Proof of Theorem poimirlem20
| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7440 |
. . . . . . . . 9
⊢ (1 =
if(𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁), 1, 0) → (((1st
‘(1st ‘𝑇))‘𝑛) − 1) = (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) |
| 2 | 1 | eleq1d 2825 |
. . . . . . . 8
⊢ (1 =
if(𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁), 1, 0) → ((((1st
‘(1st ‘𝑇))‘𝑛) − 1) ∈ (0..^𝐾) ↔ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)) ∈ (0..^𝐾))) |
| 3 | | oveq2 7440 |
. . . . . . . . 9
⊢ (0 =
if(𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁), 1, 0) → (((1st
‘(1st ‘𝑇))‘𝑛) − 0) = (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) |
| 4 | 3 | eleq1d 2825 |
. . . . . . . 8
⊢ (0 =
if(𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁), 1, 0) → ((((1st
‘(1st ‘𝑇))‘𝑛) − 0) ∈ (0..^𝐾) ↔ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)) ∈ (0..^𝐾))) |
| 5 | | fveq2 6905 |
. . . . . . . . . . . 12
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁) → ((1st
‘(1st ‘𝑇))‘𝑛) = ((1st ‘(1st
‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
| 6 | 5 | oveq1d 7447 |
. . . . . . . . . . 11
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁) → (((1st
‘(1st ‘𝑇))‘𝑛) − 1) = (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1)) |
| 7 | 6 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) − 1) = (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1)) |
| 8 | | poimirlem22.2 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑇 ∈ 𝑆) |
| 9 | | elrabi 3686 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑇 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
| 10 | | poimirlem22.s |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} |
| 11 | 9, 10 | eleq2s 2858 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑇 ∈ 𝑆 → 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
| 12 | 8, 11 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
| 13 | | xp1st 8047 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st ‘𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
| 14 | 12, 13 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (1st
‘𝑇) ∈
(((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
| 15 | | xp1st 8047 |
. . . . . . . . . . . . . . . . . 18
⊢
((1st ‘𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st
‘(1st ‘𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁))) |
| 16 | 14, 15 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (1st
‘(1st ‘𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁))) |
| 17 | | elmapi 8890 |
. . . . . . . . . . . . . . . . 17
⊢
((1st ‘(1st ‘𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)) → (1st
‘(1st ‘𝑇)):(1...𝑁)⟶(0..^𝐾)) |
| 18 | 16, 17 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (1st
‘(1st ‘𝑇)):(1...𝑁)⟶(0..^𝐾)) |
| 19 | | xp2nd 8048 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((1st ‘𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd
‘(1st ‘𝑇)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
| 20 | 14, 19 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (2nd
‘(1st ‘𝑇)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
| 21 | | fvex 6918 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(2nd ‘(1st ‘𝑇)) ∈ V |
| 22 | | f1oeq1 6835 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = (2nd
‘(1st ‘𝑇)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd
‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))) |
| 23 | 21, 22 | elab 3678 |
. . . . . . . . . . . . . . . . . . 19
⊢
((2nd ‘(1st ‘𝑇)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd
‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)) |
| 24 | 20, 23 | sylib 218 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (2nd
‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)) |
| 25 | | f1of 6847 |
. . . . . . . . . . . . . . . . . 18
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd
‘(1st ‘𝑇)):(1...𝑁)⟶(1...𝑁)) |
| 26 | 24, 25 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (2nd
‘(1st ‘𝑇)):(1...𝑁)⟶(1...𝑁)) |
| 27 | | poimir.0 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 28 | | elfz1end 13595 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (1...𝑁)) |
| 29 | 27, 28 | sylib 218 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑁 ∈ (1...𝑁)) |
| 30 | 26, 29 | ffvelcdmd 7104 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ (1...𝑁)) |
| 31 | 18, 30 | ffvelcdmd 7104 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ (0..^𝐾)) |
| 32 | | elfzonn0 13748 |
. . . . . . . . . . . . . . 15
⊢
(((1st ‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ (0..^𝐾) → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈
ℕ0) |
| 33 | 31, 32 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈
ℕ0) |
| 34 | | fvex 6918 |
. . . . . . . . . . . . . . . . 17
⊢
((2nd ‘(1st ‘𝑇))‘𝑁) ∈ V |
| 35 | | eleq1 2828 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁) → (𝑛 ∈ (1...𝑁) ↔ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ (1...𝑁))) |
| 36 | 35 | anbi2d 630 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁) → ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) ↔ (𝜑 ∧ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ (1...𝑁)))) |
| 37 | | fveq2 6905 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁) → (𝑝‘𝑛) = (𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
| 38 | 37 | neeq1d 2999 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁) → ((𝑝‘𝑛) ≠ 0 ↔ (𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0)) |
| 39 | 38 | rexbidv 3178 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁) → (∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 0 ↔ ∃𝑝 ∈ ran 𝐹(𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0)) |
| 40 | 36, 39 | imbi12d 344 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁) → (((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 0) ↔ ((𝜑 ∧ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0))) |
| 41 | | poimirlem22.3 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 0) |
| 42 | 34, 40, 41 | vtocl 3557 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0) |
| 43 | 30, 42 | mpdan 687 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∃𝑝 ∈ ran 𝐹(𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0) |
