 . . . . . . . . . . . . . 14 (1 + 1) ∈ ℝ
278275, 277ltnlei 10936 . . . . . . . . . . . . 13 (1 < (1 + 1) ↔ ¬ (1 + 1) ≤ 1)
279276, 278mpbi 233 . . . . . . . . . . . 12 ¬ (1 + 1) ≤ 1
280 elfzle1 13098 . . . . . . . . . . . 12 (1 ∈ ((1 + 1)...𝑁) → (1 + 1) ≤ 1)
281279, 280mto 200 . . . . . . . . . . 11 ¬ 1 ∈ ((1 + 1)...𝑁)
282 disjsn 4617 . . . . . . . . . . 11 ((((1 + 1)...𝑁) ∩ {1}) = ∅ ↔ ¬ 1 ∈ ((1 + 1)...𝑁))
283281, 282mpbir 234 . . . . . . . . . 10 (((1 + 1)...𝑁) ∩ {1}) = ∅
284 f1oun 6669 . . . . . . . . . 10 ((((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)):((1 + 1)...𝑁)–1-1-onto→(1...(𝑁 − 1)) ∧ {⟨1, 𝑁⟩}:{1}–1-1-onto→{𝑁}) ∧ ((((1 + 1)...𝑁) ∩ {1}) = ∅ ∧ ((1...(𝑁 − 1)) ∩ {𝑁}) = ∅)) → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {⟨1, 𝑁⟩}):(((1 + 1)...𝑁) ∪ {1})–1-1-onto→((1...(𝑁 − 1)) ∪ {𝑁}))
285283, 284mpanr1 703 . . . . . . . . 9 ((((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)):((1 + 1)...𝑁)–1-1-onto→(1...(𝑁 − 1)) ∧ {⟨1, 𝑁⟩}:{1}–1-1-onto→{𝑁}) ∧ ((1...(𝑁 − 1)) ∩ {𝑁}) = ∅) → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {⟨1, 𝑁⟩}):(((1 + 1)...𝑁) ∪ {1})–1-1-onto→((1...(𝑁 − 1)) ∪ {𝑁}))
286266, 268, 274, 285syl21anc 838 . . . . . . . 8 (𝜑 → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {⟨1, 𝑁⟩}):(((1 + 1)...𝑁) ∪ {1})–1-1-onto→((1...(𝑁 − 1)) ∪ {𝑁}))
287 eleq1 2821 . . . . . . . . . . . . . . 15 (𝑛 = 1 → (𝑛 ∈ ((1 + 1)...𝑁) ↔ 1 ∈ ((1 + 1)...𝑁)))
288281, 287mtbiri 330 . . . . . . . . . . . . . 14 (𝑛 = 1 → ¬ 𝑛 ∈ ((1 + 1)...𝑁))
289288necon2ai 2964 . . . . . . . . . . . . 13 (𝑛 ∈ ((1 + 1)...𝑁) → 𝑛 ≠ 1)
290 ifnefalse 4441 . . . . . . . . . . . . 13 (𝑛 ≠ 1 → if(𝑛 = 1, 𝑁, (𝑛 − 1)) = (𝑛 − 1))
291289, 290syl 17 . . . . . . . . . . . 12 (𝑛 ∈ ((1 + 1)...𝑁) → if(𝑛 = 1, 𝑁, (𝑛 − 1)) = (𝑛 − 1))
292291mpteq2ia 5135 . . . . . . . . . . 11 (𝑛 ∈ ((1 + 1)...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) = (𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1))
293292uneq1i 4063 . . . . . . . . . 10 ((𝑛 ∈ ((1 + 1)...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ∪ {⟨1, 𝑁⟩}) = ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {⟨1, 𝑁⟩})
29447a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ∈ V)
29527, 72eleqtrdi 2844 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ (ℤ‘1))
296 fzpred 13143 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘1) → (1...𝑁) = ({1} ∪ ((1 + 1)...𝑁)))
297295, 296syl 17 . . . . . . . . . . . 12 (𝜑 → (1...𝑁) = ({1} ∪ ((1 + 1)...𝑁)))
298 uncom 4057 . . . . . . . . . . . 12 ({1} ∪ ((1 + 1)...𝑁)) = (((1 + 1)...𝑁) ∪ {1})
299297, 298eqtr2di 2791 . . . . . . . . . . 11 (𝜑 → (((1 + 1)...𝑁) ∪ {1}) = (1...𝑁))
300 iftrue 4435 . . . . . . . . . . . 12 (𝑛 = 1 → if(𝑛 = 1, 𝑁, (𝑛 − 1)) = 𝑁)
301300adantl 485 . . . . . . . . . . 11 ((𝜑𝑛 = 1) → if(𝑛 = 1, 𝑁, (𝑛 − 1)) = 𝑁)
302294, 27, 299, 301fmptapd 6975 . . . . . . . . . 10 (𝜑 → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ∪ {⟨1, 𝑁⟩}) = (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))
303293, 302eqtr3id 2788 . . . . . . . . 9 (𝜑 → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {⟨1, 𝑁⟩}) = (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))
30478, 295eqeltrd 2834 . . . . . . . . . . 11 (𝜑 → ((𝑁 − 1) + 1) ∈ (ℤ‘1))
305 uzid 12436 . . . . . . . . . . . . 13 ((𝑁 − 1) ∈ ℤ → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)))
