Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem20 Structured version   Visualization version   GIF version

Theorem poimirlem20 37634
Description: Lemma for poimir 37647 establishing existence for poimirlem21 37635. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimirlem22.s 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
poimirlem22.1 (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))
poimirlem22.2 (𝜑𝑇𝑆)
poimirlem22.3 ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 0)
poimirlem21.4 (𝜑 → (2nd𝑇) = 𝑁)
Assertion
Ref Expression
poimirlem20 (𝜑 → ∃𝑧𝑆 𝑧𝑇)
Distinct variable groups:   𝑓,𝑗,𝑛,𝑝,𝑡,𝑦,𝑧   𝜑,𝑗,𝑛,𝑦   𝑗,𝐹,𝑛,𝑦   𝑗,𝑁,𝑛,𝑦   𝑇,𝑗,𝑛,𝑦   𝜑,𝑝,𝑡   𝑓,𝐾,𝑗,𝑛,𝑝,𝑡   𝑓,𝑁,𝑝,𝑡   𝑇,𝑓,𝑝   𝜑,𝑧   𝑓,𝐹,𝑝,𝑡,𝑧   𝑧,𝐾   𝑧,𝑁   𝑡,𝑇,𝑧   𝑆,𝑗,𝑛,𝑝,𝑡,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝑆(𝑓)   𝐾(𝑦)

Proof of Theorem poimirlem20
StepHypRef Expression
1 oveq2 7395 . . . . . . . . 9 (1 = if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0) → (((1st ‘(1st𝑇))‘𝑛) − 1) = (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0)))
21eleq1d 2813 . . . . . . . 8 (1 = if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0) → ((((1st ‘(1st𝑇))‘𝑛) − 1) ∈ (0..^𝐾) ↔ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0)) ∈ (0..^𝐾)))
3 oveq2 7395 . . . . . . . . 9 (0 = if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0) → (((1st ‘(1st𝑇))‘𝑛) − 0) = (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0)))
43eleq1d 2813 . . . . . . . 8 (0 = if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0) → ((((1st ‘(1st𝑇))‘𝑛) − 0) ∈ (0..^𝐾) ↔ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0)) ∈ (0..^𝐾)))
5 fveq2 6858 . . . . . . . . . . . 12 (𝑛 = ((2nd ‘(1st𝑇))‘𝑁) → ((1st ‘(1st𝑇))‘𝑛) = ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)))
65oveq1d 7402 . . . . . . . . . . 11 (𝑛 = ((2nd ‘(1st𝑇))‘𝑁) → (((1st ‘(1st𝑇))‘𝑛) − 1) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) − 1))
76adantl 481 . . . . . . . . . 10 ((𝜑𝑛 = ((2nd ‘(1st𝑇))‘𝑁)) → (((1st ‘(1st𝑇))‘𝑛) − 1) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) − 1))
8 poimirlem22.2 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑇𝑆)
9 elrabi 3654 . . . . . . . . . . . . . . . . . . . . 21 (𝑇 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
10 poimirlem22.s . . . . . . . . . . . . . . . . . . . . 21 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
119, 10eleq2s 2846 . . . . . . . . . . . . . . . . . . . 20 (𝑇𝑆𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
128, 11syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
13 xp1st 8000 . . . . . . . . . . . . . . . . . . 19 (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
1412, 13syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
15 xp1st 8000 . . . . . . . . . . . . . . . . . 18 ((1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
1614, 15syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
17 elmapi 8822 . . . . . . . . . . . . . . . . 17 ((1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)) → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
1816, 17syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
19 xp2nd 8001 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
2014, 19syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
21 fvex 6871 . . . . . . . . . . . . . . . . . . . 20 (2nd ‘(1st𝑇)) ∈ V
22 f1oeq1 6788 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (2nd ‘(1st𝑇)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)))
2321, 22elab 3646 . . . . . . . . . . . . . . . . . . 19 ((2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
2420, 23sylib 218 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
25 f1of 6800 . . . . . . . . . . . . . . . . . 18 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑇)):(1...𝑁)⟶(1...𝑁))
2624, 25syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)⟶(1...𝑁))
27 poimir.0 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℕ)
28 elfz1end 13515 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (1...𝑁))
2927, 28sylib 218 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ (1...𝑁))
3026, 29ffvelcdmd 7057 . . . . . . . . . . . . . . . 16 (𝜑 → ((2nd ‘(1st𝑇))‘𝑁) ∈ (1...𝑁))
3118, 30ffvelcdmd 7057 . . . . . . . . . . . . . . 15 (𝜑 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ∈ (0..^𝐾))
32 elfzonn0 13668 . . . . . . . . . . . . . . 15 (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ∈ (0..^𝐾) → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ∈ ℕ0)
3331, 32syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ∈ ℕ0)
34 fvex 6871 . . . . . . . . . . . . . . . . 17 ((2nd ‘(1st𝑇))‘𝑁) ∈ V
35 eleq1 2816 . . . . . . . . . . . . . . . . . . 19 (𝑛 = ((2nd ‘(1st𝑇))‘𝑁) → (𝑛 ∈ (1...𝑁) ↔ ((2nd ‘(1st𝑇))‘𝑁) ∈ (1...𝑁)))
3635anbi2d 630 . . . . . . . . . . . . . . . . . 18 (𝑛 = ((2nd ‘(1st𝑇))‘𝑁) → ((𝜑𝑛 ∈ (1...𝑁)) ↔ (𝜑 ∧ ((2nd ‘(1st𝑇))‘𝑁) ∈ (1...𝑁))))
37 fveq2 6858 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = ((2nd ‘(1st𝑇))‘𝑁) → (𝑝𝑛) = (𝑝‘((2nd ‘(1st𝑇))‘𝑁)))
3837neeq1d 2984 . . . . . . . . . . . . . . . . . . 19 (𝑛 = ((2nd ‘(1st𝑇))‘𝑁) → ((𝑝𝑛) ≠ 0 ↔ (𝑝‘((2nd ‘(1st𝑇))‘𝑁)) ≠ 0))
3938rexbidv 3157 . . . . . . . . . . . . . . . . . 18 (𝑛 = ((2nd ‘(1st𝑇))‘𝑁) → (∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 0 ↔ ∃𝑝 ∈ ran 𝐹(𝑝‘((2nd ‘(1st𝑇))‘𝑁)) ≠ 0))
4036, 39imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑛 = ((2nd ‘(1st𝑇))‘𝑁) → (((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 0) ↔ ((𝜑 ∧ ((2nd ‘(1st𝑇))‘𝑁) ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘((2nd ‘(1st𝑇))‘𝑁)) ≠ 0)))
41 poimirlem22.3 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 0)
4234, 40, 41vtocl 3524 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((2nd ‘(1st𝑇))‘𝑁) ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘((2nd ‘(1st𝑇))‘𝑁)) ≠ 0)