| 44 | | fveq1 6904 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 = ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))) → (𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) = (((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
| 45 | 18 | ffnd 6736 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (1st
‘(1st ‘𝑇)) Fn (1...𝑁)) |
| 46 | 45 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1st
‘(1st ‘𝑇)) Fn (1...𝑁)) |
| 47 | | 1ex 11258 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 1 ∈
V |
| 48 | | fnconstg 6795 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (1 ∈
V → (((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...𝑦))) |
| 49 | 47, 48 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) |
| 50 | | c0ex 11256 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 0 ∈
V |
| 51 | | fnconstg 6795 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (0 ∈
V → (((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) |
| 52 | 50, 51 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) |
| 53 | 49, 52 | pm3.2i 470 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∧ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) |
| 54 | | dff1o3 6853 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((2nd
‘(1st ‘𝑇)):(1...𝑁)–onto→(1...𝑁) ∧ Fun ◡(2nd ‘(1st
‘𝑇)))) |
| 55 | 54 | simprbi 496 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → Fun ◡(2nd ‘(1st
‘𝑇))) |
| 56 | 24, 55 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → Fun ◡(2nd ‘(1st
‘𝑇))) |
| 57 | | imain 6650 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (Fun
◡(2nd ‘(1st
‘𝑇)) →
((2nd ‘(1st ‘𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)))) |
| 58 | 56, 57 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)))) |
| 59 | | elfznn0 13661 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℕ0) |
| 60 | 59 | nn0red 12590 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℝ) |
| 61 | 60 | ltp1d 12199 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 < (𝑦 + 1)) |
| 62 | | fzdisj 13592 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 < (𝑦 + 1) → ((1...𝑦) ∩ ((𝑦 + 1)...𝑁)) = ∅) |
| 63 | 61, 62 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((1...𝑦) ∩ ((𝑦 + 1)...𝑁)) = ∅) |
| 64 | 63 | imaeq2d 6077 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = ((2nd
‘(1st ‘𝑇)) “ ∅)) |
| 65 | | ima0 6094 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((2nd ‘(1st ‘𝑇)) “ ∅) =
∅ |
| 66 | 64, 65 | eqtrdi 2792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = ∅) |
| 67 | 58, 66 | sylan9req 2797 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) = ∅) |
| 68 | | fnun 6681 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∧ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) ∧ (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) = ∅) → ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)))) |
| 69 | 53, 67, 68 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)))) |
| 70 | | imaundi 6168 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((2nd ‘(1st ‘𝑇)) “ ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) |
| 71 | | nn0p1nn 12567 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑦 ∈ ℕ0
→ (𝑦 + 1) ∈
ℕ) |
| 72 | | nnuz 12922 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ℕ =
(ℤ≥‘1) |
| 73 | 71, 72 | eleqtrdi 2850 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 ∈ ℕ0
→ (𝑦 + 1) ∈
(ℤ≥‘1)) |
| 74 | 59, 73 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈
(ℤ≥‘1)) |
| 75 | 74 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑦 + 1) ∈
(ℤ≥‘1)) |
| 76 | 27 | nncnd 12283 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 77 | | npcan1 11689 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁) |
| 78 | 76, 77 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
| 79 | 78 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁) |
| 80 | | elfzuz3 13562 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈
(ℤ≥‘𝑦)) |
| 81 | | peano2uz 12944 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑁 − 1) ∈
(ℤ≥‘𝑦) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘𝑦)) |
| 82 | 80, 81 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘𝑦)) |
| 83 | 82 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘𝑦)) |
| 84 | 79, 83 | eqeltrrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ≥‘𝑦)) |
| 85 | | fzsplit2 13590 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑦 + 1) ∈
(ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘𝑦)) → (1...𝑁) = ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))) |
| 86 | 75, 84, 85 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑁) = ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))) |
| 87 | 86 | imaeq2d 6077 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) = ((2nd ‘(1st
‘𝑇)) “
((1...𝑦) ∪ ((𝑦 + 1)...𝑁)))) |
| 88 | | f1ofo 6854 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd
‘(1st ‘𝑇)):(1...𝑁)–onto→(1...𝑁)) |
| 89 | | foima 6824 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–onto→(1...𝑁) → ((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) = (1...𝑁)) |
| 90 | 24, 88, 89 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) = (1...𝑁)) |
| 91 | 90 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) = (1...𝑁)) |
| 92 | 87, 91 | eqtr3d 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))) = (1...𝑁)) |
| 93 | 70, 92 | eqtr3id 2790 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) = (1...𝑁)) |
| 94 | 93 | fneq2d 6661 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) ↔ ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (1...𝑁))) |
| 95 | 69, 94 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (1...𝑁)) |
| 96 | | ovex 7465 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(1...𝑁) ∈
V |
| 97 | 96 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑁) ∈ V) |
| 98 | | inidm 4226 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((1...𝑁) ∩
(1...𝑁)) = (1...𝑁) |
| 99 | | eqidd 2737 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = ((1st ‘(1st
‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
| 100 | | f1ofn 6848 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd
‘(1st ‘𝑇)) Fn (1...𝑁)) |
| 101 | 24, 100 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → (2nd
