Proof of Theorem poimirlem20
Step | Hyp | Ref
| Expression |
1 | | oveq2 7024 |
. . . . . . . . 9
⊢ (1 =
if(𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁), 1, 0) → (((1st
‘(1st ‘𝑇))‘𝑛) − 1) = (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) |
2 | 1 | eleq1d 2867 |
. . . . . . . 8
⊢ (1 =
if(𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁), 1, 0) → ((((1st
‘(1st ‘𝑇))‘𝑛) − 1) ∈ (0..^𝐾) ↔ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)) ∈ (0..^𝐾))) |
3 | | oveq2 7024 |
. . . . . . . . 9
⊢ (0 =
if(𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁), 1, 0) → (((1st
‘(1st ‘𝑇))‘𝑛) − 0) = (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) |
4 | 3 | eleq1d 2867 |
. . . . . . . 8
⊢ (0 =
if(𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁), 1, 0) → ((((1st
‘(1st ‘𝑇))‘𝑛) − 0) ∈ (0..^𝐾) ↔ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)) ∈ (0..^𝐾))) |
5 | | fveq2 6538 |
. . . . . . . . . . . 12
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁) → ((1st
‘(1st ‘𝑇))‘𝑛) = ((1st ‘(1st
‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
6 | 5 | oveq1d 7031 |
. . . . . . . . . . 11
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁) → (((1st
‘(1st ‘𝑇))‘𝑛) − 1) = (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1)) |
7 | 6 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) − 1) = (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1)) |
8 | | poimirlem22.2 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑇 ∈ 𝑆) |
9 | | elrabi 3613 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑇 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
10 | | poimirlem22.s |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} |
11 | 9, 10 | eleq2s 2901 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑇 ∈ 𝑆 → 𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
12 | 8, 11 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
13 | | xp1st 7577 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑇 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st ‘𝑇) ∈ (((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
14 | 12, 13 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (1st
‘𝑇) ∈
(((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
15 | | xp1st 7577 |
. . . . . . . . . . . . . . . . . 18
⊢
((1st ‘𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st
‘(1st ‘𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁))) |
16 | 14, 15 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (1st
‘(1st ‘𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁))) |
17 | | elmapi 8278 |
. . . . . . . . . . . . . . . . 17
⊢
((1st ‘(1st ‘𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)) → (1st
‘(1st ‘𝑇)):(1...𝑁)⟶(0..^𝐾)) |
18 | 16, 17 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (1st
‘(1st ‘𝑇)):(1...𝑁)⟶(0..^𝐾)) |
19 | | xp2nd 7578 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((1st ‘𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd
‘(1st ‘𝑇)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
20 | 14, 19 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (2nd
‘(1st ‘𝑇)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
21 | | fvex 6551 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(2nd ‘(1st ‘𝑇)) ∈ V |
22 | | f1oeq1 6472 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = (2nd
‘(1st ‘𝑇)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd
‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))) |
23 | 21, 22 | elab 3605 |
. . . . . . . . . . . . . . . . . . 19
⊢
((2nd ‘(1st ‘𝑇)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd
‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)) |
24 | 20, 23 | sylib 219 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (2nd
‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)) |
25 | | f1of 6483 |
. . . . . . . . . . . . . . . . . 18
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd
‘(1st ‘𝑇)):(1...𝑁)⟶(1...𝑁)) |
26 | 24, 25 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (2nd
‘(1st ‘𝑇)):(1...𝑁)⟶(1...𝑁)) |
27 | | poimir.0 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑁 ∈ ℕ) |
28 | | elfz1end 12787 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (1...𝑁)) |
29 | 27, 28 | sylib 219 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑁 ∈ (1...𝑁)) |
30 | 26, 29 | ffvelrnd 6717 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ (1...𝑁)) |
31 | 18, 30 | ffvelrnd 6717 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ (0..^𝐾)) |
32 | | elfzonn0 12932 |
. . . . . . . . . . . . . . 15
⊢
(((1st ‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ (0..^𝐾) → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈
ℕ0) |
33 | 31, 32 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈
ℕ0) |
34 | | fvex 6551 |
. . . . . . . . . . . . . . . . 17
⊢
((2nd ‘(1st ‘𝑇))‘𝑁) ∈ V |
35 | | eleq1 2870 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁) → (𝑛 ∈ (1...𝑁) ↔ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ (1...𝑁))) |
36 | 35 | anbi2d 628 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁) → ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) ↔ (𝜑 ∧ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ (1...𝑁)))) |