4330, 42mpdan 687 . . . . . . . . . . . . . . 15 (𝜑 → ∃𝑝 ∈ ran 𝐹(𝑝‘((2nd ‘(1st𝑇))‘𝑁)) ≠ 0)
44 fveq1 6857 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))) → (𝑝‘((2nd ‘(1st𝑇))‘𝑁)) = (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))‘((2nd ‘(1st𝑇))‘𝑁)))
4518ffnd 6689 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (1st ‘(1st𝑇)) Fn (1...𝑁))
4645adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (1st ‘(1st𝑇)) Fn (1...𝑁))
47 1ex 11170 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1 ∈ V
48 fnconstg 6748 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (1 ∈ V → (((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...𝑦)))
4947, 48ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...𝑦))
50 c0ex 11168 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 0 ∈ V
51 fnconstg 6748 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (0 ∈ V → (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)))
5250, 51ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁))
5349, 52pm3.2i 470 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...𝑦)) ∧ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)))
54 dff1o3 6806 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁) ∧ Fun (2nd ‘(1st𝑇))))
5554simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → Fun (2nd ‘(1st𝑇)))
5624, 55syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → Fun (2nd ‘(1st𝑇)))
57 imain 6601 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Fun (2nd ‘(1st𝑇)) → ((2nd ‘(1st𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = (((2nd ‘(1st𝑇)) “ (1...𝑦)) ∩ ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁))))
5856, 57syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((2nd ‘(1st𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = (((2nd ‘(1st𝑇)) “ (1...𝑦)) ∩ ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁))))
59 elfznn0 13581 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℕ0)
6059nn0red 12504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℝ)
6160ltp1d 12113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 < (𝑦 + 1))
62 fzdisj 13512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 < (𝑦 + 1) → ((1...𝑦) ∩ ((𝑦 + 1)...𝑁)) = ∅)
6361, 62syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ (0...(𝑁 − 1)) → ((1...𝑦) ∩ ((𝑦 + 1)...𝑁)) = ∅)
6463imaeq2d 6031 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd ‘(1st𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = ((2nd ‘(1st𝑇)) “ ∅))
65 ima0 6048 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((2nd ‘(1st𝑇)) “ ∅) = ∅
6664, 65eqtrdi 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd ‘(1st𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = ∅)
6758, 66sylan9req 2785 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((2nd ‘(1st𝑇)) “ (1...𝑦)) ∩ ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁))) = ∅)
68 fnun 6632 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...𝑦)) ∧ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁))) ∧ (((2nd ‘(1st𝑇)) “ (1...𝑦)) ∩ ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁))) = ∅) → ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑇)) “ (1...𝑦)) ∪ ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁))))
6953, 67, 68sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑇)) “ (1...𝑦)) ∪ ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁))))
70 imaundi 6122 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((2nd ‘(1st𝑇)) “ ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))) = (((2nd ‘(1st𝑇)) “ (1...𝑦)) ∪ ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)))
71 nn0p1nn 12481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℕ)
72 nnuz 12836 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ℕ = (ℤ‘1)
7371, 72eleqtrdi 2838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ (ℤ‘1))
7459, 73syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ (ℤ‘1))
7574adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (𝑦 + 1) ∈ (ℤ‘1))
7627nncnd 12202 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑𝑁 ∈ ℂ)
77 npcan1 11603 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
7876, 77syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
7978adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁)
80 elfzuz3 13482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈ (ℤ𝑦))
81 peano2uz 12860 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 − 1) ∈ (ℤ𝑦) → ((𝑁 − 1) + 1) ∈ (ℤ𝑦))
8280, 81syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ𝑦))
8382adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) ∈ (ℤ𝑦))
8479, 83eqeltrrd 2829 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ𝑦))
85 fzsplit2 13510 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑦 + 1) ∈ (ℤ‘1) ∧ 𝑁 ∈ (ℤ𝑦)) → (1...𝑁) = ((1...𝑦) ∪ ((𝑦 + 1)...𝑁)))
8675, 84, 85syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑁) = ((1...𝑦) ∪ ((𝑦 + 1)...𝑁)))
8786imaeq2d 6031 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = ((2nd ‘(1st𝑇)) “ ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))))
88 f1ofo 6807 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁))
89 foima 6777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁) → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (1...𝑁))
9024, 88, 893syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (1...𝑁))
9190adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (1...𝑁))
9287, 91eqtr3d 2766 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((2nd ‘(1st𝑇)) “ ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))) = (1...𝑁))
9370, 92eqtr3id 2778 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((2nd ‘(1st𝑇)) “ (1...𝑦)) ∪ ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁))) = (1...𝑁))