‘(1st ‘𝑇)) Fn (1...𝑁)) |
| 102 | 101 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (2nd
‘(1st ‘𝑇)) Fn (1...𝑁)) |
| 103 | | fzss1 13604 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑦 + 1) ∈
(ℤ≥‘1) → ((𝑦 + 1)...𝑁) ⊆ (1...𝑁)) |
| 104 | 74, 103 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1)...𝑁) ⊆ (1...𝑁)) |
| 105 | 104 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑦 + 1)...𝑁) ⊆ (1...𝑁)) |
| 106 | | eluzp1p1 12907 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑁 − 1) ∈
(ℤ≥‘𝑦) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑦 + 1))) |
| 107 | | uzss 12902 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑦 + 1)) →
(ℤ≥‘((𝑁 − 1) + 1)) ⊆
(ℤ≥‘(𝑦 + 1))) |
| 108 | 80, 106, 107 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 ∈ (0...(𝑁 − 1)) →
(ℤ≥‘((𝑁 − 1) + 1)) ⊆
(ℤ≥‘(𝑦 + 1))) |
| 109 | 108 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) →
(ℤ≥‘((𝑁 − 1) + 1)) ⊆
(ℤ≥‘(𝑦 + 1))) |
| 110 | 27 | nnzd 12642 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 111 | 110 | uzidd 12895 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑁)) |
| 112 | 78 | fveq2d 6909 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 →
(ℤ≥‘((𝑁 − 1) + 1)) =
(ℤ≥‘𝑁)) |
| 113 | 111, 112 | eleqtrrd 2843 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘((𝑁 − 1) + 1))) |
| 114 | 113 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈
(ℤ≥‘((𝑁 − 1) + 1))) |
| 115 | 109, 114 | sseldd 3983 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ≥‘(𝑦 + 1))) |
| 116 | | eluzfz2 13573 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑁 ∈
(ℤ≥‘(𝑦 + 1)) → 𝑁 ∈ ((𝑦 + 1)...𝑁)) |
| 117 | 115, 116 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ((𝑦 + 1)...𝑁)) |
| 118 | | fnfvima 7254 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((2nd ‘(1st ‘𝑇)) Fn (1...𝑁) ∧ ((𝑦 + 1)...𝑁) ⊆ (1...𝑁) ∧ 𝑁 ∈ ((𝑦 + 1)...𝑁)) → ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) |
| 119 | 102, 105,
117, 118 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) |
| 120 | | fvun2 7000 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∧ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) ∧ ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) = ∅ ∧ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)))) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
| 121 | 49, 52, 120 | mp3an12 1452 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) = ∅ ∧ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
| 122 | 67, 119, 121 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
| 123 | 50 | fvconst2 7225 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((2nd ‘(1st ‘𝑇))‘𝑁) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) → ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘𝑁)) = 0) |
| 124 | 119, 123 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘𝑁)) = 0) |
| 125 | 122, 124 | eqtrd 2776 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = 0) |
| 126 | 125 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ (1...𝑁)) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = 0) |
| 127 | 46, 95, 97, 97, 98, 99, 126 | ofval 7709 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ (1...𝑁)) → (((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) + 0)) |
| 128 | 30, 127 | mpidan 689 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) + 0)) |
| 129 | 33 | nn0cnd 12591 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ ℂ) |
| 130 | 129 | addridd 11462 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) + 0) = ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
| 131 | 130 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) + 0) = ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
| 132 | 128, 131 | eqtrd 2776 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = ((1st ‘(1st
‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
| 133 | 44, 132 | sylan9eqr 2798 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑝 = ((1st ‘(1st
‘𝑇))
∘f + ((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪
(((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) → (𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) = ((1st ‘(1st
‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
| 134 | 133 | adantllr 719 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑝 ∈ ran 𝐹) ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑝 = ((1st ‘(1st
‘𝑇))
∘f + ((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪
(((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) → (𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) = ((1st ‘(1st
‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
| 135 | | fveq2 6905 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑡 = 𝑇 → (2nd ‘𝑡) = (2nd ‘𝑇)) |
| 136 | 135 | breq2d 5154 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑡 = 𝑇 → (𝑦 < (2nd ‘𝑡) ↔ 𝑦 < (2nd ‘𝑇))) |
| 137 | 136 | ifbid 4548 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑡 = 𝑇 → if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd ‘𝑇), 𝑦, (𝑦 + 1))) |
| 138 | | 2fveq3 6910 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑡 = 𝑇 → (1st
‘(1st ‘𝑡)) = (1st ‘(1st
‘𝑇))) |
| 139 | | 2fveq3 6910 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑡 = 𝑇 → (2nd
‘(1st ‘𝑡)) = (2nd ‘(1st
‘𝑇))) |
| 140 | 139 | imaeq1d 6076 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑡 = 𝑇 → ((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) = ((2nd ‘(1st
‘𝑇)) “
(1...𝑗))) |
| 141 | 140 | xpeq1d 5713 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑡 = 𝑇 → (((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1})) |
| 142 | 139 | imaeq1d 6076 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑡 = 𝑇 → ((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st
‘𝑇)) “ ((𝑗 + 1)...𝑁))) |
| 143 | 142 | xpeq1d 5713 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑡 = 𝑇 → (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) |
| 144 | 141, 143 | uneq12d 4168 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑡 = 𝑇 → ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) |