37 | | fveq2 6538 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁) → (𝑝‘𝑛) = (𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
38 | 37 | neeq1d 3043 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁) → ((𝑝‘𝑛) ≠ 0 ↔ (𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0)) |
39 | 38 | rexbidv 3260 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁) → (∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 0 ↔ ∃𝑝 ∈ ran 𝐹(𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0)) |
40 | 36, 39 | imbi12d 346 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁) → (((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 0) ↔ ((𝜑 ∧ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0))) |
41 | | poimirlem22.3 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 0) |
42 | 34, 40, 41 | vtocl 3502 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0) |
43 | 30, 42 | mpdan 683 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∃𝑝 ∈ ran 𝐹(𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0) |
44 | | fveq1 6537 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 = ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))) → (𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) = (((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
45 | 18 | ffnd 6383 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (1st
‘(1st ‘𝑇)) Fn (1...𝑁)) |
46 | 45 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1st
‘(1st ‘𝑇)) Fn (1...𝑁)) |
47 | | 1ex 10483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 1 ∈
V |
48 | | fnconstg 6435 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (1 ∈
V → (((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...𝑦))) |
49 | 47, 48 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) |
50 | | c0ex 10481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 0 ∈
V |
51 | | fnconstg 6435 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (0 ∈
V → (((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) |
52 | 50, 51 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) |
53 | 49, 52 | pm3.2i 471 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∧ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) |
54 | | dff1o3 6489 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((2nd
‘(1st ‘𝑇)):(1...𝑁)–onto→(1...𝑁) ∧ Fun ◡(2nd ‘(1st
‘𝑇)))) |
55 | 54 | simprbi 497 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → Fun ◡(2nd ‘(1st
‘𝑇))) |
56 | 24, 55 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → Fun ◡(2nd ‘(1st
‘𝑇))) |
57 | | imain 6309 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (Fun
◡(2nd ‘(1st
‘𝑇)) →
((2nd ‘(1st ‘𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)))) |
58 | 56, 57 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)))) |
59 | | elfznn0 12850 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℕ0) |
60 | 59 | nn0red 11804 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℝ) |
61 | 60 | ltp1d 11418 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 < (𝑦 + 1)) |
62 | | fzdisj 12784 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 < (𝑦 + 1) → ((1...𝑦) ∩ ((𝑦 + 1)...𝑁)) = ∅) |
63 | 61, 62 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((1...𝑦) ∩ ((𝑦 + 1)...𝑁)) = ∅) |
64 | 63 | imaeq2d 5806 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = ((2nd
‘(1st ‘𝑇)) “ ∅)) |
65 | | ima0 5821 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((2nd ‘(1st ‘𝑇)) “ ∅) =
∅ |
66 | 64, 65 | syl6eq 2847 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = ∅) |
67 | 58, 66 | sylan9req 2852 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) = ∅) |
68 | | fnun 6333 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∧ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) ∧ (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) = ∅) → ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)))) |
69 | 53, 67, 68 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)))) |
70 | | imaundi 5884 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((2nd ‘(1st ‘𝑇)) “ ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) |
71 | | nn0p1nn 11784 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑦 ∈ ℕ0
→ (𝑦 + 1) ∈
ℕ) |
72 | | nnuz 12130 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ℕ =
(ℤ≥‘1) |
73 | 71, 72 | syl6eleq 2893 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 ∈ ℕ0
→ (𝑦 + 1) ∈
(ℤ≥‘1)) |
74 | 59, 73 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈
(ℤ≥‘1)) |
75 | 74 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑦 + 1) ∈
(ℤ≥‘1)) |
76 | 27 | nncnd 11502 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → 𝑁 ∈ ℂ) |
77 | | npcan1 10913 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁) |
78 | 76, 77 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
79 | 78 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁) |
80 | | elfzuz3 12755 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈
(ℤ≥‘𝑦)) |
81 | | peano2uz 12150 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑁 − 1) ∈
(ℤ≥‘𝑦) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘𝑦)) |
82 | 80, 81 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘𝑦)) |