9493fneq2d 6612 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑇)) “ (1...𝑦)) ∪ ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁))) ↔ ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (1...𝑁)))
9569, 94mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (1...𝑁))
96 ovex 7420 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1...𝑁) ∈ V
9796a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑁) ∈ V)
98 inidm 4190 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1...𝑁) ∩ (1...𝑁)) = (1...𝑁)
99 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ ((2nd ‘(1st𝑇))‘𝑁) ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) = ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)))
100 f1ofn 6801 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑇)) Fn (1...𝑁))
10124, 100syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (2nd ‘(1st𝑇)) Fn (1...𝑁))
102101adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (2nd ‘(1st𝑇)) Fn (1...𝑁))
103 fzss1 13524 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑦 + 1) ∈ (ℤ‘1) → ((𝑦 + 1)...𝑁) ⊆ (1...𝑁))
10474, 103syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1)...𝑁) ⊆ (1...𝑁))
105104adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((𝑦 + 1)...𝑁) ⊆ (1...𝑁))
106 eluzp1p1 12821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑁 − 1) ∈ (ℤ𝑦) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑦 + 1)))
107 uzss 12816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑁 − 1) + 1) ∈ (ℤ‘(𝑦 + 1)) → (ℤ‘((𝑁 − 1) + 1)) ⊆ (ℤ‘(𝑦 + 1)))
10880, 106, 1073syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 ∈ (0...(𝑁 − 1)) → (ℤ‘((𝑁 − 1) + 1)) ⊆ (ℤ‘(𝑦 + 1)))
109108adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (ℤ‘((𝑁 − 1) + 1)) ⊆ (ℤ‘(𝑦 + 1)))
11027nnzd 12556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑𝑁 ∈ ℤ)
111110uzidd 12809 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑𝑁 ∈ (ℤ𝑁))
11278fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (ℤ‘((𝑁 − 1) + 1)) = (ℤ𝑁))
113111, 112eleqtrrd 2831 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑𝑁 ∈ (ℤ‘((𝑁 − 1) + 1)))
114113adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ‘((𝑁 − 1) + 1)))
115109, 114sseldd 3947 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ‘(𝑦 + 1)))
116 eluzfz2 13493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ (ℤ‘(𝑦 + 1)) → 𝑁 ∈ ((𝑦 + 1)...𝑁))
117115, 116syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ((𝑦 + 1)...𝑁))
118 fnfvima 7207 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((2nd ‘(1st𝑇)) Fn (1...𝑁) ∧ ((𝑦 + 1)...𝑁) ⊆ (1...𝑁) ∧ 𝑁 ∈ ((𝑦 + 1)...𝑁)) → ((2nd ‘(1st𝑇))‘𝑁) ∈ ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)))
119102, 105, 117, 118syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((2nd ‘(1st𝑇))‘𝑁) ∈ ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)))
120 fvun2 6953 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...𝑦)) ∧ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) ∧ ((((2nd ‘(1st𝑇)) “ (1...𝑦)) ∩ ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁))) = ∅ ∧ ((2nd ‘(1st𝑇))‘𝑁) ∈ ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)))) → (((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘𝑁)) = ((((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd ‘(1st𝑇))‘𝑁)))
12149, 52, 120mp3an12 1453 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((2nd ‘(1st𝑇)) “ (1...𝑦)) ∩ ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁))) = ∅ ∧ ((2nd ‘(1st𝑇))‘𝑁) ∈ ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁))) → (((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘𝑁)) = ((((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd ‘(1st𝑇))‘𝑁)))
12267, 119, 121syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘𝑁)) = ((((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd ‘(1st𝑇))‘𝑁)))
12350fvconst2 7178 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((2nd ‘(1st𝑇))‘𝑁) ∈ ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) → ((((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd ‘(1st𝑇))‘𝑁)) = 0)
124119, 123syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd ‘(1st𝑇))‘𝑁)) = 0)
125122, 124eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘𝑁)) = 0)
126125adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ ((2nd ‘(1st𝑇))‘𝑁) ∈ (1...𝑁)) → (((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd ‘(1st𝑇))‘𝑁)) = 0)
12746, 95, 97, 97, 98, 99, 126ofval 7664 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ ((2nd ‘(1st𝑇))‘𝑁) ∈ (1...𝑁)) → (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))‘((2nd ‘(1st𝑇))‘𝑁)) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) + 0))
12830, 127mpidan 689 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))‘((2nd ‘(1st𝑇))‘𝑁)) = (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) + 0))
12933nn0cnd 12505 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ∈ ℂ)
130129addridd 11374 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) + 0) = ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)))
131130adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) + 0) = ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)))
132128, 131eqtrd 2764 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))‘((2nd ‘(1st𝑇))‘𝑁)) = ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)))
13344, 132sylan9eqr 2786 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) → (𝑝‘((2nd ‘(1st𝑇))‘𝑁)) = ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)))
134133adantllr 719 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑝 ∈ ran 𝐹) ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) → (𝑝‘((2nd ‘(1st𝑇))‘𝑁)) = ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)))
135 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 = 𝑇 → (2nd𝑡) = (2nd𝑇))