| 145 | 138, 144 | oveq12d 7450 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑡 = 𝑇 → ((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 146 | 137, 145 | csbeq12dv 3907 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑡 = 𝑇 → ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 147 | 146 | mpteq2dv 5243 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑡 = 𝑇 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
| 148 | 147 | eqeq2d 2747 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑡 = 𝑇 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))) |
| 149 | 148, 10 | elrab2 3694 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑇 ∈ 𝑆 ↔ (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))) |
| 150 | 149 | simprbi 496 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑇 ∈ 𝑆 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
| 151 | 8, 150 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
| 152 | 60 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ∈ ℝ) |
| 153 | | peano2zm 12662 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈
ℤ) |
| 154 | 110, 153 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → (𝑁 − 1) ∈ ℤ) |
| 155 | 154 | zred 12724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → (𝑁 − 1) ∈ ℝ) |
| 156 | 155 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) ∈ ℝ) |
| 157 | 27 | nnred 12282 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 158 | 157 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ℝ) |
| 159 | | elfzle2 13569 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ≤ (𝑁 − 1)) |
| 160 | 159 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ≤ (𝑁 − 1)) |
| 161 | 157 | ltm1d 12201 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → (𝑁 − 1) < 𝑁) |
| 162 | 161 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) < 𝑁) |
| 163 | 152, 156,
158, 160, 162 | lelttrd 11420 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 < 𝑁) |
| 164 | | poimirlem21.4 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → (2nd
‘𝑇) = 𝑁) |
| 165 | 164 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (2nd
‘𝑇) = 𝑁) |
| 166 | 163, 165 | breqtrrd 5170 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 < (2nd ‘𝑇)) |
| 167 | 166 | iftrued 4532 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd ‘𝑇), 𝑦, (𝑦 + 1)) = 𝑦) |
| 168 | 167 | csbeq1d 3902 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋𝑦 / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 169 | | vex 3483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 𝑦 ∈ V |
| 170 | | oveq2 7440 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑗 = 𝑦 → (1...𝑗) = (1...𝑦)) |
| 171 | 170 | imaeq2d 6077 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 = 𝑦 → ((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) = ((2nd ‘(1st
‘𝑇)) “
(1...𝑦))) |
| 172 | 171 | xpeq1d 5713 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 = 𝑦 → (((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1})) |
| 173 | | oveq1 7439 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑗 = 𝑦 → (𝑗 + 1) = (𝑦 + 1)) |
| 174 | 173 | oveq1d 7447 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑗 = 𝑦 → ((𝑗 + 1)...𝑁) = ((𝑦 + 1)...𝑁)) |
| 175 | 174 | imaeq2d 6077 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 = 𝑦 → ((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st
‘𝑇)) “ ((𝑦 + 1)...𝑁))) |
| 176 | 175 | xpeq1d 5713 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 = 𝑦 → (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) |
| 177 | 172, 176 | uneq12d 4168 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 = 𝑦 → ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))) |
| 178 | 177 | oveq2d 7448 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 = 𝑦 → ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) |
| 179 | 169, 178 | csbie 3933 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
⦋𝑦 /
𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))) |
| 180 | 168, 179 | eqtrdi 2792 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) |
| 181 | 180 | mpteq2dva 5241 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))))) |
| 182 | 151, 181 | eqtrd 2776 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))))) |
| 183 | 182 | rneqd 5948 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ran 𝐹 = ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))))) |
| 184 | 183 | eleq2d 2826 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑝 ∈ ran 𝐹 ↔ 𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))))) |
| 185 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) |
| 186 | | ovex 7465 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((1st ‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))) ∈ V |
| 187 | 185, 186 | elrnmpti 5972 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) ↔ ∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = ((1st ‘(1st
‘𝑇))
∘f + ((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪
(((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) |
| 188 | 184, 187 | bitrdi 287 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑝 ∈ ran 𝐹 ↔ ∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = ((1st ‘(1st
‘𝑇))
∘f + ((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪
(((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))))) |
| 189 | 188 | biimpa 476 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑝 ∈ ran 𝐹) → ∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = ((1st ‘(1st
‘𝑇))
∘f + ((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪
(((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) |
| 190 | 134, 189 | r19.29a 3161 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑝 ∈ ran 𝐹) → (𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) = ((1st ‘(1st
‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
| 191 | 190 | neeq1d 2999 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 ∈ ran 𝐹) → ((𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0 ↔ ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0)) |
| 192 | 191 | biimpd 229 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑝 ∈ ran 𝐹) → ((𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0 → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0)) |
| 193 | 192 | rexlimdva 3154 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (∃𝑝 ∈ ran 𝐹(𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0 → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0)) |