83 | 82 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘𝑦)) |
84 | 79, 83 | eqeltrrd 2884 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ≥‘𝑦)) |
85 | | fzsplit2 12782 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑦 + 1) ∈
(ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘𝑦)) → (1...𝑁) = ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))) |
86 | 75, 84, 85 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑁) = ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))) |
87 | 86 | imaeq2d 5806 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) = ((2nd ‘(1st
‘𝑇)) “
((1...𝑦) ∪ ((𝑦 + 1)...𝑁)))) |
88 | | f1ofo 6490 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd
‘(1st ‘𝑇)):(1...𝑁)–onto→(1...𝑁)) |
89 | | foima 6463 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–onto→(1...𝑁) → ((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) = (1...𝑁)) |
90 | 24, 88, 89 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) = (1...𝑁)) |
91 | 90 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) = (1...𝑁)) |
92 | 87, 91 | eqtr3d 2833 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))) = (1...𝑁)) |
93 | 70, 92 | syl5eqr 2845 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) = (1...𝑁)) |
94 | 93 | fneq2d 6317 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) ↔ ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (1...𝑁))) |
95 | 69, 94 | mpbid 233 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (1...𝑁)) |
96 | | ovex 7048 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(1...𝑁) ∈
V |
97 | 96 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑁) ∈ V) |
98 | | inidm 4115 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((1...𝑁) ∩
(1...𝑁)) = (1...𝑁) |
99 | | eqidd 2796 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = ((1st ‘(1st
‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
100 | | f1ofn 6484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd
‘(1st ‘𝑇)) Fn (1...𝑁)) |
101 | 24, 100 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → (2nd
‘(1st ‘𝑇)) Fn (1...𝑁)) |
102 | 101 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (2nd
‘(1st ‘𝑇)) Fn (1...𝑁)) |
103 | | fzss1 12796 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑦 + 1) ∈
(ℤ≥‘1) → ((𝑦 + 1)...𝑁) ⊆ (1...𝑁)) |
104 | 74, 103 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1)...𝑁) ⊆ (1...𝑁)) |
105 | 104 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑦 + 1)...𝑁) ⊆ (1...𝑁)) |
106 | | eluzp1p1 12119 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑁 − 1) ∈
(ℤ≥‘𝑦) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑦 + 1))) |
107 | | uzss 12114 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑦 + 1)) →
(ℤ≥‘((𝑁 − 1) + 1)) ⊆
(ℤ≥‘(𝑦 + 1))) |
108 | 80, 106, 107 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 ∈ (0...(𝑁 − 1)) →
(ℤ≥‘((𝑁 − 1) + 1)) ⊆
(ℤ≥‘(𝑦 + 1))) |
109 | 108 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) →
(ℤ≥‘((𝑁 − 1) + 1)) ⊆
(ℤ≥‘(𝑦 + 1))) |
110 | 27 | nnzd 11935 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → 𝑁 ∈ ℤ) |
111 | | uzid 12108 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
(ℤ≥‘𝑁)) |
112 | 110, 111 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑁)) |
113 | 78 | fveq2d 6542 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 →
(ℤ≥‘((𝑁 − 1) + 1)) =
(ℤ≥‘𝑁)) |
114 | 112, 113 | eleqtrrd 2886 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘((𝑁 − 1) + 1))) |
115 | 114 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈
(ℤ≥‘((𝑁 − 1) + 1))) |
116 | 109, 115 | sseldd 3890 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ≥‘(𝑦 + 1))) |
117 | | eluzfz2 12765 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑁 ∈
(ℤ≥‘(𝑦 + 1)) → 𝑁 ∈ ((𝑦 + 1)...𝑁)) |
118 | 116, 117 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ((𝑦 + 1)...𝑁)) |
119 | | fnfvima 6860 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((2nd ‘(1st ‘𝑇)) Fn (1...𝑁) ∧ ((𝑦 + 1)...𝑁) ⊆ (1...𝑁) ∧ 𝑁 ∈ ((𝑦 + 1)...𝑁)) → ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) |
120 | 102, 105,
118, 119 | syl3anc 1364 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) |
121 | | fvun2 6622 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∧ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) ∧ ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) = ∅ ∧ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)))) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
122 | 49, 52, 121 | mp3an12 1443 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) = ∅ ∧ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
123 | 67, 120, 122 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
124 | 50 | fvconst2 6833 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((2nd ‘(1st ‘𝑇))‘𝑁) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) → ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘𝑁)) = 0) |
125 | 120, 124 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘𝑁)) = 0) |
126 | 123, 125 | eqtrd 2831 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = 0) |
127 | 126 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ (1...𝑁)) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = 0) |
