Proof of Theorem poimirlem20
Step | Hyp | Ref
| Expression |
1 | | oveq2 7283 |
. . . . . . . . 9
⊢ (1 =
if(𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁), 1, 0) → (((1st
‘(1st ‘𝑇))‘𝑛) − 1) = (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) |
2 | 1 | eleq1d 2823 |
. . . . . . . 8
⊢ (1 =
if(𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁), 1, 0) → ((((1st
‘(1st ‘𝑇))‘𝑛) − 1) ∈ (0..^𝐾) ↔ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)) ∈ (0..^𝐾))) |
3 | | oveq2 7283 |
. . . . . . . . 9
⊢ (0 =
if(𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁), 1, 0) → (((1st
‘(1st ‘𝑇))‘𝑛) − 0) = (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) |
4 | 3 | eleq1d 2823 |
. . . . . . . 8
⊢ (0 =
if(𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁), 1, 0) → ((((1st
‘(1st ‘𝑇))‘𝑛) − 0) ∈ (0..^𝐾) ↔ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)) ∈ (0..^𝐾))) |
5 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁) → ((1st
‘(1st ‘𝑇))‘𝑛) = ((1st ‘(1st
‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
6 | 5 | oveq1d 7290 |
. . . . . . . . . . 11
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁) → (((1st
‘(1st ‘𝑇))‘𝑛) − 1) = (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1)) |
7 | 6 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) − 1) = (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1)) |
8 | | poimirlem22.2 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑇 ∈ 𝑆) |
9 | | elrabi 3618 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑇 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
10 | | poimirlem22.s |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} |
11 | 9, 10 | eleq2s 2857 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑇 ∈ 𝑆 → 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
12 | 8, 11 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
13 | | xp1st 7863 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st ‘𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
14 | 12, 13 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (1st
‘𝑇) ∈
(((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
15 | | xp1st 7863 |
. . . . . . . . . . . . . . . . . 18
⊢
((1st ‘𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st
‘(1st ‘𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁))) |
16 | 14, 15 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (1st
‘(1st ‘𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁))) |
17 | | elmapi 8637 |
. . . . . . . . . . . . . . . . 17
⊢
((1st ‘(1st ‘𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)) → (1st
‘(1st ‘𝑇)):(1...𝑁)⟶(0..^𝐾)) |
18 | 16, 17 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (1st
‘(1st ‘𝑇)):(1...𝑁)⟶(0..^𝐾)) |
19 | | xp2nd 7864 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((1st ‘𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd
‘(1st ‘𝑇)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
20 | 14, 19 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (2nd
‘(1st ‘𝑇)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
21 | | fvex 6787 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(2nd ‘(1st ‘𝑇)) ∈ V |
22 | | f1oeq1 6704 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = (2nd
‘(1st ‘𝑇)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd
‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))) |
23 | 21, 22 | elab 3609 |
. . . . . . . . . . . . . . . . . . 19
⊢
((2nd ‘(1st ‘𝑇)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd
‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)) |
24 | 20, 23 | sylib 217 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (2nd
‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)) |
25 | | f1of 6716 |
. . . . . . . . . . . . . . . . . 18
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd
‘(1st ‘𝑇)):(1...𝑁)⟶(1...𝑁)) |
26 | 24, 25 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (2nd
‘(1st ‘𝑇)):(1...𝑁)⟶(1...𝑁)) |
27 | | poimir.0 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑁 ∈ ℕ) |
28 | | elfz1end 13286 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (1...𝑁)) |
29 | 27, 28 | sylib 217 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑁 ∈ (1...𝑁)) |
30 | 26, 29 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ (1...𝑁)) |
31 | 18, 30 | ffvelrnd 6962 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ (0..^𝐾)) |
32 | | elfzonn0 13432 |
. . . . . . . . . . . . . . 15
⊢
(((1st ‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ (0..^𝐾) → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈
ℕ0) |
33 | 31, 32 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈
ℕ0) |
34 | | fvex 6787 |
. . . . . . . . . . . . . . . . 17
⊢
((2nd ‘(1st ‘𝑇))‘𝑁) ∈ V |
35 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁) → (𝑛 ∈ (1...𝑁) ↔ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ (1...𝑁))) |
36 | 35 | anbi2d 629 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁) → ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) ↔ (𝜑 ∧ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ (1...𝑁)))) |
37 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁) → (𝑝‘𝑛) = (𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
38 | 37 | neeq1d 3003 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁) → ((𝑝‘𝑛) ≠ 0 ↔ (𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0)) |
39 | 38 | rexbidv 3226 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁) → (∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 0 ↔ ∃𝑝 ∈ ran 𝐹(𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0)) |
40 | 36, 39 | imbi12d 345 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁) → (((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 0) ↔ ((𝜑 ∧ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0))) |
41 | | poimirlem22.3 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 0) |
42 | 34, 40, 41 | vtocl 3498 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0) |
43 | 30, 42 | mpdan 684 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∃𝑝 ∈ ran 𝐹(𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0) |