| 194 | 43, 193 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0) |
| 195 | | elnnne0 12542 |
. . . . . . . . . . . . . 14
⊢
(((1st ‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ ℕ ↔ (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ ℕ0 ∧
((1st ‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0)) |
| 196 | 33, 194, 195 | sylanbrc 583 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ ℕ) |
| 197 | | nnm1nn0 12569 |
. . . . . . . . . . . . 13
⊢
(((1st ‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ ℕ → (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) ∈
ℕ0) |
| 198 | 196, 197 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) ∈
ℕ0) |
| 199 | | elfzo0 13741 |
. . . . . . . . . . . . . 14
⊢
(((1st ‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ (0..^𝐾) ↔ (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ ℕ0 ∧ 𝐾 ∈ ℕ ∧
((1st ‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) < 𝐾)) |
| 200 | 31, 199 | sylib 218 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ ℕ0 ∧ 𝐾 ∈ ℕ ∧
((1st ‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) < 𝐾)) |
| 201 | 200 | simp2d 1143 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ∈ ℕ) |
| 202 | 198 | nn0red 12590 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) ∈
ℝ) |
| 203 | 33 | nn0red 12590 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ ℝ) |
| 204 | 201 | nnred 12282 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾 ∈ ℝ) |
| 205 | 203 | ltm1d 12201 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) < ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
| 206 | | elfzolt2 13709 |
. . . . . . . . . . . . . 14
⊢
(((1st ‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ (0..^𝐾) → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) < 𝐾) |
| 207 | 31, 206 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) < 𝐾) |
| 208 | 202, 203,
204, 205, 207 | lttrd 11423 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) < 𝐾) |
| 209 | | elfzo0 13741 |
. . . . . . . . . . . 12
⊢
((((1st ‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) ∈ (0..^𝐾) ↔ ((((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) ∈ ℕ0
∧ 𝐾 ∈ ℕ
∧ (((1st ‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) < 𝐾)) |
| 210 | 198, 201,
208, 209 | syl3anbrc 1343 |
. . . . . . . . . . 11
⊢ (𝜑 → (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) ∈ (0..^𝐾)) |
| 211 | 210 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) → (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) ∈ (0..^𝐾)) |
| 212 | 7, 211 | eqeltrd 2840 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) − 1) ∈ (0..^𝐾)) |
| 213 | 212 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) − 1) ∈ (0..^𝐾)) |
| 214 | 18 | ffvelcdmda 7103 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑇))‘𝑛) ∈ (0..^𝐾)) |
| 215 | | elfzonn0 13748 |
. . . . . . . . . . . . 13
⊢
(((1st ‘(1st ‘𝑇))‘𝑛) ∈ (0..^𝐾) → ((1st
‘(1st ‘𝑇))‘𝑛) ∈
ℕ0) |
| 216 | 214, 215 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑇))‘𝑛) ∈
ℕ0) |
| 217 | 216 | nn0cnd 12591 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑇))‘𝑛) ∈ ℂ) |
| 218 | 217 | subid1d 11610 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) − 0) = ((1st
‘(1st ‘𝑇))‘𝑛)) |
| 219 | 218, 214 | eqeltrd 2840 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) − 0) ∈ (0..^𝐾)) |
| 220 | 219 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑁)) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) − 0) ∈ (0..^𝐾)) |
| 221 | 2, 4, 213, 220 | ifbothda 4563 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)) ∈ (0..^𝐾)) |
| 222 | 221 | fmpttd 7134 |
. . . . . 6
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))):(1...𝑁)⟶(0..^𝐾)) |
| 223 | | ovex 7465 |
. . . . . . 7
⊢
(0..^𝐾) ∈
V |
| 224 | 223, 96 | elmap 8912 |
. . . . . 6
⊢ ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∈ ((0..^𝐾) ↑m (1...𝑁)) ↔ (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))):(1...𝑁)⟶(0..^𝐾)) |
| 225 | 222, 224 | sylibr 234 |
. . . . 5
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∈ ((0..^𝐾) ↑m (1...𝑁))) |
| 226 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ((1 + 1)...𝑁)) → 𝑛 ∈ ((1 + 1)...𝑁)) |
| 227 | | 1z 12649 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℤ |
| 228 | | peano2z 12660 |
. . . . . . . . . . . . . . . 16
⊢ (1 ∈
ℤ → (1 + 1) ∈ ℤ) |
| 229 | 227, 228 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (1 + 1)
∈ ℤ |
| 230 | 110, 229 | jctil 519 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((1 + 1) ∈ ℤ
∧ 𝑁 ∈
ℤ)) |
| 231 | | elfzelz 13565 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ((1 + 1)...𝑁) → 𝑛 ∈ ℤ) |
| 232 | 231, 227 | jctir 520 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ((1 + 1)...𝑁) → (𝑛 ∈ ℤ ∧ 1 ∈
ℤ)) |
| 233 | | fzsubel 13601 |
. . . . . . . . . . . . . 14
⊢ ((((1 +
1) ∈ ℤ ∧ 𝑁
∈ ℤ) ∧ (𝑛
∈ ℤ ∧ 1 ∈ ℤ)) → (𝑛 ∈ ((1 + 1)...𝑁) ↔ (𝑛 − 1) ∈ (((1 + 1) −
1)...(𝑁 −
1)))) |
| 234 | 230, 232,
233 | syl2an 596 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ((1 + 1)...𝑁)) → (𝑛 ∈ ((1 + 1)...𝑁) ↔ (𝑛 − 1) ∈ (((1 + 1) −
1)...(𝑁 −
1)))) |
| 235 | 226, 234 | mpbid 232 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ((1 + 1)...𝑁)) → (𝑛 − 1) ∈ (((1 + 1) −
1)...(𝑁 −
1))) |
| 236 | | ax-1cn 11214 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℂ |
| 237 | 236, 236 | pncan3oi 11525 |
. . . . . . . . . . . . 13
⊢ ((1 + 1)
− 1) = 1 |
| 238 | 237 | oveq1i 7442 |
. . . . . . . . . . . 12
⊢ (((1 + 1)
− 1)...(𝑁 − 1))
= (1...(𝑁 −
1)) |
| 239 | 235, 238 | eleqtrdi 2850 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ((1 + 1)...𝑁)) → (𝑛 − 1) ∈ (1...(𝑁 − 1))) |
| 240 | 239 | ralrimiva 3145 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑛 ∈ ((1 + 1)...𝑁)(𝑛 − 1) ∈ (1...(𝑁 − 1))) |
| 241 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → 𝑦 ∈ (1...(𝑁 − 1))) |
| 242 | 154, 227 | jctil 519 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (1 ∈ ℤ ∧
(𝑁 − 1) ∈
ℤ)) |
| 243 | | elfzelz 13565 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (1...(𝑁 − 1)) → 𝑦 ∈ ℤ) |
| 244 | 243, 227 | jctir 520 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (1...(𝑁 − 1)) → (𝑦 ∈ ℤ ∧ 1 ∈
ℤ)) |
| 245 | | fzaddel 13599 |