306 peano2uz 12480 . . . . . . . . . . . . 13 ((𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
307154, 305, 3063syl 18 . . . . . . . . . . . 12 (𝜑 → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
30878, 307eqeltrrd 2835 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ‘(𝑁 − 1)))
309 fzsplit2 13120 . . . . . . . . . . 11 ((((𝑁 − 1) + 1) ∈ (ℤ‘1) ∧ 𝑁 ∈ (ℤ‘(𝑁 − 1))) → (1...𝑁) = ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)))
310304, 308, 309syl2anc 587 . . . . . . . . . 10 (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)))
31178oveq1d 7217 . . . . . . . . . . . 12 (𝜑 → (((𝑁 − 1) + 1)...𝑁) = (𝑁...𝑁))
312 fzsn 13137 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁})
313110, 312syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑁...𝑁) = {𝑁})
314311, 313eqtrd 2774 . . . . . . . . . . 11 (𝜑 → (((𝑁 − 1) + 1)...𝑁) = {𝑁})
315314uneq2d 4067 . . . . . . . . . 10 (𝜑 → ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)) = ((1...(𝑁 − 1)) ∪ {𝑁}))
316310, 315eqtr2d 2775 . . . . . . . . 9 (𝜑 → ((1...(𝑁 − 1)) ∪ {𝑁}) = (1...𝑁))
317303, 299, 316f1oeq123d 6644 . . . . . . . 8 (𝜑 → (((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {⟨1, 𝑁⟩}):(((1 + 1)...𝑁) ∪ {1})–1-1-onto→((1...(𝑁 − 1)) ∪ {𝑁}) ↔ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))):(1...𝑁)–1-1-onto→(1...𝑁)))
318286, 317mpbid 235 . . . . . . 7 (𝜑 → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))):(1...𝑁)–1-1-onto→(1...𝑁))
319 f1oco 6672 . . . . . . 7 (((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) ∧ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))):(1...𝑁)–1-1-onto→(1...𝑁)) → ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–1-1-onto→(1...𝑁))
32024, 318, 319syl2anc 587 . . . . . 6 (𝜑 → ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–1-1-onto→(1...𝑁))
32196mptex 7028 . . . . . . . 8 (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ∈ V
32221, 321coex 7697 . . . . . . 7 ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) ∈ V
323 f1oeq1 6638 . . . . . . 7 (𝑓 = ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–1-1-onto→(1...𝑁)))
324322, 323elab 3580 . . . . . 6 (((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–1-1-onto→(1...𝑁))
325320, 324sylibr 237 . . . . 5 (𝜑 → ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
326225, 325opelxpd 5578 . . . 4 (𝜑 → ⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩ ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
32727nnnn0d 12133 . . . . 5 (𝜑𝑁 ∈ ℕ0)
328 0elfz 13192 . . . . 5 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
329327, 328syl 17 . . . 4 (𝜑 → 0 ∈ (0...𝑁))
330326, 329opelxpd 5578 . . 3 (𝜑 → ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
331 poimirlem22.1 . . . . 5 (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))
33227, 10, 331, 8, 41, 164poimirlem19 35490 . . . 4 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))))
333 elfzle1 13098 . . . . . . . . 9 (𝑦 ∈ (0...(𝑁 − 1)) → 0 ≤ 𝑦)
334 0re 10818 . . . . . . . . . 10 0 ∈ ℝ
335 lenlt 10894 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 ≤ 𝑦 ↔ ¬ 𝑦 < 0))
336334, 60, 335sylancr 590 . . . . . . . . 9 (𝑦 ∈ (0...(𝑁 − 1)) → (0 ≤ 𝑦 ↔ ¬ 𝑦 < 0))