128 | 46, 95, 97, 97, 98, 99, 127 | ofval 7276 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ (1...𝑁)) → (((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) + 0)) |
129 | 30, 128 | mpidan 685 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) + 0)) |
130 | 33 | nn0cnd 11805 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ ℂ) |
131 | 130 | addid1d 10687 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) + 0) = ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
132 | 131 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) + 0) = ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
133 | 129, 132 | eqtrd 2831 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = ((1st ‘(1st
‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
134 | 44, 133 | sylan9eqr 2853 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑝 = ((1st ‘(1st
‘𝑇))
∘𝑓 + ((((2nd ‘(1st
‘𝑇)) “
(1...𝑦)) × {1}) ∪
(((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) → (𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) = ((1st ‘(1st
‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
135 | 134 | adantllr 715 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑝 ∈ ran 𝐹) ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑝 = ((1st ‘(1st
‘𝑇))
∘𝑓 + ((((2nd ‘(1st
‘𝑇)) “
(1...𝑦)) × {1}) ∪
(((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) → (𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) = ((1st ‘(1st
‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
136 | | fveq2 6538 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑡 = 𝑇 → (2nd ‘𝑡) = (2nd ‘𝑇)) |
137 | 136 | breq2d 4974 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑡 = 𝑇 → (𝑦 < (2nd ‘𝑡) ↔ 𝑦 < (2nd ‘𝑇))) |
138 | 137 | ifbid 4403 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑡 = 𝑇 → if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd ‘𝑇), 𝑦, (𝑦 + 1))) |
139 | 138 | csbeq1d 3815 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑡 = 𝑇 → ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
140 | | 2fveq3 6543 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑡 = 𝑇 → (1st
‘(1st ‘𝑡)) = (1st ‘(1st
‘𝑇))) |
141 | | 2fveq3 6543 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑡 = 𝑇 → (2nd
‘(1st ‘𝑡)) = (2nd ‘(1st
‘𝑇))) |
142 | 141 | imaeq1d 5805 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑡 = 𝑇 → ((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) = ((2nd ‘(1st
‘𝑇)) “
(1...𝑗))) |
143 | 142 | xpeq1d 5472 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑡 = 𝑇 → (((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1})) |
144 | 141 | imaeq1d 5805 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑡 = 𝑇 → ((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st
‘𝑇)) “ ((𝑗 + 1)...𝑁))) |
145 | 144 | xpeq1d 5472 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑡 = 𝑇 → (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) |
146 | 143, 145 | uneq12d 4061 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑡 = 𝑇 → ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) |
147 | 140, 146 | oveq12d 7034 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑡 = 𝑇 → ((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
148 | 147 | csbeq2dv 3818 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑡 = 𝑇 → ⦋if(𝑦 < (2nd ‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
149 | 139, 148 | eqtrd 2831 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑡 = 𝑇 → ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
150 | 149 | mpteq2dv 5056 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑡 = 𝑇 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
151 | 150 | eqeq2d 2805 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑡 = 𝑇 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))) |
152 | 151, 10 | elrab2 3621 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑇 ∈ 𝑆 ↔ (𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))) |
153 | 152 | simprbi 497 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑇 ∈ 𝑆 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
154 | 8, 153 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
155 | 60 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ∈ ℝ) |
156 | | peano2zm 11874 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈
ℤ) |
157 | 110, 156 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → (𝑁 − 1) ∈ ℤ) |
158 | 157 | zred 11936 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → (𝑁 − 1) ∈ ℝ) |
159 | 158 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) ∈ ℝ) |
160 | 27 | nnred 11501 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → 𝑁 ∈ ℝ) |
161 | 160 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ℝ) |
162 | | elfzle2 12761 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ≤ (𝑁 − 1)) |
163 | 162 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ≤ (𝑁 − 1)) |
164 | 160 | ltm1d 11420 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → (𝑁 − 1) < 𝑁) |
165 | 164 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) < 𝑁) |
166 | 155, 159,
161, 163, 165 | lelttrd 10645 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 < 𝑁) |
167 | | poimirlem21.4 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → (2nd