136135breq2d 5119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑡 = 𝑇 → (𝑦 < (2nd𝑡) ↔ 𝑦 < (2nd𝑇)))
137136ifbid 4512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑡 = 𝑇 → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)))
138 2fveq3 6863 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑡 = 𝑇 → (1st ‘(1st𝑡)) = (1st ‘(1st𝑇)))
139 2fveq3 6863 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑡 = 𝑇 → (2nd ‘(1st𝑡)) = (2nd ‘(1st𝑇)))
140139imaeq1d 6030 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...𝑗)))
141140xpeq1d 5667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}))
142139imaeq1d 6030 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)))
143142xpeq1d 5667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))
144141, 143uneq12d 4132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑡 = 𝑇 → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))
145138, 144oveq12d 7405 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑡 = 𝑇 → ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
146137, 145csbeq12dv 3871 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
147146mpteq2dv 5201 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = 𝑇 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
148147eqeq2d 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑇 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
149148, 10elrab2 3662 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑇𝑆 ↔ (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
150149simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑇𝑆𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
1518, 150syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
15260adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ∈ ℝ)
153 peano2zm 12576 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
154110, 153syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝑁 − 1) ∈ ℤ)
155154zred 12638 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝑁 − 1) ∈ ℝ)
156155adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) ∈ ℝ)
15727nnred 12201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑𝑁 ∈ ℝ)
158157adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ℝ)
159 elfzle2 13489 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ≤ (𝑁 − 1))
160159adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ≤ (𝑁 − 1))
161157ltm1d 12115 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝑁 − 1) < 𝑁)
162161adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) < 𝑁)
163152, 156, 158, 160, 162lelttrd 11332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 < 𝑁)
164 poimirlem21.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (2nd𝑇) = 𝑁)
165164adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (2nd𝑇) = 𝑁)
166163, 165breqtrrd 5135 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 < (2nd𝑇))
167166iftrued 4496 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) = 𝑦)
168167csbeq1d 3866 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = 𝑦 / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
169 vex 3451 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑦 ∈ V
170 oveq2 7395 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑗 = 𝑦 → (1...𝑗) = (1...𝑦))
171170imaeq2d 6031 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑗 = 𝑦 → ((2nd ‘(1st𝑇)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...𝑦)))
172171xpeq1d 5667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗 = 𝑦 → (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}))
173 oveq1 7394 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑗 = 𝑦 → (𝑗 + 1) = (𝑦 + 1))
174173oveq1d 7402 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑗 = 𝑦 → ((𝑗 + 1)...𝑁) = ((𝑦 + 1)...𝑁))
175174imaeq2d 6031 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑗 = 𝑦 → ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)))
176175xpeq1d 5667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗 = 𝑦 → (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))
177172, 176uneq12d 4132 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 = 𝑦 → ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))
178177oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑗 = 𝑦 → ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))))
179169, 178csbie 3897 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑦 / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))
180168, 179eqtrdi 2780 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))))
181180mpteq2dva 5200 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))))
182151, 181eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))))
183182rneqd 5902 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ran 𝐹 = ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))))
184183eleq2d 2814 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑝 ∈ ran 𝐹𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))))))
185 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))))
186 ovex 7420 . . . . . . . . . . . . . . . . . . . . . 22 ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))) ∈ V
187185, 186elrnmpti 5926 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) ↔ ∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))))
188184, 187bitrdi 287 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑝 ∈ ran 𝐹 ↔ ∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))))
189188biimpa 476 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ ran 𝐹) → ∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))))
190134, 189r19.29a 3141 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ ran 𝐹) → (𝑝‘((2nd ‘(1st𝑇))‘𝑁)) = ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)))