44 | | fveq1 6773 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 = ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))) → (𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) = (((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
45 | 18 | ffnd 6601 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (1st
‘(1st ‘𝑇)) Fn (1...𝑁)) |
46 | 45 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1st
‘(1st ‘𝑇)) Fn (1...𝑁)) |
47 | | 1ex 10971 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 1 ∈
V |
48 | | fnconstg 6662 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (1 ∈
V → (((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...𝑦))) |
49 | 47, 48 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) |
50 | | c0ex 10969 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 0 ∈
V |
51 | | fnconstg 6662 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (0 ∈
V → (((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) |
52 | 50, 51 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) |
53 | 49, 52 | pm3.2i 471 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∧ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) |
54 | | dff1o3 6722 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((2nd
‘(1st ‘𝑇)):(1...𝑁)–onto→(1...𝑁) ∧ Fun ◡(2nd ‘(1st
‘𝑇)))) |
55 | 54 | simprbi 497 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → Fun ◡(2nd ‘(1st
‘𝑇))) |
56 | 24, 55 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → Fun ◡(2nd ‘(1st
‘𝑇))) |
57 | | imain 6519 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (Fun
◡(2nd ‘(1st
‘𝑇)) →
((2nd ‘(1st ‘𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)))) |
58 | 56, 57 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)))) |
59 | | elfznn0 13349 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℕ0) |
60 | 59 | nn0red 12294 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℝ) |
61 | 60 | ltp1d 11905 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 < (𝑦 + 1)) |
62 | | fzdisj 13283 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 < (𝑦 + 1) → ((1...𝑦) ∩ ((𝑦 + 1)...𝑁)) = ∅) |
63 | 61, 62 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((1...𝑦) ∩ ((𝑦 + 1)...𝑁)) = ∅) |
64 | 63 | imaeq2d 5969 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = ((2nd
‘(1st ‘𝑇)) “ ∅)) |
65 | | ima0 5985 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((2nd ‘(1st ‘𝑇)) “ ∅) =
∅ |
66 | 64, 65 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = ∅) |
67 | 58, 66 | sylan9req 2799 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) = ∅) |
68 | | fnun 6545 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∧ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) ∧ (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) = ∅) → ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)))) |
69 | 53, 67, 68 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)))) |
70 | | imaundi 6053 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((2nd ‘(1st ‘𝑇)) “ ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) |
71 | | nn0p1nn 12272 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑦 ∈ ℕ0
→ (𝑦 + 1) ∈
ℕ) |
72 | | nnuz 12621 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ℕ =
(ℤ≥‘1) |
73 | 71, 72 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 ∈ ℕ0
→ (𝑦 + 1) ∈
(ℤ≥‘1)) |
74 | 59, 73 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈
(ℤ≥‘1)) |
75 | 74 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑦 + 1) ∈
(ℤ≥‘1)) |
76 | 27 | nncnd 11989 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → 𝑁 ∈ ℂ) |
77 | | npcan1 11400 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁) |
78 | 76, 77 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
79 | 78 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁) |
80 | | elfzuz3 13253 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈
(ℤ≥‘𝑦)) |
81 | | peano2uz 12641 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑁 − 1) ∈
(ℤ≥‘𝑦) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘𝑦)) |
82 | 80, 81 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘𝑦)) |
83 | 82 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘𝑦)) |
84 | 79, 83 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ≥‘𝑦)) |
85 | | fzsplit2 13281 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑦 + 1) ∈
(ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘𝑦)) → (1...𝑁) = ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))) |
86 | 75, 84, 85 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑁) = ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))) |
87 | 86 | imaeq2d 5969 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) = ((2nd ‘(1st
‘𝑇)) “
((1...𝑦) ∪ ((𝑦 + 1)...𝑁)))) |
88 | | f1ofo 6723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd
‘(1st ‘𝑇)):(1...𝑁)–onto→(1...𝑁)) |
89 | | foima 6693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–onto→(1...𝑁) → ((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) = (1...𝑁)) |
90 | 24, 88, 89 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) = (1...𝑁)) |
91 | 90 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) = (1...𝑁)) |
92 | 87, 91 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))) = (1...𝑁)) |
93 | 70, 92 | eqtr3id 2792 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) = (1...𝑁)) |
94 | 93 | fneq2d 6527 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) ↔ ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (1...𝑁))) |
95 | 69, 94 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (1...𝑁)) |
96 | | ovex 7308 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(1...𝑁) ∈
V |
97 | 96 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑁) ∈ V) |
98 | | inidm 4152 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((1...𝑁) ∩
(1...𝑁)) = (1...𝑁) |
99 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = ((1st ‘(1st
‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
100 | | f1ofn 6717 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd
‘(1st ‘𝑇)) Fn (1...𝑁)) |
101 | 24, 100 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → (2nd
‘(1st ‘𝑇)) Fn (1...𝑁)) |