337333, 336mpbid 235 . . . . . . . 8 (𝑦 ∈ (0...(𝑁 − 1)) → ¬ 𝑦 < 0)
338337iffalsed 4440 . . . . . . 7 (𝑦 ∈ (0...(𝑁 − 1)) → if(𝑦 < 0, 𝑦, (𝑦 + 1)) = (𝑦 + 1))
339338csbeq1d 3806 . . . . . 6 (𝑦 ∈ (0...(𝑁 − 1)) → if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑦 + 1) / 𝑗((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))))
340 ovex 7235 . . . . . . 7 (𝑦 + 1) ∈ V
341 oveq2 7210 . . . . . . . . . . 11 (𝑗 = (𝑦 + 1) → (1...𝑗) = (1...(𝑦 + 1)))
342341imaeq2d 5918 . . . . . . . . . 10 (𝑗 = (𝑦 + 1) → (((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) = (((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))))
343342xpeq1d 5569 . . . . . . . . 9 (𝑗 = (𝑦 + 1) → ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) = ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}))
344 oveq1 7209 . . . . . . . . . . . 12 (𝑗 = (𝑦 + 1) → (𝑗 + 1) = ((𝑦 + 1) + 1))
345344oveq1d 7217 . . . . . . . . . . 11 (𝑗 = (𝑦 + 1) → ((𝑗 + 1)...𝑁) = (((𝑦 + 1) + 1)...𝑁))
346345imaeq2d 5918 . . . . . . . . . 10 (𝑗 = (𝑦 + 1) → (((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) = (((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)))
347346xpeq1d 5569 . . . . . . . . 9 (𝑗 = (𝑦 + 1) → ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}) = ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))
348343, 347uneq12d 4068 . . . . . . . 8 (𝑗 = (𝑦 + 1) → (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})) = (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))
349348oveq2d 7218 . . . . . . 7 (𝑗 = (𝑦 + 1) → ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))
350340, 349csbie 3838 . . . . . 6 (𝑦 + 1) / 𝑗((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))
351339, 350eqtrdi 2790 . . . . 5 (𝑦 ∈ (0...(𝑁 − 1)) → if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))
352351mpteq2ia 5135 . . . 4 (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))
353332, 352eqtr4di 2792 . . 3 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})))))
354 opex 5337 . . . . . . . . . 10 ⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩ ∈ V
355354, 50op2ndd 7761 . . . . . . . . 9 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → (2nd𝑡) = 0)
356355breq2d 5055 . . . . . . . 8 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → (𝑦 < (2nd𝑡) ↔ 𝑦 < 0))
357356ifbid 4452 . . . . . . 7 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < 0, 𝑦, (𝑦 + 1)))
358354, 50op1std 7760 . . . . . . . . 9 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → (1st𝑡) = ⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩)
35996mptex 7028 . . . . . . . . . 10 (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∈ V
360359, 322op1std 7760 . . . . . . . . 9 ((1st𝑡) = ⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩ → (1st ‘(1st𝑡)) = (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))))
361358, 360syl 17 . . . . . . . 8 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → (1st ‘(1st𝑡)) = (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))))
362359, 322op2ndd 7761 . . . . . . . . . . . 12 ((1st𝑡) = ⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩ → (2nd ‘(1st𝑡)) = ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))))
363358, 362syl 17 . . . . . . . . . . 11 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → (2nd ‘(1st𝑡)) = ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))))