191190neeq1d 2984 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ran 𝐹) → ((𝑝‘((2nd ‘(1st𝑇))‘𝑁)) ≠ 0 ↔ ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ≠ 0))
192191biimpd 229 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ran 𝐹) → ((𝑝‘((2nd ‘(1st𝑇))‘𝑁)) ≠ 0 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ≠ 0))
193192rexlimdva 3134 . . . . . . . . . . . . . . 15 (𝜑 → (∃𝑝 ∈ ran 𝐹(𝑝‘((2nd ‘(1st𝑇))‘𝑁)) ≠ 0 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ≠ 0))
19443, 193mpd 15 . . . . . . . . . . . . . 14 (𝜑 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ≠ 0)
195 elnnne0 12456 . . . . . . . . . . . . . 14 (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ∈ ℕ ↔ (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ∈ ℕ0 ∧ ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ≠ 0))
19633, 194, 195sylanbrc 583 . . . . . . . . . . . . 13 (𝜑 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ∈ ℕ)
197 nnm1nn0 12483 . . . . . . . . . . . . 13 (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ∈ ℕ → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) − 1) ∈ ℕ0)
198196, 197syl 17 . . . . . . . . . . . 12 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) − 1) ∈ ℕ0)
199 elfzo0 13661 . . . . . . . . . . . . . 14 (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ∈ (0..^𝐾) ↔ (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ∈ ℕ0𝐾 ∈ ℕ ∧ ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) < 𝐾))
20031, 199sylib 218 . . . . . . . . . . . . 13 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ∈ ℕ0𝐾 ∈ ℕ ∧ ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) < 𝐾))
201200simp2d 1143 . . . . . . . . . . . 12 (𝜑𝐾 ∈ ℕ)
202198nn0red 12504 . . . . . . . . . . . . 13 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) − 1) ∈ ℝ)
20333nn0red 12504 . . . . . . . . . . . . 13 (𝜑 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ∈ ℝ)
204201nnred 12201 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ ℝ)
205203ltm1d 12115 . . . . . . . . . . . . 13 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) − 1) < ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)))
206 elfzolt2 13629 . . . . . . . . . . . . . 14 (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) ∈ (0..^𝐾) → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) < 𝐾)
20731, 206syl 17 . . . . . . . . . . . . 13 (𝜑 → ((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) < 𝐾)
208202, 203, 204, 205, 207lttrd 11335 . . . . . . . . . . . 12 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) − 1) < 𝐾)
209 elfzo0 13661 . . . . . . . . . . . 12 ((((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) − 1) ∈ (0..^𝐾) ↔ ((((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) − 1) ∈ ℕ0𝐾 ∈ ℕ ∧ (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) − 1) < 𝐾))
210198, 201, 208, 209syl3anbrc 1344 . . . . . . . . . . 11 (𝜑 → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) − 1) ∈ (0..^𝐾))
211210adantr 480 . . . . . . . . . 10 ((𝜑𝑛 = ((2nd ‘(1st𝑇))‘𝑁)) → (((1st ‘(1st𝑇))‘((2nd ‘(1st𝑇))‘𝑁)) − 1) ∈ (0..^𝐾))
2127, 211eqeltrd 2828 . . . . . . . . 9 ((𝜑𝑛 = ((2nd ‘(1st𝑇))‘𝑁)) → (((1st ‘(1st𝑇))‘𝑛) − 1) ∈ (0..^𝐾))
213212adantlr 715 . . . . . . . 8 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑛 = ((2nd ‘(1st𝑇))‘𝑁)) → (((1st ‘(1st𝑇))‘𝑛) − 1) ∈ (0..^𝐾))
21418ffvelcdmda 7056 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) ∈ (0..^𝐾))
215 elfzonn0 13668 . . . . . . . . . . . . 13 (((1st ‘(1st𝑇))‘𝑛) ∈ (0..^𝐾) → ((1st ‘(1st𝑇))‘𝑛) ∈ ℕ0)
216214, 215syl 17 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) ∈ ℕ0)
217216nn0cnd 12505 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) ∈ ℂ)
218217subid1d 11522 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...𝑁)) → (((1st ‘(1st𝑇))‘𝑛) − 0) = ((1st ‘(1st𝑇))‘𝑛))
219218, 214eqeltrd 2828 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (((1st ‘(1st𝑇))‘𝑛) − 0) ∈ (0..^𝐾))
220219adantr 480 . . . . . . . 8 (((𝜑𝑛 ∈ (1...𝑁)) ∧ ¬ 𝑛 = ((2nd ‘(1st𝑇))‘𝑁)) → (((1st ‘(1st𝑇))‘𝑛) − 0) ∈ (0..^𝐾))
2212, 4, 213, 220ifbothda 4527 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0)) ∈ (0..^𝐾))
222221fmpttd 7087 . . . . . 6 (𝜑 → (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))):(1...𝑁)⟶(0..^𝐾))
223 ovex 7420 . . . . . . 7 (0..^𝐾) ∈ V
224223, 96elmap 8844 . . . . . 6 ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∈ ((0..^𝐾) ↑m (1...𝑁)) ↔ (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))):(1...𝑁)⟶(0..^𝐾))
225222, 224sylibr 234 . . . . 5 (𝜑 → (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∈ ((0..^𝐾) ↑m (1...𝑁)))
226 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ((1 + 1)...𝑁)) → 𝑛 ∈ ((1 + 1)...𝑁))
227 1z 12563 . . . . . . . . . . . . . . . 16 1 ∈ ℤ
228 peano2z 12574 . . . . . . . . . . . . . . . 16 (1 ∈ ℤ → (1 + 1) ∈ ℤ)
229227, 228ax-mp 5 . . . . . . . . . . . . . . 15 (1 + 1) ∈ ℤ
230110, 229jctil 519 . . . . . . . . . . . . . 14 (𝜑 → ((1 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ))
231 elfzelz 13485 . . . . . . . . . . . . . . 15 (𝑛 ∈ ((1 + 1)...𝑁) → 𝑛 ∈ ℤ)
232231, 227jctir 520 . . . . . . . . . . . . . 14 (𝑛 ∈ ((1 + 1)...𝑁) → (𝑛 ∈ ℤ ∧ 1 ∈ ℤ))
233 fzsubel 13521 . . . . . . . . . . . . . 14 ((((1 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑛 ∈ ((1 + 1)...𝑁) ↔ (𝑛 − 1) ∈ (((1 + 1) − 1)...(𝑁 − 1))))
234230, 232, 233syl2an 596 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ((1 + 1)...𝑁)) → (𝑛 ∈ ((1 + 1)...𝑁) ↔ (𝑛 − 1) ∈ (((1 + 1) − 1)...(𝑁 − 1))))
235226, 234mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ((1 + 1)...𝑁)) → (𝑛 − 1) ∈ (((1 + 1) − 1)...(𝑁 − 1)))
236 ax-1cn 11126 . . . . . . . . . . . . . 14 1 ∈ ℂ
237236, 236pncan3oi 11437 . . . . . . . . . . . . 13 ((1 + 1) − 1) = 1
238237oveq1i 7397 . . . . . . . . . . . 12 (((1 + 1) − 1)...(𝑁 − 1)) = (1...(𝑁 − 1))