102 | 101 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (2nd
‘(1st ‘𝑇)) Fn (1...𝑁)) |
103 | | fzss1 13295 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑦 + 1) ∈
(ℤ≥‘1) → ((𝑦 + 1)...𝑁) ⊆ (1...𝑁)) |
104 | 74, 103 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1)...𝑁) ⊆ (1...𝑁)) |
105 | 104 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑦 + 1)...𝑁) ⊆ (1...𝑁)) |
106 | | eluzp1p1 12610 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑁 − 1) ∈
(ℤ≥‘𝑦) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑦 + 1))) |
107 | | uzss 12605 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑦 + 1)) →
(ℤ≥‘((𝑁 − 1) + 1)) ⊆
(ℤ≥‘(𝑦 + 1))) |
108 | 80, 106, 107 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 ∈ (0...(𝑁 − 1)) →
(ℤ≥‘((𝑁 − 1) + 1)) ⊆
(ℤ≥‘(𝑦 + 1))) |
109 | 108 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) →
(ℤ≥‘((𝑁 − 1) + 1)) ⊆
(ℤ≥‘(𝑦 + 1))) |
110 | 27 | nnzd 12425 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → 𝑁 ∈ ℤ) |
111 | 110 | uzidd 12598 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑁)) |
112 | 78 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 →
(ℤ≥‘((𝑁 − 1) + 1)) =
(ℤ≥‘𝑁)) |
113 | 111, 112 | eleqtrrd 2842 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘((𝑁 − 1) + 1))) |
114 | 113 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈
(ℤ≥‘((𝑁 − 1) + 1))) |
115 | 109, 114 | sseldd 3922 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ≥‘(𝑦 + 1))) |
116 | | eluzfz2 13264 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑁 ∈
(ℤ≥‘(𝑦 + 1)) → 𝑁 ∈ ((𝑦 + 1)...𝑁)) |
117 | 115, 116 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ((𝑦 + 1)...𝑁)) |
118 | | fnfvima 7109 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((2nd ‘(1st ‘𝑇)) Fn (1...𝑁) ∧ ((𝑦 + 1)...𝑁) ⊆ (1...𝑁) ∧ 𝑁 ∈ ((𝑦 + 1)...𝑁)) → ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) |
119 | 102, 105,
117, 118 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) |
120 | | fvun2 6860 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∧ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) ∧ ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) = ∅ ∧ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)))) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
121 | 49, 52, 120 | mp3an12 1450 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) = ∅ ∧ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
122 | 67, 119, 121 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
123 | 50 | fvconst2 7079 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((2nd ‘(1st ‘𝑇))‘𝑁) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) → ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘𝑁)) = 0) |
124 | 119, 123 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘𝑁)) = 0) |
125 | 122, 124 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = 0) |
126 | 125 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ (1...𝑁)) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = 0) |
127 | 46, 95, 97, 97, 98, 99, 126 | ofval 7544 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ (1...𝑁)) → (((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) + 0)) |
128 | 30, 127 | mpidan 686 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) + 0)) |
129 | 33 | nn0cnd 12295 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ ℂ) |
130 | 129 | addid1d 11175 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) + 0) = ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
131 | 130 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) + 0) = ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
132 | 128, 131 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = ((1st ‘(1st
‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
133 | 44, 132 | sylan9eqr 2800 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑝 = ((1st ‘(1st
‘𝑇))
∘f + ((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪
(((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) → (𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) = ((1st ‘(1st
‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
134 | 133 | adantllr 716 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑝 ∈ ran 𝐹) ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑝 = ((1st ‘(1st
‘𝑇))
∘f + ((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪
(((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) → (𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) = ((1st ‘(1st
‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
135 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑡 = 𝑇 → (2nd ‘𝑡) = (2nd ‘𝑇)) |
136 | 135 | breq2d 5086 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑡 = 𝑇 → (𝑦 < (2nd ‘𝑡) ↔ 𝑦 < (2nd ‘𝑇))) |
137 | 136 | ifbid 4482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑡 = 𝑇 → if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd ‘𝑇), 𝑦, (𝑦 + 1))) |
138 | | 2fveq3 6779 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑡 = 𝑇 → (1st
‘(1st ‘𝑡)) = (1st ‘(1st
‘𝑇))) |
139 | | 2fveq3 6779 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑡 = 𝑇 → (2nd
‘(1st ‘𝑡)) = (2nd ‘(1st
‘𝑇))) |
140 | 139 | imaeq1d 5968 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑡 = 𝑇 → ((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) = ((2nd ‘(1st
‘𝑇)) “
(1...𝑗))) |
141 | 140 | xpeq1d 5618 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑡 = 𝑇 → (((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1})) |
142 | 139 | imaeq1d 5968 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑡 = 𝑇 → ((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st
‘𝑇)) “ ((𝑗 + 1)...𝑁))) |
143 | 142 | xpeq1d 5618 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑡 = 𝑇 → (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) |
144 | 141, 143 | uneq12d 4098 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑡 = 𝑇 → ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) |
145 | 138, 144 | oveq12d 7293 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑡 = 𝑇 → ((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