364363imaeq1d 5917 . . . . . . . . . 10 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = (((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)))
365364xpeq1d 5569 . . . . . . . . 9 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}))
366363imaeq1d 5917 . . . . . . . . . 10 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = (((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)))
367366xpeq1d 5569 . . . . . . . . 9 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))
368365, 367uneq12d 4068 . . . . . . . 8 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})))
369361, 368oveq12d 7220 . . . . . . 7 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))))
370357, 369csbeq12dv 3811 . . . . . 6 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))))
371370mpteq2dv 5140 . . . . 5 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})))))
372371eqeq2d 2745 . . . 4 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))))))
373372, 10elrab2 3598 . . 3 (⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ ∈ 𝑆 ↔ (⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))))))
374330, 353, 373sylanbrc 586 . 2 (𝜑 → ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ ∈ 𝑆)
375354, 50op2ndd 7761 . . . . . 6 (𝑇 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → (2nd𝑇) = 0)
376375eqcoms 2742 . . . . 5 (⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ = 𝑇 → (2nd𝑇) = 0)
37727nnne0d 11863 . . . . . . 7 (𝜑𝑁 ≠ 0)
378377necomd 2990 . . . . . 6 (𝜑 → 0 ≠ 𝑁)
379 neeq1 2997 . . . . . 6 ((2nd𝑇) = 0 → ((2nd𝑇) ≠ 𝑁 ↔ 0 ≠ 𝑁))
380378, 379syl5ibrcom 250 . . . . 5 (𝜑 → ((2nd𝑇) = 0 → (2nd𝑇) ≠ 𝑁))
381376, 380syl5 34 . . . 4 (𝜑 → (⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ = 𝑇 → (2nd𝑇) ≠ 𝑁))
382381necon2d 2958 . . 3 (𝜑 → ((2nd𝑇) = 𝑁 → ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ ≠ 𝑇))
383164, 382mpd 15 . 2 (𝜑 → ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ ≠ 𝑇)
384 neeq1 2997 . . 3 (𝑧 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → (𝑧𝑇 ↔ ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ ≠ 𝑇))
385384rspcev 3530 . 2 ((⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ ∈ 𝑆 ∧ ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ ≠ 𝑇) → ∃𝑧𝑆 𝑧𝑇)
386374, 383, 385syl2anc 587 1 (𝜑 → ∃𝑧𝑆 𝑧𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  {cab 2712  wne 2935  wral 3054  wrex 3055  ∃!wreu 3056  {crab 3058  Vcvv 3401  csb 3802  cun 3855  cin 3856  wss 3857  c0 4227  ifcif 4429  {csn 4531  cop 4537   class class class wbr 5043  cmpt 5124   × cxp 5538  ccnv 5539  ran crn 5541  cima 5543  ccom 5544  Fun wfun 6363   Fn wfn 6364  wf 6365  ontowfo 6367  1-1-ontowf1o 6368  cfv 6369  (class class class)co 7202  f cof 7456  1st c1st 7748  2nd c2nd 7749  m cmap 8497  cc 10710  cr 10711  0cc0 10712  1c1 10713   + caddc 10715   < clt 10850  cle 10851  cmin 11045  cn 11813  0cn0 12073  cz 12159  cuz 12421  ...cfz 13078  ..^cfzo 13221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-of 7458  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-n0 12074  df-z 12160  df-uz 12422  df-fz 13079  df-fzo 13222
This theorem is referenced by:  poimirlem21  35492
  Copyright terms: Public domain W3C validator