239235, 238eleqtrdi 2838 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ((1 + 1)...𝑁)) → (𝑛 − 1) ∈ (1...(𝑁 − 1)))
240239ralrimiva 3125 . . . . . . . . . 10 (𝜑 → ∀𝑛 ∈ ((1 + 1)...𝑁)(𝑛 − 1) ∈ (1...(𝑁 − 1)))
241 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (1...(𝑁 − 1))) → 𝑦 ∈ (1...(𝑁 − 1)))
242154, 227jctil 519 . . . . . . . . . . . . . . 15 (𝜑 → (1 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ))
243 elfzelz 13485 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (1...(𝑁 − 1)) → 𝑦 ∈ ℤ)
244243, 227jctir 520 . . . . . . . . . . . . . . 15 (𝑦 ∈ (1...(𝑁 − 1)) → (𝑦 ∈ ℤ ∧ 1 ∈ ℤ))
245 fzaddel 13519 . . . . . . . . . . . . . . 15 (((1 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑦 ∈ (1...(𝑁 − 1)) ↔ (𝑦 + 1) ∈ ((1 + 1)...((𝑁 − 1) + 1))))
246242, 244, 245syl2an 596 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (1...(𝑁 − 1))) → (𝑦 ∈ (1...(𝑁 − 1)) ↔ (𝑦 + 1) ∈ ((1 + 1)...((𝑁 − 1) + 1))))
247241, 246mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (1...(𝑁 − 1))) → (𝑦 + 1) ∈ ((1 + 1)...((𝑁 − 1) + 1)))
24878oveq2d 7403 . . . . . . . . . . . . . 14 (𝜑 → ((1 + 1)...((𝑁 − 1) + 1)) = ((1 + 1)...𝑁))
249248adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (1...(𝑁 − 1))) → ((1 + 1)...((𝑁 − 1) + 1)) = ((1 + 1)...𝑁))
250247, 249eleqtrd 2830 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (1...(𝑁 − 1))) → (𝑦 + 1) ∈ ((1 + 1)...𝑁))
251231zcnd 12639 . . . . . . . . . . . . . . 15 (𝑛 ∈ ((1 + 1)...𝑁) → 𝑛 ∈ ℂ)
252243zcnd 12639 . . . . . . . . . . . . . . 15 (𝑦 ∈ (1...(𝑁 − 1)) → 𝑦 ∈ ℂ)
253 subadd2 11425 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑛 − 1) = 𝑦 ↔ (𝑦 + 1) = 𝑛))
254236, 253mp3an2 1451 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑛 − 1) = 𝑦 ↔ (𝑦 + 1) = 𝑛))
255 eqcom 2736 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑛 − 1) ↔ (𝑛 − 1) = 𝑦)
256 eqcom 2736 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑦 + 1) ↔ (𝑦 + 1) = 𝑛)
257254, 255, 2563bitr4g 314 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1)))
258251, 252, 257syl2anr 597 . . . . . . . . . . . . . 14 ((𝑦 ∈ (1...(𝑁 − 1)) ∧ 𝑛 ∈ ((1 + 1)...𝑁)) → (𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1)))
259258ralrimiva 3125 . . . . . . . . . . . . 13 (𝑦 ∈ (1...(𝑁 − 1)) → ∀𝑛 ∈ ((1 + 1)...𝑁)(𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1)))
260259adantl 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (1...(𝑁 − 1))) → ∀𝑛 ∈ ((1 + 1)...𝑁)(𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1)))
261 reu6i 3699 . . . . . . . . . . . 12 (((𝑦 + 1) ∈ ((1 + 1)...𝑁) ∧ ∀𝑛 ∈ ((1 + 1)...𝑁)(𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1))) → ∃!𝑛 ∈ ((1 + 1)...𝑁)𝑦 = (𝑛 − 1))
262250, 260, 261syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (1...(𝑁 − 1))) → ∃!𝑛 ∈ ((1 + 1)...𝑁)𝑦 = (𝑛 − 1))
263262ralrimiva 3125 . . . . . . . . . 10 (𝜑 → ∀𝑦 ∈ (1...(𝑁 − 1))∃!𝑛 ∈ ((1 + 1)...𝑁)𝑦 = (𝑛 − 1))
264 eqid 2729 . . . . . . . . . . 11 (𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) = (𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1))
265264f1ompt 7083 . . . . . . . . . 10 ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)):((1 + 1)...𝑁)–1-1-onto→(1...(𝑁 − 1)) ↔ (∀𝑛 ∈ ((1 + 1)...𝑁)(𝑛 − 1) ∈ (1...(𝑁 − 1)) ∧ ∀𝑦 ∈ (1...(𝑁 − 1))∃!𝑛 ∈ ((1 + 1)...𝑁)𝑦 = (𝑛 − 1)))
266240, 263, 265sylanbrc 583 . . . . . . . . 9 (𝜑 → (𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)):((1 + 1)...𝑁)–1-1-onto→(1...(𝑁 − 1)))
267 f1osng 6841 . . . . . . . . . 10 ((1 ∈ V ∧ 𝑁 ∈ ℕ) → {⟨1, 𝑁⟩}:{1}–1-1-onto→{𝑁})
26847, 27, 267sylancr 587 . . . . . . . . 9 (𝜑 → {⟨1, 𝑁⟩}:{1}–1-1-onto→{𝑁})
269155, 157ltnled 11321 . . . . . . . . . . . 12 (𝜑 → ((𝑁 − 1) < 𝑁 ↔ ¬ 𝑁 ≤ (𝑁 − 1)))
270161, 269mpbid 232 . . . . . . . . . . 11 (𝜑 → ¬ 𝑁 ≤ (𝑁 − 1))
271 elfzle2 13489 . . . . . . . . . . 11 (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1))
272270, 271nsyl 140 . . . . . . . . . 10 (𝜑 → ¬ 𝑁 ∈ (1...(𝑁 − 1)))
273 disjsn 4675 . . . . . . . . . 10 (((1...(𝑁 − 1)) ∩ {𝑁}) = ∅ ↔ ¬ 𝑁 ∈ (1...(𝑁 − 1)))
274272, 273sylibr 234 . . . . . . . . 9 (𝜑 → ((1...(𝑁 − 1)) ∩ {𝑁}) = ∅)
275 1re 11174 . . . . . . . . . . . . . 14 1 ∈ ℝ
276275ltp1i 12087 . . . . . . . . . . . . 13 1 < (1 + 1)
277229zrei 12535 . . . . . . . . . . . . . 14 (1 + 1) ∈ ℝ
278275, 277ltnlei 11295 . . . . . . . . . . . . 13 (1 < (1 + 1) ↔ ¬ (1 + 1) ≤ 1)
279276, 278mpbi 230 . . . . . . . . . . . 12 ¬ (1 + 1) ≤ 1
280 elfzle1 13488 . . . . . . . . . . . 12 (1 ∈ ((1 + 1)...𝑁) → (1 + 1) ≤ 1)
281279, 280mto 197 . . . . . . . . . . 11 ¬ 1 ∈ ((1 + 1)...𝑁)
282 disjsn 4675 . . . . . . . . . . 11 ((((1 + 1)...𝑁) ∩ {1}) = ∅ ↔ ¬ 1 ∈ ((1 + 1)...𝑁))
283281, 282mpbir 231 . . . . . . . . . 10 (((1 + 1)...𝑁) ∩ {1}) = ∅
284 f1oun 6819 . . . . . . . . . 10 ((((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)):((1 + 1)...𝑁)–1-1-onto→(1...(𝑁 − 1)) ∧ {⟨1, 𝑁⟩}:{1}–1-1-onto→{𝑁}) ∧ ((((1 + 1)...𝑁) ∩ {1}) = ∅ ∧ ((1...(𝑁 − 1)) ∩ {𝑁}) = ∅)) → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {⟨1, 𝑁⟩}):(((1 + 1)...𝑁) ∪ {1})–1-1-onto→((1...(𝑁 − 1)) ∪ {𝑁}))
285283, 284mpanr1 703 . . . . . . . . 9 ((((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)):((1 + 1)...𝑁)–1-1-onto→(1...(𝑁 − 1)) ∧ {⟨1, 𝑁⟩}:{1}–1-1-onto→{𝑁}) ∧ ((1...(𝑁 − 1)) ∩ {𝑁}) = ∅) → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {⟨1, 𝑁⟩}):(((1 + 1)...𝑁) ∪ {1})–1-1-onto→((1...(𝑁 − 1)) ∪ {𝑁}))
286266, 268, 274, 285syl21anc 837 . . . . . . . 8 (𝜑 → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {⟨1, 𝑁⟩}):(((1 + 1)...𝑁) ∪ {1})–1-1-onto→((1...(𝑁 − 1)) ∪ {𝑁}))
287 eleq1 2816 . . . . . . . . . . . . . . 15 (𝑛 = 1 → (𝑛 ∈ ((1 + 1)...𝑁) ↔ 1 ∈ ((1 + 1)...𝑁)))
288281, 287mtbiri 327 . . . . . . . . . . . . . 14 (𝑛 = 1 → ¬ 𝑛 ∈ ((1 + 1)...𝑁))
289288necon2ai 2954 . . . . . . . . . . . . 13 (𝑛 ∈ ((1 + 1)...𝑁) → 𝑛 ≠ 1)
290 ifnefalse 4500 . . . . . . . . . . . . 13 (𝑛 ≠ 1 → if(𝑛 = 1, 𝑁, (𝑛 − 1)) = (𝑛 − 1))