146 | 137, 145 | csbeq12dv 3841 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑡 = 𝑇 → ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
147 | 146 | mpteq2dv 5176 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑡 = 𝑇 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
148 | 147 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑡 = 𝑇 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))) |
149 | 148, 10 | elrab2 3627 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑇 ∈ 𝑆 ↔ (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))) |
150 | 149 | simprbi 497 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑇 ∈ 𝑆 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
151 | 8, 150 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
152 | 60 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ∈ ℝ) |
153 | | peano2zm 12363 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈
ℤ) |
154 | 110, 153 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → (𝑁 − 1) ∈ ℤ) |
155 | 154 | zred 12426 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → (𝑁 − 1) ∈ ℝ) |
156 | 155 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) ∈ ℝ) |
157 | 27 | nnred 11988 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → 𝑁 ∈ ℝ) |
158 | 157 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ℝ) |
159 | | elfzle2 13260 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ≤ (𝑁 − 1)) |
160 | 159 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ≤ (𝑁 − 1)) |
161 | 157 | ltm1d 11907 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → (𝑁 − 1) < 𝑁) |
162 | 161 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) < 𝑁) |
163 | 152, 156,
158, 160, 162 | lelttrd 11133 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 < 𝑁) |
164 | | poimirlem21.4 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → (2nd
‘𝑇) = 𝑁) |
165 | 164 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (2nd
‘𝑇) = 𝑁) |
166 | 163, 165 | breqtrrd 5102 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 < (2nd ‘𝑇)) |
167 | 166 | iftrued 4467 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd ‘𝑇), 𝑦, (𝑦 + 1)) = 𝑦) |
168 | 167 | csbeq1d 3836 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋𝑦 / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
169 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 𝑦 ∈ V |
170 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑗 = 𝑦 → (1...𝑗) = (1...𝑦)) |
171 | 170 | imaeq2d 5969 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 = 𝑦 → ((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) = ((2nd ‘(1st
‘𝑇)) “
(1...𝑦))) |
172 | 171 | xpeq1d 5618 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 = 𝑦 → (((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1})) |
173 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑗 = 𝑦 → (𝑗 + 1) = (𝑦 + 1)) |
174 | 173 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑗 = 𝑦 → ((𝑗 + 1)...𝑁) = ((𝑦 + 1)...𝑁)) |
175 | 174 | imaeq2d 5969 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 = 𝑦 → ((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st
‘𝑇)) “ ((𝑦 + 1)...𝑁))) |
176 | 175 | xpeq1d 5618 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 = 𝑦 → (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) |
177 | 172, 176 | uneq12d 4098 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 = 𝑦 → ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))) |
178 | 177 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 = 𝑦 → ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) |
179 | 169, 178 | csbie 3868 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
⦋𝑦 /
𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))) |
180 | 168, 179 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) |
181 | 180 | mpteq2dva 5174 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))))) |
182 | 151, 181 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))))) |
183 | 182 | rneqd 5847 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ran 𝐹 = ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))))) |
184 | 183 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑝 ∈ ran 𝐹 ↔ 𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))))) |
185 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) |
186 | | ovex 7308 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((1st ‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))) ∈ V |
187 | 185, 186 | elrnmpti 5869 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) ↔ ∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = ((1st ‘(1st
‘𝑇))
∘f + ((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪
(((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) |
188 | 184, 187 | bitrdi 287 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑝 ∈ ran 𝐹 ↔ ∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = ((1st ‘(1st
‘𝑇))
∘f + ((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪
(((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))))) |
189 | 188 | biimpa 477 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑝 ∈ ran 𝐹) → ∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = ((1st ‘(1st
‘𝑇))
∘f + ((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪
(((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) |
190 | 134, 189 | r19.29a 3218 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑝 ∈ ran 𝐹) → (𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) = ((1st ‘(1st
‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
191 | 190 | neeq1d 3003 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 ∈ ran 𝐹) → ((𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0 ↔ ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0)) |
192 | 191 | biimpd 228 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑝 ∈ ran 𝐹) → ((𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0 → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0)) |
193 | 192 | rexlimdva 3213 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (∃𝑝 ∈ ran 𝐹(𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0 → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0)) |