. . . . . . . . . . . . . . 15
⊢ (((1
∈ ℤ ∧ (𝑁
− 1) ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 1 ∈ ℤ))
→ (𝑦 ∈
(1...(𝑁 − 1)) ↔
(𝑦 + 1) ∈ ((1 +
1)...((𝑁 − 1) +
1)))) |
| 246 | 242, 244,
245 | syl2an 596 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → (𝑦 ∈ (1...(𝑁 − 1)) ↔ (𝑦 + 1) ∈ ((1 + 1)...((𝑁 − 1) + 1)))) |
| 247 | 241, 246 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → (𝑦 + 1) ∈ ((1 + 1)...((𝑁 − 1) + 1))) |
| 248 | 78 | oveq2d 7448 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((1 + 1)...((𝑁 − 1) + 1)) = ((1 +
1)...𝑁)) |
| 249 | 248 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → ((1 + 1)...((𝑁 − 1) + 1)) = ((1 +
1)...𝑁)) |
| 250 | 247, 249 | eleqtrd 2842 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → (𝑦 + 1) ∈ ((1 + 1)...𝑁)) |
| 251 | 231 | zcnd 12725 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ((1 + 1)...𝑁) → 𝑛 ∈ ℂ) |
| 252 | 243 | zcnd 12725 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (1...(𝑁 − 1)) → 𝑦 ∈ ℂ) |
| 253 | | subadd2 11513 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ ∧ 𝑦 ∈
ℂ) → ((𝑛 −
1) = 𝑦 ↔ (𝑦 + 1) = 𝑛)) |
| 254 | 236, 253 | mp3an2 1450 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑛 − 1) = 𝑦 ↔ (𝑦 + 1) = 𝑛)) |
| 255 | | eqcom 2743 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑛 − 1) ↔ (𝑛 − 1) = 𝑦) |
| 256 | | eqcom 2743 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (𝑦 + 1) ↔ (𝑦 + 1) = 𝑛) |
| 257 | 254, 255,
256 | 3bitr4g 314 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1))) |
| 258 | 251, 252,
257 | syl2anr 597 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ (1...(𝑁 − 1)) ∧ 𝑛 ∈ ((1 + 1)...𝑁)) → (𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1))) |
| 259 | 258 | ralrimiva 3145 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (1...(𝑁 − 1)) → ∀𝑛 ∈ ((1 + 1)...𝑁)(𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1))) |
| 260 | 259 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → ∀𝑛 ∈ ((1 + 1)...𝑁)(𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1))) |
| 261 | | reu6i 3733 |
. . . . . . . . . . . 12
⊢ (((𝑦 + 1) ∈ ((1 + 1)...𝑁) ∧ ∀𝑛 ∈ ((1 + 1)...𝑁)(𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1))) → ∃!𝑛 ∈ ((1 + 1)...𝑁)𝑦 = (𝑛 − 1)) |
| 262 | 250, 260,
261 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → ∃!𝑛 ∈ ((1 + 1)...𝑁)𝑦 = (𝑛 − 1)) |
| 263 | 262 | ralrimiva 3145 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑦 ∈ (1...(𝑁 − 1))∃!𝑛 ∈ ((1 + 1)...𝑁)𝑦 = (𝑛 − 1)) |
| 264 | | eqid 2736 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) = (𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) |
| 265 | 264 | f1ompt 7130 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)):((1 + 1)...𝑁)–1-1-onto→(1...(𝑁 − 1)) ↔ (∀𝑛 ∈ ((1 + 1)...𝑁)(𝑛 − 1) ∈ (1...(𝑁 − 1)) ∧ ∀𝑦 ∈ (1...(𝑁 − 1))∃!𝑛 ∈ ((1 + 1)...𝑁)𝑦 = (𝑛 − 1))) |
| 266 | 240, 263,
265 | sylanbrc 583 |
. . . . . . . . 9
⊢ (𝜑 → (𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)):((1 + 1)...𝑁)–1-1-onto→(1...(𝑁 − 1))) |
| 267 | | f1osng 6888 |
. . . . . . . . . 10
⊢ ((1
∈ V ∧ 𝑁 ∈
ℕ) → {〈1, 𝑁〉}:{1}–1-1-onto→{𝑁}) |
| 268 | 47, 27, 267 | sylancr 587 |
. . . . . . . . 9
⊢ (𝜑 → {〈1, 𝑁〉}:{1}–1-1-onto→{𝑁}) |
| 269 | 155, 157 | ltnled 11409 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑁 − 1) < 𝑁 ↔ ¬ 𝑁 ≤ (𝑁 − 1))) |
| 270 | 161, 269 | mpbid 232 |
. . . . . . . . . . 11
⊢ (𝜑 → ¬ 𝑁 ≤ (𝑁 − 1)) |
| 271 | | elfzle2 13569 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1)) |
| 272 | 270, 271 | nsyl 140 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ 𝑁 ∈ (1...(𝑁 − 1))) |
| 273 | | disjsn 4710 |
. . . . . . . . . 10
⊢
(((1...(𝑁 −
1)) ∩ {𝑁}) = ∅
↔ ¬ 𝑁 ∈
(1...(𝑁 −
1))) |
| 274 | 272, 273 | sylibr 234 |
. . . . . . . . 9
⊢ (𝜑 → ((1...(𝑁 − 1)) ∩ {𝑁}) = ∅) |
| 275 | | 1re 11262 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℝ |
| 276 | 275 | ltp1i 12173 |
. . . . . . . . . . . . 13
⊢ 1 < (1
+ 1) |
| 277 | 229 | zrei 12621 |
. . . . . . . . . . . . . 14
⊢ (1 + 1)
∈ ℝ |
| 278 | 275, 277 | ltnlei 11383 |
. . . . . . . . . . . . 13
⊢ (1 <
(1 + 1) ↔ ¬ (1 + 1) ≤ 1) |
| 279 | 276, 278 | mpbi 230 |
. . . . . . . . . . . 12
⊢ ¬ (1
+ 1) ≤ 1 |
| 280 | | elfzle1 13568 |
. . . . . . . . . . . 12
⊢ (1 ∈
((1 + 1)...𝑁) → (1 +
1) ≤ 1) |
| 281 | 279, 280 | mto 197 |
. . . . . . . . . . 11
⊢ ¬ 1
∈ ((1 + 1)...𝑁) |
| 282 | | disjsn 4710 |
. . . . . . . . . . 11
⊢ ((((1 +
1)...𝑁) ∩ {1}) =
∅ ↔ ¬ 1 ∈ ((1 + 1)...𝑁)) |
| 283 | 281, 282 | mpbir 231 |
. . . . . . . . . 10
⊢ (((1 +
1)...𝑁) ∩ {1}) =
∅ |
| 284 | | f1oun 6866 |
. . . . . . . . . 10
⊢ ((((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)):((1 + 1)...𝑁)–1-1-onto→(1...(𝑁 − 1)) ∧ {〈1, 𝑁〉}:{1}–1-1-onto→{𝑁}) ∧ ((((1 + 1)...𝑁) ∩ {1}) = ∅ ∧ ((1...(𝑁 − 1)) ∩ {𝑁}) = ∅)) → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {〈1, 𝑁〉}):(((1 + 1)...𝑁) ∪ {1})–1-1-onto→((1...(𝑁 − 1)) ∪ {𝑁})) |
| 285 | 283, 284 | mpanr1 703 |
. . . . . . . . 9
⊢ ((((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)):((1 + 1)...𝑁)–1-1-onto→(1...(𝑁 − 1)) ∧ {〈1, 𝑁〉}:{1}–1-1-onto→{𝑁}) ∧ ((1...(𝑁 − 1)) ∩ {𝑁}) = ∅) → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {〈1, 𝑁〉}):(((1 + 1)...𝑁) ∪ {1})–1-1-onto→((1...(𝑁 − 1)) ∪ {𝑁})) |
| 286 | 266, 268,
274, 285 | syl21anc 837 |
. . . . . . . 8
⊢ (𝜑 → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {〈1, 𝑁〉}):(((1 + 1)...𝑁) ∪ {1})–1-1-onto→((1...(𝑁 − 1)) ∪ {𝑁})) |
| 287 | | eleq1 2828 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 1 → (𝑛 ∈ ((1 + 1)...𝑁) ↔ 1 ∈ ((1 + 1)...𝑁))) |
| 288 | 281, 287 | mtbiri 327 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 1 → ¬ 𝑛 ∈ ((1 + 1)...𝑁)) |
| 289 | 288 | necon2ai 2969 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ((1 + 1)...𝑁) → 𝑛 ≠ 1) |
| 290 | | ifnefalse 4536 |
. . . . . . . . . . . . 13
⊢ (𝑛 ≠ 1 → if(𝑛 = 1, 𝑁, (𝑛 − 1)) = (𝑛 − 1)) |
| 291 | 289, 290 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ((1 + 1)...𝑁) → if(𝑛 = 1, 𝑁, (𝑛 − 1)) = (𝑛 − 1)) |
| 292 | 291 | mpteq2ia 5244 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ((1 + 1)...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) = (𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) |