291289, 290syl 17 . . . . . . . . . . . 12 (𝑛 ∈ ((1 + 1)...𝑁) → if(𝑛 = 1, 𝑁, (𝑛 − 1)) = (𝑛 − 1))
292291mpteq2ia 5202 . . . . . . . . . . 11 (𝑛 ∈ ((1 + 1)...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) = (𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1))
293292uneq1i 4127 . . . . . . . . . 10 ((𝑛 ∈ ((1 + 1)...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ∪ {⟨1, 𝑁⟩}) = ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {⟨1, 𝑁⟩})
29447a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ∈ V)
29527, 72eleqtrdi 2838 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ (ℤ‘1))
296 fzpred 13533 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘1) → (1...𝑁) = ({1} ∪ ((1 + 1)...𝑁)))
297295, 296syl 17 . . . . . . . . . . . 12 (𝜑 → (1...𝑁) = ({1} ∪ ((1 + 1)...𝑁)))
298 uncom 4121 . . . . . . . . . . . 12 ({1} ∪ ((1 + 1)...𝑁)) = (((1 + 1)...𝑁) ∪ {1})
299297, 298eqtr2di 2781 . . . . . . . . . . 11 (𝜑 → (((1 + 1)...𝑁) ∪ {1}) = (1...𝑁))
300 iftrue 4494 . . . . . . . . . . . 12 (𝑛 = 1 → if(𝑛 = 1, 𝑁, (𝑛 − 1)) = 𝑁)
301300adantl 481 . . . . . . . . . . 11 ((𝜑𝑛 = 1) → if(𝑛 = 1, 𝑁, (𝑛 − 1)) = 𝑁)
302294, 27, 299, 301fmptapd 7145 . . . . . . . . . 10 (𝜑 → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ∪ {⟨1, 𝑁⟩}) = (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))
303293, 302eqtr3id 2778 . . . . . . . . 9 (𝜑 → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {⟨1, 𝑁⟩}) = (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))
30478, 295eqeltrd 2828 . . . . . . . . . . 11 (𝜑 → ((𝑁 − 1) + 1) ∈ (ℤ‘1))
305 uzid 12808 . . . . . . . . . . . . 13 ((𝑁 − 1) ∈ ℤ → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)))
306 peano2uz 12860 . . . . . . . . . . . . 13 ((𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
307154, 305, 3063syl 18 . . . . . . . . . . . 12 (𝜑 → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
30878, 307eqeltrrd 2829 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ‘(𝑁 − 1)))
309 fzsplit2 13510 . . . . . . . . . . 11 ((((𝑁 − 1) + 1) ∈ (ℤ‘1) ∧ 𝑁 ∈ (ℤ‘(𝑁 − 1))) → (1...𝑁) = ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)))
310304, 308, 309syl2anc 584 . . . . . . . . . 10 (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)))
31178oveq1d 7402 . . . . . . . . . . . 12 (𝜑 → (((𝑁 − 1) + 1)...𝑁) = (𝑁...𝑁))
312 fzsn 13527 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁})
313110, 312syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑁...𝑁) = {𝑁})
314311, 313eqtrd 2764 . . . . . . . . . . 11 (𝜑 → (((𝑁 − 1) + 1)...𝑁) = {𝑁})
315314uneq2d 4131 . . . . . . . . . 10 (𝜑 → ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)) = ((1...(𝑁 − 1)) ∪ {𝑁}))
316310, 315eqtr2d 2765 . . . . . . . . 9 (𝜑 → ((1...(𝑁 − 1)) ∪ {𝑁}) = (1...𝑁))
317303, 299, 316f1oeq123d 6794 . . . . . . . 8 (𝜑 → (((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {⟨1, 𝑁⟩}):(((1 + 1)...𝑁) ∪ {1})–1-1-onto→((1...(𝑁 − 1)) ∪ {𝑁}) ↔ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))):(1...𝑁)–1-1-onto→(1...𝑁)))
318286, 317mpbid 232 . . . . . . 7 (𝜑 → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))):(1...𝑁)–1-1-onto→(1...𝑁))
319 f1oco 6823 . . . . . . 7 (((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) ∧ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))):(1...𝑁)–1-1-onto→(1...𝑁)) → ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–1-1-onto→(1...𝑁))
32024, 318, 319syl2anc 584 . . . . . 6 (𝜑 → ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–1-1-onto→(1...𝑁))
32196mptex 7197 . . . . . . . 8 (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ∈ V
32221, 321coex 7906 . . . . . . 7 ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) ∈ V
323 f1oeq1 6788 . . . . . . 7 (𝑓 = ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–1-1-onto→(1...𝑁)))
324322, 323elab 3646 . . . . . 6 (((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–1-1-onto→(1...𝑁))
325320, 324sylibr 234 . . . . 5 (𝜑 → ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
326225, 325opelxpd 5677 . . . 4 (𝜑 → ⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩ ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
32727nnnn0d 12503 . . . . 5 (𝜑𝑁 ∈ ℕ0)
328 0elfz 13585 . . . . 5 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
329327, 328syl 17 . . . 4 (𝜑 → 0 ∈ (0...𝑁))
330326, 329opelxpd 5677 . . 3 (𝜑 → ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
331 poimirlem22.1 . . . . 5 (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))
33227, 10, 331, 8, 41, 164poimirlem19 37633 . . . 4 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))))
333 elfzle1 13488 . . . . . . . . 9 (𝑦 ∈ (0...(𝑁 − 1)) → 0 ≤ 𝑦)
334 0re 11176 . . . . . . . . . 10 0 ∈ ℝ
335 lenlt 11252 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 ≤ 𝑦 ↔ ¬ 𝑦 < 0))
336334, 60, 335sylancr 587 . . . . . . . . 9 (𝑦 ∈ (0...(𝑁 − 1)) → (0 ≤ 𝑦 ↔ ¬ 𝑦 < 0))
337333, 336mpbid 232 . . . . . . . 8 (𝑦 ∈ (0...(𝑁 − 1)) → ¬ 𝑦 < 0)
338337iffalsed 4499 . . . . . . 7 (𝑦 ∈ (0...(𝑁 − 1)) → if(𝑦 < 0, 𝑦, (𝑦 + 1)) = (𝑦 + 1))
339338csbeq1d 3866 . . . . . 6 (𝑦 ∈ (0...(𝑁 − 1)) → if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑦 + 1) / 𝑗((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))))
340 ovex 7420 . . . . . . 7 (𝑦 + 1) ∈ V
341 oveq2 7395 . . . . . . . . . . 11 (𝑗 = (𝑦 + 1) → (1...𝑗) = (1...(𝑦 + 1)))
342341imaeq2d 6031 . . . . . . . . . 10 (𝑗 = (𝑦 + 1) → (((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) = (((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))))
343342xpeq1d 5667 . . . . . . . . 9 (𝑗 = (𝑦 + 1) → ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) = ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}))
344 oveq1 7394 . . . . . . . . . . . 12 (𝑗 = (𝑦 + 1) → (𝑗 + 1) = ((𝑦 + 1) + 1))