194 | 43, 193 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0) |
195 | | elnnne0 12247 |
. . . . . . . . . . . . . 14
⊢
(((1st ‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ ℕ ↔ (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ ℕ0 ∧
((1st ‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0)) |
196 | 33, 194, 195 | sylanbrc 583 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ ℕ) |
197 | | nnm1nn0 12274 |
. . . . . . . . . . . . 13
⊢
(((1st ‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ ℕ → (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) ∈
ℕ0) |
198 | 196, 197 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) ∈
ℕ0) |
199 | | elfzo0 13428 |
. . . . . . . . . . . . . 14
⊢
(((1st ‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ (0..^𝐾) ↔ (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ ℕ0 ∧ 𝐾 ∈ ℕ ∧
((1st ‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) < 𝐾)) |
200 | 31, 199 | sylib 217 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ ℕ0 ∧ 𝐾 ∈ ℕ ∧
((1st ‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) < 𝐾)) |
201 | 200 | simp2d 1142 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ∈ ℕ) |
202 | 198 | nn0red 12294 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) ∈
ℝ) |
203 | 33 | nn0red 12294 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ ℝ) |
204 | 201 | nnred 11988 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾 ∈ ℝ) |
205 | 203 | ltm1d 11907 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) < ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
206 | | elfzolt2 13396 |
. . . . . . . . . . . . . 14
⊢
(((1st ‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ (0..^𝐾) → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) < 𝐾) |
207 | 31, 206 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) < 𝐾) |
208 | 202, 203,
204, 205, 207 | lttrd 11136 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) < 𝐾) |
209 | | elfzo0 13428 |
. . . . . . . . . . . 12
⊢
((((1st ‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) ∈ (0..^𝐾) ↔ ((((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) ∈ ℕ0
∧ 𝐾 ∈ ℕ
∧ (((1st ‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) < 𝐾)) |
210 | 198, 201,
208, 209 | syl3anbrc 1342 |
. . . . . . . . . . 11
⊢ (𝜑 → (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) ∈ (0..^𝐾)) |
211 | 210 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) → (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) ∈ (0..^𝐾)) |
212 | 7, 211 | eqeltrd 2839 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) − 1) ∈ (0..^𝐾)) |
213 | 212 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) − 1) ∈ (0..^𝐾)) |
214 | 18 | ffvelrnda 6961 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑇))‘𝑛) ∈ (0..^𝐾)) |
215 | | elfzonn0 13432 |
. . . . . . . . . . . . 13
⊢
(((1st ‘(1st ‘𝑇))‘𝑛) ∈ (0..^𝐾) → ((1st
‘(1st ‘𝑇))‘𝑛) ∈
ℕ0) |
216 | 214, 215 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑇))‘𝑛) ∈
ℕ0) |
217 | 216 | nn0cnd 12295 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑇))‘𝑛) ∈ ℂ) |
218 | 217 | subid1d 11321 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) − 0) = ((1st
‘(1st ‘𝑇))‘𝑛)) |
219 | 218, 214 | eqeltrd 2839 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) − 0) ∈ (0..^𝐾)) |
220 | 219 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑁)) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) − 0) ∈ (0..^𝐾)) |
221 | 2, 4, 213, 220 | ifbothda 4497 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)) ∈ (0..^𝐾)) |
222 | 221 | fmpttd 6989 |
. . . . . 6
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))):(1...𝑁)⟶(0..^𝐾)) |
223 | | ovex 7308 |
. . . . . . 7
⊢
(0..^𝐾) ∈
V |
224 | 223, 96 | elmap 8659 |
. . . . . 6
⊢ ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∈ ((0..^𝐾) ↑m (1...𝑁)) ↔ (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))):(1...𝑁)⟶(0..^𝐾)) |
225 | 222, 224 | sylibr 233 |
. . . . 5
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∈ ((0..^𝐾) ↑m (1...𝑁))) |
226 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ((1 + 1)...𝑁)) → 𝑛 ∈ ((1 + 1)...𝑁)) |
227 | | 1z 12350 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℤ |
228 | | peano2z 12361 |
. . . . . . . . . . . . . . . 16
⊢ (1 ∈
ℤ → (1 + 1) ∈ ℤ) |
229 | 227, 228 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (1 + 1)
∈ ℤ |
230 | 110, 229 | jctil 520 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((1 + 1) ∈ ℤ
∧ 𝑁 ∈
ℤ)) |
231 | | elfzelz 13256 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ((1 + 1)...𝑁) → 𝑛 ∈ ℤ) |
232 | 231, 227 | jctir 521 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ((1 + 1)...𝑁) → (𝑛 ∈ ℤ ∧ 1 ∈
ℤ)) |
233 | | fzsubel 13292 |
. . . . . . . . . . . . . 14
⊢ ((((1 +
1) ∈ ℤ ∧ 𝑁
∈ ℤ) ∧ (𝑛
∈ ℤ ∧ 1 ∈ ℤ)) → (𝑛 ∈ ((1 + 1)...𝑁) ↔ (𝑛 − 1) ∈ (((1 + 1) −
1)...(𝑁 −
1)))) |
234 | 230, 232,
233 | syl2an 596 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ((1 + 1)...𝑁)) → (𝑛 ∈ ((1 + 1)...𝑁) ↔ (𝑛 − 1) ∈ (((1 + 1) −
1)...(𝑁 −
1)))) |
235 | 226, 234 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ((1 + 1)...𝑁)) → (𝑛 − 1) ∈ (((1 + 1) −
1)...(𝑁 −
1))) |
236 | | ax-1cn 10929 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℂ |
237 | 236, 236 | pncan3oi 11237 |
. . . . . . . . . . . . 13
⊢ ((1 + 1)
− 1) = 1 |
238 | 237 | oveq1i 7285 |
. . . . . . . . . . . 12
⊢ (((1 + 1)
− 1)...(𝑁 − 1))
= (1...(𝑁 −
1)) |
239 | 235, 238 | eleqtrdi 2849 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ((1 + 1)...𝑁)) → (𝑛 − 1) ∈ (1...(𝑁 − 1))) |
240 | 239 | ralrimiva 3103 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑛 ∈ ((1 + 1)...𝑁)(𝑛 − 1) ∈ (1...(𝑁 − 1))) |
241 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → 𝑦 ∈ (1...(𝑁 − 1))) |
242 | 154, 227 | jctil 520 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (1 ∈ ℤ ∧
(𝑁 − 1) ∈
ℤ)) |
243 | | elfzelz 13256 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (1...(𝑁 − 1)) → 𝑦 ∈ ℤ) |
244 | 243, 227 | jctir 521 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (1...(𝑁 − 1)) → (𝑦 ∈ ℤ ∧ 1 ∈
ℤ)) |
245 | | fzaddel 13290 |
. . . . . . . . . . . . . . 15
⊢ (((1
∈ ℤ ∧ (𝑁