| 293 | 292 | uneq1i 4163 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ((1 + 1)...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ∪ {〈1, 𝑁〉}) = ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {〈1, 𝑁〉}) |
| 294 | 47 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈
V) |
| 295 | 27, 72 | eleqtrdi 2850 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘1)) |
| 296 | | fzpred 13613 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈
(ℤ≥‘1) → (1...𝑁) = ({1} ∪ ((1 + 1)...𝑁))) |
| 297 | 295, 296 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1...𝑁) = ({1} ∪ ((1 + 1)...𝑁))) |
| 298 | | uncom 4157 |
. . . . . . . . . . . 12
⊢ ({1}
∪ ((1 + 1)...𝑁)) = (((1
+ 1)...𝑁) ∪
{1}) |
| 299 | 297, 298 | eqtr2di 2793 |
. . . . . . . . . . 11
⊢ (𝜑 → (((1 + 1)...𝑁) ∪ {1}) = (1...𝑁)) |
| 300 | | iftrue 4530 |
. . . . . . . . . . . 12
⊢ (𝑛 = 1 → if(𝑛 = 1, 𝑁, (𝑛 − 1)) = 𝑁) |
| 301 | 300 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 = 1) → if(𝑛 = 1, 𝑁, (𝑛 − 1)) = 𝑁) |
| 302 | 294, 27, 299, 301 | fmptapd 7192 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ∪ {〈1, 𝑁〉}) = (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) |
| 303 | 293, 302 | eqtr3id 2790 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {〈1, 𝑁〉}) = (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) |
| 304 | 78, 295 | eqeltrd 2840 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑁 − 1) + 1) ∈
(ℤ≥‘1)) |
| 305 | | uzid 12894 |
. . . . . . . . . . . . 13
⊢ ((𝑁 − 1) ∈ ℤ
→ (𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1))) |
| 306 | | peano2uz 12944 |
. . . . . . . . . . . . 13
⊢ ((𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) |
| 307 | 154, 305,
306 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) |
| 308 | 78, 307 | eqeltrrd 2841 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) |
| 309 | | fzsplit2 13590 |
. . . . . . . . . . 11
⊢ ((((𝑁 − 1) + 1) ∈
(ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) → (1...𝑁) = ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) |
| 310 | 304, 308,
309 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) |
| 311 | 78 | oveq1d 7447 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝑁 − 1) + 1)...𝑁) = (𝑁...𝑁)) |
| 312 | | fzsn 13607 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁}) |
| 313 | 110, 312 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑁...𝑁) = {𝑁}) |
| 314 | 311, 313 | eqtrd 2776 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝑁 − 1) + 1)...𝑁) = {𝑁}) |
| 315 | 314 | uneq2d 4167 |
. . . . . . . . . 10
⊢ (𝜑 → ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)) = ((1...(𝑁 − 1)) ∪ {𝑁})) |
| 316 | 310, 315 | eqtr2d 2777 |
. . . . . . . . 9
⊢ (𝜑 → ((1...(𝑁 − 1)) ∪ {𝑁}) = (1...𝑁)) |
| 317 | 303, 299,
316 | f1oeq123d 6841 |
. . . . . . . 8
⊢ (𝜑 → (((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {〈1, 𝑁〉}):(((1 + 1)...𝑁) ∪ {1})–1-1-onto→((1...(𝑁 − 1)) ∪ {𝑁}) ↔ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))):(1...𝑁)–1-1-onto→(1...𝑁))) |
| 318 | 286, 317 | mpbid 232 |
. . . . . . 7
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))):(1...𝑁)–1-1-onto→(1...𝑁)) |
| 319 | | f1oco 6870 |
. . . . . . 7
⊢
(((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) ∧ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))):(1...𝑁)–1-1-onto→(1...𝑁)) → ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–1-1-onto→(1...𝑁)) |
| 320 | 24, 318, 319 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–1-1-onto→(1...𝑁)) |
| 321 | 96 | mptex 7244 |
. . . . . . . 8
⊢ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ∈ V |
| 322 | 21, 321 | coex 7953 |
. . . . . . 7
⊢
((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) ∈ V |
| 323 | | f1oeq1 6835 |
. . . . . . 7
⊢ (𝑓 = ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–1-1-onto→(1...𝑁))) |
| 324 | 322, 323 | elab 3678 |
. . . . . 6
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–1-1-onto→(1...𝑁)) |
| 325 | 320, 324 | sylibr 234 |
. . . . 5
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
| 326 | 225, 325 | opelxpd 5723 |
. . . 4
⊢ (𝜑 → 〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
| 327 | 27 | nnnn0d 12589 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 328 | | 0elfz 13665 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ 0 ∈ (0...𝑁)) |
| 329 | 327, 328 | syl 17 |
. . . 4
⊢ (𝜑 → 0 ∈ (0...𝑁)) |
| 330 | 326, 329 | opelxpd 5723 |
. . 3
⊢ (𝜑 → 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 ∈
((((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
| 331 | | poimirlem22.1 |
. . . . 5
⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) |
| 332 | 27, 10, 331, 8, 41, 164 | poimirlem19 37647 |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))) |
| 333 | | elfzle1 13568 |
. . . . . . . . 9
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 0 ≤ 𝑦) |
| 334 | | 0re 11264 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ |
| 335 | | lenlt 11340 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ ∧ 𝑦
∈ ℝ) → (0 ≤ 𝑦 ↔ ¬ 𝑦 < 0)) |
| 336 | 334, 60, 335 | sylancr 587 |
. . . . . . . . 9
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (0 ≤ 𝑦 ↔ ¬ 𝑦 < 0)) |
| 337 | 333, 336 | mpbid 232 |
. . . . . . . 8
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ¬ 𝑦 < 0) |
| 338 | 337 | iffalsed 4535 |
. . . . . . 7
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → if(𝑦 < 0, 𝑦, (𝑦 + 1)) = (𝑦 + 1)) |
| 339 | 338 | csbeq1d 3902 |
. . . . . 6
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ⦋if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗⦌((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋(𝑦 + 1) / 𝑗⦌((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 340 | | ovex 7465 |
. . . . . . 7
⊢ (𝑦 + 1) ∈ V |
| 341 | | oveq2 7440 |
. . . . . . . . . . 11
⊢ (𝑗 = (𝑦 + 1) → (1...𝑗) = (1...(𝑦 + 1))) |
| 342 | 341 | imaeq2d 6077 |
. . . . . . . . . 10
⊢ (𝑗 = (𝑦 + 1) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) = (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1)))) |
| 343 | 342 | xpeq1d 5713 |
. . . . . . . . 9
⊢ (𝑗 = (𝑦 + 1) → ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) =
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ×
{1})) |
| 344 | | oveq1 7439 |
. . . . . . . . . . . 12
⊢ (𝑗 = (𝑦 + 1) → (𝑗 + 1) = ((𝑦 + 1) + 1)) |
| 345 | 344 | oveq1d 7447 |
. . . . . . . . . . 11