345344oveq1d 7402 . . . . . . . . . . 11 (𝑗 = (𝑦 + 1) → ((𝑗 + 1)...𝑁) = (((𝑦 + 1) + 1)...𝑁))
346345imaeq2d 6031 . . . . . . . . . 10 (𝑗 = (𝑦 + 1) → (((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) = (((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)))
347346xpeq1d 5667 . . . . . . . . 9 (𝑗 = (𝑦 + 1) → ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}) = ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))
348343, 347uneq12d 4132 . . . . . . . 8 (𝑗 = (𝑦 + 1) → (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})) = (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))
349348oveq2d 7403 . . . . . . 7 (𝑗 = (𝑦 + 1) → ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))
350340, 349csbie 3897 . . . . . 6 (𝑦 + 1) / 𝑗((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))
351339, 350eqtrdi 2780 . . . . 5 (𝑦 ∈ (0...(𝑁 − 1)) → if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))
352351mpteq2ia 5202 . . . 4 (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))
353332, 352eqtr4di 2782 . . 3 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})))))
354 opex 5424 . . . . . . . . . 10 ⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩ ∈ V
355354, 50op2ndd 7979 . . . . . . . . 9 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → (2nd𝑡) = 0)
356355breq2d 5119 . . . . . . . 8 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → (𝑦 < (2nd𝑡) ↔ 𝑦 < 0))
357356ifbid 4512 . . . . . . 7 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < 0, 𝑦, (𝑦 + 1)))
358354, 50op1std 7978 . . . . . . . . 9 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → (1st𝑡) = ⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩)
35996mptex 7197 . . . . . . . . . 10 (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∈ V
360359, 322op1std 7978 . . . . . . . . 9 ((1st𝑡) = ⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩ → (1st ‘(1st𝑡)) = (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))))
361358, 360syl 17 . . . . . . . 8 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → (1st ‘(1st𝑡)) = (𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))))
362359, 322op2ndd 7979 . . . . . . . . . . . 12 ((1st𝑡) = ⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩ → (2nd ‘(1st𝑡)) = ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))))
363358, 362syl 17 . . . . . . . . . . 11 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → (2nd ‘(1st𝑡)) = ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))))
364363imaeq1d 6030 . . . . . . . . . 10 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = (((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)))
365364xpeq1d 5667 . . . . . . . . 9 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}))
366363imaeq1d 6030 . . . . . . . . . 10 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = (((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)))
367366xpeq1d 5667 . . . . . . . . 9 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))
368365, 367uneq12d 4132 . . . . . . . 8 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})))
369361, 368oveq12d 7405 . . . . . . 7 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))))
370357, 369csbeq12dv 3871 . . . . . 6 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))))
371370mpteq2dv 5201 . . . . 5 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})))))
372371eqeq2d 2740 . . . 4 (𝑡 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))))))
373372, 10elrab2 3662 . . 3 (⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ ∈ 𝑆 ↔ (⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗((𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))) ∘f + (((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪ ((((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))))))
374330, 353, 373sylanbrc 583 . 2 (𝜑 → ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ ∈ 𝑆)
375354, 50op2ndd 7979 . . . . . 6 (𝑇 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → (2nd𝑇) = 0)
376375eqcoms 2737 . . . . 5 (⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ = 𝑇 → (2nd𝑇) = 0)
37727nnne0d 12236 . . . . . . 7 (𝜑𝑁 ≠ 0)
378377necomd 2980 . . . . . 6 (𝜑 → 0 ≠ 𝑁)
379 neeq1 2987 . . . . . 6 ((2nd𝑇) = 0 → ((2nd𝑇) ≠ 𝑁 ↔ 0 ≠ 𝑁))
380378, 379syl5ibrcom 247 . . . . 5 (𝜑 → ((2nd𝑇) = 0 → (2nd𝑇) ≠ 𝑁))
381376, 380syl5 34 . . . 4 (𝜑 → (⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ = 𝑇 → (2nd𝑇) ≠ 𝑁))
382381necon2d 2948 . . 3 (𝜑 → ((2nd𝑇) = 𝑁 → ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ ≠ 𝑇))
383164, 382mpd 15 . 2 (𝜑 → ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ ≠ 𝑇)
384 neeq1 2987 . . 3 (𝑧 = ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ → (𝑧𝑇 ↔ ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ ≠ 𝑇))
385384rspcev 3588 . 2 ((⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ ∈ 𝑆 ∧ ⟨⟨(𝑛 ∈ (1...𝑁) ↦ (((1st ‘(1st𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st𝑇))‘𝑁), 1, 0))), ((2nd ‘(1st𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))⟩, 0⟩ ≠ 𝑇) → ∃𝑧𝑆 𝑧𝑇)
386374, 383, 385syl2anc 584 1 (𝜑 → ∃𝑧𝑆 𝑧𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  ∃!wreu 3352  {crab 3405  Vcvv 3447  csb 3862  cun 3912  cin 3913  wss 3914  c0 4296  ifcif 4488  {csn 4589  cop 4595   class class class wbr 5107  cmpt 5188   × cxp 5636  ccnv 5637  ran crn 5639  cima 5641  ccom 5642  Fun wfun 6505   Fn wfn 6506  wf 6507  ontowfo 6509  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  f cof 7651  1st c1st 7966  2nd c2nd 7967  m cmap 8799  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405  cn 12186  0cn0 12442  cz 12529  cuz 12793  ...cfz 13468  ..^cfzo 13615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616
This theorem is referenced by:  poimirlem21  37635
  Copyright terms: Public domain W3C validator