− 1) ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 1 ∈ ℤ))
→ (𝑦 ∈
(1...(𝑁 − 1)) ↔
(𝑦 + 1) ∈ ((1 +
1)...((𝑁 − 1) +
1)))) |
246 | 242, 244,
245 | syl2an 596 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → (𝑦 ∈ (1...(𝑁 − 1)) ↔ (𝑦 + 1) ∈ ((1 + 1)...((𝑁 − 1) + 1)))) |
247 | 241, 246 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → (𝑦 + 1) ∈ ((1 + 1)...((𝑁 − 1) + 1))) |
248 | 78 | oveq2d 7291 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((1 + 1)...((𝑁 − 1) + 1)) = ((1 +
1)...𝑁)) |
249 | 248 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → ((1 + 1)...((𝑁 − 1) + 1)) = ((1 +
1)...𝑁)) |
250 | 247, 249 | eleqtrd 2841 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → (𝑦 + 1) ∈ ((1 + 1)...𝑁)) |
251 | 231 | zcnd 12427 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ((1 + 1)...𝑁) → 𝑛 ∈ ℂ) |
252 | 243 | zcnd 12427 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (1...(𝑁 − 1)) → 𝑦 ∈ ℂ) |
253 | | subadd2 11225 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ ∧ 𝑦 ∈
ℂ) → ((𝑛 −
1) = 𝑦 ↔ (𝑦 + 1) = 𝑛)) |
254 | 236, 253 | mp3an2 1448 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑛 − 1) = 𝑦 ↔ (𝑦 + 1) = 𝑛)) |
255 | | eqcom 2745 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑛 − 1) ↔ (𝑛 − 1) = 𝑦) |
256 | | eqcom 2745 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (𝑦 + 1) ↔ (𝑦 + 1) = 𝑛) |
257 | 254, 255,
256 | 3bitr4g 314 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1))) |
258 | 251, 252,
257 | syl2anr 597 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ (1...(𝑁 − 1)) ∧ 𝑛 ∈ ((1 + 1)...𝑁)) → (𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1))) |
259 | 258 | ralrimiva 3103 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (1...(𝑁 − 1)) → ∀𝑛 ∈ ((1 + 1)...𝑁)(𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1))) |
260 | 259 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → ∀𝑛 ∈ ((1 + 1)...𝑁)(𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1))) |
261 | | reu6i 3663 |
. . . . . . . . . . . 12
⊢ (((𝑦 + 1) ∈ ((1 + 1)...𝑁) ∧ ∀𝑛 ∈ ((1 + 1)...𝑁)(𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1))) → ∃!𝑛 ∈ ((1 + 1)...𝑁)𝑦 = (𝑛 − 1)) |
262 | 250, 260,
261 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → ∃!𝑛 ∈ ((1 + 1)...𝑁)𝑦 = (𝑛 − 1)) |
263 | 262 | ralrimiva 3103 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑦 ∈ (1...(𝑁 − 1))∃!𝑛 ∈ ((1 + 1)...𝑁)𝑦 = (𝑛 − 1)) |
264 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) = (𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) |
265 | 264 | f1ompt 6985 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)):((1 + 1)...𝑁)–1-1-onto→(1...(𝑁 − 1)) ↔ (∀𝑛 ∈ ((1 + 1)...𝑁)(𝑛 − 1) ∈ (1...(𝑁 − 1)) ∧ ∀𝑦 ∈ (1...(𝑁 − 1))∃!𝑛 ∈ ((1 + 1)...𝑁)𝑦 = (𝑛 − 1))) |
266 | 240, 263,
265 | sylanbrc 583 |
. . . . . . . . 9
⊢ (𝜑 → (𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)):((1 + 1)...𝑁)–1-1-onto→(1...(𝑁 − 1))) |
267 | | f1osng 6757 |
. . . . . . . . . 10
⊢ ((1
∈ V ∧ 𝑁 ∈
ℕ) → {〈1, 𝑁〉}:{1}–1-1-onto→{𝑁}) |
268 | 47, 27, 267 | sylancr 587 |
. . . . . . . . 9
⊢ (𝜑 → {〈1, 𝑁〉}:{1}–1-1-onto→{𝑁}) |
269 | 155, 157 | ltnled 11122 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑁 − 1) < 𝑁 ↔ ¬ 𝑁 ≤ (𝑁 − 1))) |
270 | 161, 269 | mpbid 231 |
. . . . . . . . . . 11
⊢ (𝜑 → ¬ 𝑁 ≤ (𝑁 − 1)) |
271 | | elfzle2 13260 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1)) |
272 | 270, 271 | nsyl 140 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ 𝑁 ∈ (1...(𝑁 − 1))) |
273 | | disjsn 4647 |
. . . . . . . . . 10
⊢
(((1...(𝑁 −
1)) ∩ {𝑁}) = ∅
↔ ¬ 𝑁 ∈
(1...(𝑁 −
1))) |
274 | 272, 273 | sylibr 233 |
. . . . . . . . 9
⊢ (𝜑 → ((1...(𝑁 − 1)) ∩ {𝑁}) = ∅) |
275 | | 1re 10975 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℝ |
276 | 275 | ltp1i 11879 |
. . . . . . . . . . . . 13
⊢ 1 < (1
+ 1) |
277 | 229 | zrei 12325 |
. . . . . . . . . . . . . 14
⊢ (1 + 1)
∈ ℝ |
278 | 275, 277 | ltnlei 11096 |
. . . . . . . . . . . . 13
⊢ (1 <
(1 + 1) ↔ ¬ (1 + 1) ≤ 1) |
279 | 276, 278 | mpbi 229 |
. . . . . . . . . . . 12
⊢ ¬ (1
+ 1) ≤ 1 |
280 | | elfzle1 13259 |
. . . . . . . . . . . 12
⊢ (1 ∈
((1 + 1)...𝑁) → (1 +
1) ≤ 1) |
281 | 279, 280 | mto 196 |
. . . . . . . . . . 11
⊢ ¬ 1
∈ ((1 + 1)...𝑁) |
282 | | disjsn 4647 |
. . . . . . . . . . 11
⊢ ((((1 +
1)...𝑁) ∩ {1}) =
∅ ↔ ¬ 1 ∈ ((1 + 1)...𝑁)) |
283 | 281, 282 | mpbir 230 |
. . . . . . . . . 10
⊢ (((1 +
1)...𝑁) ∩ {1}) =
∅ |
284 | | f1oun 6735 |
. . . . . . . . . 10
⊢ ((((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)):((1 + 1)...𝑁)–1-1-onto→(1...(𝑁 − 1)) ∧ {〈1, 𝑁〉}:{1}–1-1-onto→{𝑁}) ∧ ((((1 + 1)...𝑁) ∩ {1}) = ∅ ∧ ((1...(𝑁 − 1)) ∩ {𝑁}) = ∅)) → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {〈1, 𝑁〉}):(((1 + 1)...𝑁) ∪ {1})–1-1-onto→((1...(𝑁 − 1)) ∪ {𝑁})) |
285 | 283, 284 | mpanr1 700 |
. . . . . . . . 9
⊢ ((((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)):((1 + 1)...𝑁)–1-1-onto→(1...(𝑁 − 1)) ∧ {〈1, 𝑁〉}:{1}–1-1-onto→{𝑁}) ∧ ((1...(𝑁 − 1)) ∩ {𝑁}) = ∅) → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {〈1, 𝑁〉}):(((1 + 1)...𝑁) ∪ {1})–1-1-onto→((1...(𝑁 − 1)) ∪ {𝑁})) |
286 | 266, 268,
274, 285 | syl21anc 835 |
. . . . . . . 8
⊢ (𝜑 → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {〈1, 𝑁〉}):(((1 + 1)...𝑁) ∪ {1})–1-1-onto→((1...(𝑁 − 1)) ∪ {𝑁})) |
287 | | eleq1 2826 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 1 → (𝑛 ∈ ((1 + 1)...𝑁) ↔ 1 ∈ ((1 + 1)...𝑁))) |
288 | 281, 287 | mtbiri 327 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 1 → ¬ 𝑛 ∈ ((1 + 1)...𝑁)) |
289 | 288 | necon2ai 2973 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ((1 + 1)...𝑁) → 𝑛 ≠ 1) |
290 | | ifnefalse 4471 |
. . . . . . . . . . . . 13
⊢ (𝑛 ≠ 1 → if(𝑛 = 1, 𝑁, (𝑛 − 1)) = (𝑛 − 1)) |
291 | 289, 290 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ((1 + 1)...𝑁) → if(𝑛 = 1, 𝑁, (𝑛 − 1)) = (𝑛 − 1)) |
292 | 291 | mpteq2ia 5177 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ((1 + 1)...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) = (𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) |
293 | 292 | uneq1i 4093 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ((1 + 1)...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ∪ {〈1, 𝑁〉}) = ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {〈1, 𝑁〉}) |