⊢ (𝑗 = (𝑦 + 1) → ((𝑗 + 1)...𝑁) = (((𝑦 + 1) + 1)...𝑁)) |
| 346 | 345 | imaeq2d 6077 |
. . . . . . . . . 10
⊢ (𝑗 = (𝑦 + 1) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) = (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁))) |
| 347 | 346 | xpeq1d 5713 |
. . . . . . . . 9
⊢ (𝑗 = (𝑦 + 1) → ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}) = ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) |
| 348 | 343, 347 | uneq12d 4168 |
. . . . . . . 8
⊢ (𝑗 = (𝑦 + 1) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})) = (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))) |
| 349 | 348 | oveq2d 7448 |
. . . . . . 7
⊢ (𝑗 = (𝑦 + 1) → ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))) |
| 350 | 340, 349 | csbie 3933 |
. . . . . 6
⊢
⦋(𝑦 +
1) / 𝑗⦌((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))) |
| 351 | 339, 350 | eqtrdi 2792 |
. . . . 5
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ⦋if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗⦌((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))) |
| 352 | 351 | mpteq2ia 5244 |
. . . 4
⊢ (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗⦌((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))) |
| 353 | 332, 352 | eqtr4di 2794 |
. . 3
⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗⦌((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
| 354 | | opex 5468 |
. . . . . . . . . 10
⊢
〈(𝑛 ∈
(1...𝑁) ↦
(((1st ‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉 ∈
V |
| 355 | 354, 50 | op2ndd 8026 |
. . . . . . . . 9
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
(2nd ‘𝑡) =
0) |
| 356 | 355 | breq2d 5154 |
. . . . . . . 8
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 → (𝑦 < (2nd
‘𝑡) ↔ 𝑦 < 0)) |
| 357 | 356 | ifbid 4548 |
. . . . . . 7
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 → if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < 0, 𝑦, (𝑦 + 1))) |
| 358 | 354, 50 | op1std 8025 |
. . . . . . . . 9
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
(1st ‘𝑡) =
〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉) |
| 359 | 96 | mptex 7244 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∈
V |
| 360 | 359, 322 | op1std 8025 |
. . . . . . . . 9
⊢
((1st ‘𝑡) = 〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉 → (1st
‘(1st ‘𝑡)) = (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))) |
| 361 | 358, 360 | syl 17 |
. . . . . . . 8
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
(1st ‘(1st ‘𝑡)) = (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))) |
| 362 | 359, 322 | op2ndd 8026 |
. . . . . . . . . . . 12
⊢
((1st ‘𝑡) = 〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉 → (2nd
‘(1st ‘𝑡)) = ((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))) |
| 363 | 358, 362 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
(2nd ‘(1st ‘𝑡)) = ((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))) |
| 364 | 363 | imaeq1d 6076 |
. . . . . . . . . 10
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) = (((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗))) |
| 365 | 364 | xpeq1d 5713 |
. . . . . . . . 9
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
(((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) = ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) ×
{1})) |
| 366 | 363 | imaeq1d 6076 |
. . . . . . . . . 10
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) = (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁))) |
| 367 | 366 | xpeq1d 5713 |
. . . . . . . . 9
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
(((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})) |
| 368 | 365, 367 | uneq12d 4168 |
. . . . . . . 8
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))) |
| 369 | 361, 368 | oveq12d 7450 |
. . . . . . 7
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
((1st ‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 370 | 357, 369 | csbeq12dv 3907 |
. . . . . 6
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
⦋if(𝑦 <
(2nd ‘𝑡),
𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗⦌((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 371 | 370 | mpteq2dv 5243 |
. . . . 5
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗⦌((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
| 372 | 371 | eqeq2d 2747 |
. . . 4
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗⦌((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})))))) |
| 373 | 372, 10 | elrab2 3694 |
. . 3
⊢
(〈〈(𝑛
∈ (1...𝑁) ↦
(((1st ‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 ∈ 𝑆 ↔ (〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 ∈
((((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗⦌((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∘f +
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})))))) |
| 374 | 330, 353,
373 | sylanbrc 583 |
. 2
⊢ (𝜑 → 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 ∈ 𝑆) |
| 375 | 354, 50 | op2ndd 8026 |
. . . . . 6
⊢ (𝑇 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
(2nd ‘𝑇) =
0) |
| 376 | 375 | eqcoms 2744 |
. . . . 5
⊢
(〈〈(𝑛
∈ (1...𝑁) ↦
(((1st ‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 = 𝑇 → (2nd
‘𝑇) =
0) |
| 377 | 27 | nnne0d 12317 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ≠ 0) |
| 378 | 377 | necomd 2995 |
. . . . . 6
⊢ (𝜑 → 0 ≠ 𝑁) |
| 379 | | neeq1 3002 |
. . . . . 6
⊢
((2nd ‘𝑇) = 0 → ((2nd ‘𝑇) ≠ 𝑁 ↔ 0 ≠ 𝑁)) |
| 380 | 378, 379 | syl5ibrcom 247 |
. . . . 5
⊢ (𝜑 → ((2nd
‘𝑇) = 0 →
(2nd ‘𝑇)
≠ 𝑁)) |
| 381 | 376, 380 | syl5 34 |
. . . 4
⊢ (𝜑 → (〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 = 𝑇 → (2nd
‘𝑇) ≠ 𝑁)) |
| 382 | 381 | necon2d 2962 |
. . 3
⊢ (𝜑 → ((2nd
‘𝑇) = 𝑁 → 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 ≠ 𝑇)) |
| 383 | 164, 382 | mpd 15 |
. 2
⊢ (𝜑 → 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 ≠ 𝑇) |
| 384 | | neeq1 3002 |
. . 3
⊢ (𝑧 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 → (𝑧 ≠ 𝑇 ↔ 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 ≠ 𝑇)) |
| 385 | 384 | rspcev 3621 |
. 2
⊢
((〈〈(𝑛
∈ (1...𝑁) ↦
(((1st ‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 ∈ 𝑆 ∧ 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 ≠ 𝑇) → ∃𝑧 ∈ 𝑆 𝑧 ≠ 𝑇) |
| 386 | 374, 383,
385 | syl2anc 584 |
1
⊢ (𝜑 → ∃𝑧 ∈ 𝑆 𝑧 ≠ 𝑇) |