294 | 47 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈
V) |
295 | 27, 72 | eleqtrdi 2849 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘1)) |
296 | | fzpred 13304 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈
(ℤ≥‘1) → (1...𝑁) = ({1} ∪ ((1 + 1)...𝑁))) |
297 | 295, 296 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1...𝑁) = ({1} ∪ ((1 + 1)...𝑁))) |
298 | | uncom 4087 |
. . . . . . . . . . . 12
⊢ ({1}
∪ ((1 + 1)...𝑁)) = (((1
+ 1)...𝑁) ∪
{1}) |
299 | 297, 298 | eqtr2di 2795 |
. . . . . . . . . . 11
⊢ (𝜑 → (((1 + 1)...𝑁) ∪ {1}) = (1...𝑁)) |
300 | | iftrue 4465 |
. . . . . . . . . . . 12
⊢ (𝑛 = 1 → if(𝑛 = 1, 𝑁, (𝑛 − 1)) = 𝑁) |
301 | 300 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 = 1) → if(𝑛 = 1, 𝑁, (𝑛 − 1)) = 𝑁) |
302 | 294, 27, 299, 301 | fmptapd 7043 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ∪ {〈1, 𝑁〉}) = (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) |
303 | 293, 302 | eqtr3id 2792 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {〈1, 𝑁〉}) = (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) |
304 | 78, 295 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑁 − 1) + 1) ∈
(ℤ≥‘1)) |
305 | | uzid 12597 |
. . . . . . . . . . . . 13
⊢ ((𝑁 − 1) ∈ ℤ
→ (𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1))) |
306 | | peano2uz 12641 |
. . . . . . . . . . . . 13
⊢ ((𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) |
307 | 154, 305,
306 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) |
308 | 78, 307 | eqeltrrd 2840 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) |
309 | | fzsplit2 13281 |
. . . . . . . . . . 11
⊢ ((((𝑁 − 1) + 1) ∈
(ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) → (1...𝑁) = ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) |
310 | 304, 308,
309 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) |
311 | 78 | oveq1d 7290 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝑁 − 1) + 1)...𝑁) = (𝑁...𝑁)) |
312 | | fzsn 13298 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁}) |
313 | 110, 312 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑁...𝑁) = {𝑁}) |
314 | 311, 313 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝑁 − 1) + 1)...𝑁) = {𝑁}) |
315 | 314 | uneq2d 4097 |
. . . . . . . . . 10
⊢ (𝜑 → ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)) = ((1...(𝑁 − 1)) ∪ {𝑁})) |
316 | 310, 315 | eqtr2d 2779 |
. . . . . . . . 9
⊢ (𝜑 → ((1...(𝑁 − 1)) ∪ {𝑁}) = (1...𝑁)) |
317 | 303, 299,
316 | f1oeq123d 6710 |
. . . . . . . 8
⊢ (𝜑 → (((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {〈1, 𝑁〉}):(((1 + 1)...𝑁) ∪ {1})–1-1-onto→((1...(𝑁 − 1)) ∪ {𝑁}) ↔ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))):(1...𝑁)–1-1-onto→(1...𝑁))) |
318 | 286, 317 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))):(1...𝑁)–1-1-onto→(1...𝑁)) |
319 | | f1oco 6739 |
. . . . . . 7
⊢
(((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) ∧ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))):(1...𝑁)–1-1-onto→(1...𝑁)) → ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–1-1-onto→(1...𝑁)) |
320 | 24, 318, 319 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–1-1-onto→(1...𝑁)) |
321 | 96 | mptex 7099 |
. . . . . . . 8
⊢ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ∈ V |
322 | 21, 321 | coex 7777 |
. . . . . . 7
⊢
((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) ∈ V |
323 | | f1oeq1 6704 |
. . . . . . 7
⊢ (𝑓 = ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–1-1-onto→(1...𝑁))) |
324 | 322, 323 | elab 3609 |
. . . . . 6
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–1-1-onto→(1...𝑁)) |
325 | 320, 324 | sylibr 233 |
. . . . 5
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
326 | 225, 325 | opelxpd 5627 |
. . . 4
⊢ (𝜑 → 〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
327 | 27 | nnnn0d 12293 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
328 | | 0elfz 13353 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ 0 ∈ (0...𝑁)) |
329 | 327, 328 | syl 17 |
. . . 4
⊢ (𝜑 → 0 ∈ (0...𝑁)) |
330 | 326, 329 | opelxpd 5627 |
. . 3
⊢ (𝜑 → 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 ∈
((((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
331 | | poimirlem22.1 |
. . . . 5
⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) |
332 | 27, 10, 331, 8, 41, 164 | poimirlem19 35796 |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))) |
333 | | elfzle1 13259 |
. . . . . . . . 9
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 0 ≤ 𝑦) |
334 | | 0re 10977 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ |
335 | | lenlt 11053 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ ∧ 𝑦
∈ ℝ) → (0 ≤ 𝑦 ↔ ¬ 𝑦 < 0)) |
336 | 334, 60, 335 | sylancr 587 |
. . . . . . . . 9
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (0 ≤ 𝑦 ↔ ¬ 𝑦 < 0)) |
337 | 333, 336 | mpbid 231 |
. . . . . . . 8
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ¬ 𝑦 < 0) |
338 | 337 | iffalsed 4470 |
. . . . . . 7
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → if(𝑦 < 0, 𝑦, (𝑦 + 1)) = (𝑦 + 1)) |
339 | 338 | csbeq1d 3836 |
. . . . . 6
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ⦋if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗⦌((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋(𝑦 + 1) / 𝑗⦌((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})))) |
340 | | ovex 7308 |
. . . . . . 7
⊢ (𝑦 + 1) ∈ V |
341 | | oveq2 7283 |
. . . . . . . . . . 11
⊢ (𝑗 = (𝑦 + 1) → (1...𝑗) = (1...(𝑦 + 1))) |
342 | 341 | imaeq2d 5969 |
. . . . . . . . . 10
⊢ (𝑗 = (𝑦 + 1) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) = (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1)))) |
343 | 342 | xpeq1d 5618 |
. . . . . . . . 9
⊢ (𝑗 = (𝑦 + 1) → ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) =
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ×
{1})) |
344 | | oveq1 7282 |
. . . . . . . . . . . 12
⊢ (𝑗 = (𝑦 + 1) → (𝑗 + 1) = ((𝑦 + 1) + 1)) |
345 | 344 | oveq1d 7290 |
. . . . . . . . . . 11
⊢ (𝑗 = (𝑦 + 1) → ((𝑗 + 1)...𝑁) = (((𝑦 + 1) + 1)...𝑁)) |
346 | 345 | imaeq2d 5969 |
. . . . . . . . . 10
⊢ (𝑗 = (𝑦 + 1) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) = (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁))) |
347 | 346 | xpeq1d 5618 |
. . . . . . . . 9
⊢ (𝑗 = (𝑦 + 1) → ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}) = ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) |
348 | 343, 347 | uneq12d 4098 |
. . . . . . . 8
⊢ (𝑗 = (𝑦 + 1) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})) = (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))) |
349 | 348 | oveq2d 7291 |
. . . . . . 7
⊢ (𝑗 = (𝑦 + 1) → ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))) |
350 | 340, 349 | csbie 3868 |
. . . . . 6
⊢
⦋(𝑦 +
1) / 𝑗⦌((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))) |
351 | 339, 350 | eqtrdi 2794 |
. . . . 5
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ⦋if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗⦌((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))) |
352 | 351 | mpteq2ia 5177 |
. . . 4
⊢ (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗⦌((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))) |
353 | 332, 352 | eqtr4di 2796 |
. . 3
⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗⦌((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
354 | | opex 5379 |
. . . . . . . . . 10
⊢
〈(𝑛 ∈
(1...𝑁) ↦
(((1st ‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉 ∈
V |
355 | 354, 50 | op2ndd 7842 |
. . . . . . . . 9
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
(2nd ‘𝑡) =
0) |
356 | 355 | breq2d 5086 |
. . . . . . . 8
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 → (𝑦 < (2nd
‘𝑡) ↔ 𝑦 < 0)) |
357 | 356 | ifbid 4482 |
. . . . . . 7
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 → if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < 0, 𝑦, (𝑦 + 1))) |
358 | 354, 50 | op1std 7841 |
. . . . . . . . 9
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
(1st ‘𝑡) =
〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉) |
359 | 96 | mptex 7099 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∈
V |
360 | 359, 322 | op1std 7841 |
. . . . . . . . 9
⊢
((1st ‘𝑡) = 〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉 → (1st
‘(1st ‘𝑡)) = (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))) |
361 | 358, 360 | syl 17 |
. . . . . . . 8
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
(1st ‘(1st ‘𝑡)) = (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))) |
362 | 359, 322 | op2ndd 7842 |
. . . . . . . . . . . 12
⊢
((1st ‘𝑡) = 〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉 → (2nd
‘(1st ‘𝑡)) = ((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))) |
363 | 358, 362 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
(2nd ‘(1st ‘𝑡)) = ((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))) |
364 | 363 | imaeq1d 5968 |
. . . . . . . . . 10
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) = (((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗))) |
365 | 364 | xpeq1d 5618 |
. . . . . . . . 9
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
(((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) = ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) ×
{1})) |
366 | 363 | imaeq1d 5968 |
. . . . . . . . . 10
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) = (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁))) |
367 | 366 | xpeq1d 5618 |
. . . . . . . . 9
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
(((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})) |
368 | 365, 367 | uneq12d 4098 |
. . . . . . . 8
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))) |
369 | 361, 368 | oveq12d 7293 |
. . . . . . 7
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
((1st ‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})))) |
370 | 357, 369 | csbeq12dv 3841 |
. . . . . 6
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
⦋if(𝑦 <
(2nd ‘𝑡),
𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗⦌((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})))) |
371 | 370 | mpteq2dv 5176 |
. . . . 5
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗⦌((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
372 | 371 | eqeq2d 2749 |
. . . 4
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗⦌((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})))))) |
373 | 372, 10 | elrab2 3627 |
. . 3
⊢
(〈〈(𝑛
∈ (1...𝑁) ↦
(((1st ‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 ∈ 𝑆 ↔ (〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 ∈
((((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗⦌((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})))))) |
374 | 330, 353,
373 | sylanbrc 583 |
. 2
⊢ (𝜑 → 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 ∈ 𝑆) |
375 | 354, 50 | op2ndd 7842 |
. . . . . 6
⊢ (𝑇 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
(2nd ‘𝑇) =
0) |
376 | 375 | eqcoms 2746 |
. . . . 5
⊢
(〈〈(𝑛
∈ (1...𝑁) ↦
(((1st ‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 = 𝑇 → (2nd
‘𝑇) =
0) |
377 | 27 | nnne0d 12023 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ≠ 0) |
378 | 377 | necomd 2999 |
. . . . . 6
⊢ (𝜑 → 0 ≠ 𝑁) |
379 | | neeq1 3006 |
. . . . . 6
⊢
((2nd ‘𝑇) = 0 → ((2nd ‘𝑇) ≠ 𝑁 ↔ 0 ≠ 𝑁)) |
380 | 378, 379 | syl5ibrcom 246 |
. . . . 5
⊢ (𝜑 → ((2nd
‘𝑇) = 0 →
(2nd ‘𝑇)
≠ 𝑁)) |
381 | 376, 380 | syl5 34 |
. . . 4
⊢ (𝜑 → (〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 = 𝑇 → (2nd
‘𝑇) ≠ 𝑁)) |
382 | 381 | necon2d 2966 |
. . 3
⊢ (𝜑 → ((2nd
‘𝑇) = 𝑁 → 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 ≠ 𝑇)) |
383 | 164, 382 | mpd 15 |
. 2
⊢ (𝜑 → 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 ≠ 𝑇) |
384 | | neeq1 3006 |
. . 3
⊢ (𝑧 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 → (𝑧 ≠ 𝑇 ↔ 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 ≠ 𝑇)) |
385 | 384 | rspcev 3561 |
. 2
⊢
((〈〈(𝑛
∈ (1...𝑁) ↦
(((1st ‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 ∈ 𝑆 ∧ 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 ≠ 𝑇) → ∃𝑧 ∈ 𝑆 𝑧 ≠ 𝑇) |
386 | 374, 383,
385 | syl2anc 584 |
1
⊢ (𝜑 → ∃𝑧 ∈ 𝑆 𝑧 ≠ 𝑇) |