‘𝑇) = 𝑁) |
168 | 167 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (2nd
‘𝑇) = 𝑁) |
169 | 166, 168 | breqtrrd 4990 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 < (2nd ‘𝑇)) |
170 | 169 | iftrued 4389 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd ‘𝑇), 𝑦, (𝑦 + 1)) = 𝑦) |
171 | 170 | csbeq1d 3815 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋𝑦 / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
172 | | vex 3440 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 𝑦 ∈ V |
173 | | oveq2 7024 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑗 = 𝑦 → (1...𝑗) = (1...𝑦)) |
174 | 173 | imaeq2d 5806 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 = 𝑦 → ((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) = ((2nd ‘(1st
‘𝑇)) “
(1...𝑦))) |
175 | 174 | xpeq1d 5472 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 = 𝑦 → (((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1})) |
176 | | oveq1 7023 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑗 = 𝑦 → (𝑗 + 1) = (𝑦 + 1)) |
177 | 176 | oveq1d 7031 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑗 = 𝑦 → ((𝑗 + 1)...𝑁) = ((𝑦 + 1)...𝑁)) |
178 | 177 | imaeq2d 5806 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 = 𝑦 → ((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st
‘𝑇)) “ ((𝑦 + 1)...𝑁))) |
179 | 178 | xpeq1d 5472 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 = 𝑦 → (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) |
180 | 175, 179 | uneq12d 4061 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 = 𝑦 → ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))) |
181 | 180 | oveq2d 7032 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 = 𝑦 → ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) |
182 | 172, 181 | csbie 3843 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
⦋𝑦 /
𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))) |
183 | 171, 182 | syl6eq 2847 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) |
184 | 183 | mpteq2dva 5055 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))))) |
185 | 154, 184 | eqtrd 2831 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))))) |
186 | 185 | rneqd 5690 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ran 𝐹 = ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))))) |
187 | 186 | eleq2d 2868 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑝 ∈ ran 𝐹 ↔ 𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))))) |
188 | | eqid 2795 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) |
189 | | ovex 7048 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((1st ‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))) ∈ V |
190 | 188, 189 | elrnmpti 5714 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) ↔ ∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = ((1st ‘(1st
‘𝑇))
∘𝑓 + ((((2nd ‘(1st
‘𝑇)) “
(1...𝑦)) × {1}) ∪
(((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) |
191 | 187, 190 | syl6bb 288 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑝 ∈ ran 𝐹 ↔ ∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = ((1st ‘(1st
‘𝑇))
∘𝑓 + ((((2nd ‘(1st
‘𝑇)) “
(1...𝑦)) × {1}) ∪
(((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))))) |
192 | 191 | biimpa 477 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑝 ∈ ran 𝐹) → ∃𝑦 ∈ (0...(𝑁 − 1))𝑝 = ((1st ‘(1st
‘𝑇))
∘𝑓 + ((((2nd ‘(1st
‘𝑇)) “
(1...𝑦)) × {1}) ∪
(((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) |
193 | 135, 192 | r19.29a 3252 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑝 ∈ ran 𝐹) → (𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) = ((1st ‘(1st
‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
194 | 193 | neeq1d 3043 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 ∈ ran 𝐹) → ((𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0 ↔ ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0)) |
195 | 194 | biimpd 230 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑝 ∈ ran 𝐹) → ((𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0 → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0)) |
196 | 195 | rexlimdva 3247 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (∃𝑝 ∈ ran 𝐹(𝑝‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0 → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0)) |
197 | 43, 196 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0) |
198 | | elnnne0 11759 |
. . . . . . . . . . . . . 14
⊢
(((1st ‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ ℕ ↔ (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ ℕ0 ∧
((1st ‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ≠ 0)) |
199 | 33, 197, 198 | sylanbrc 583 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ ℕ) |
200 | | nnm1nn0 11786 |
. . . . . . . . . . . . 13
⊢
(((1st ‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ ℕ → (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) ∈
ℕ0) |
201 | 199, 200 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) ∈
ℕ0) |
202 | | elfzo0 12928 |
. . . . . . . . . . . . . 14
⊢
(((1st ‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ (0..^𝐾) ↔ (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ ℕ0 ∧ 𝐾 ∈ ℕ ∧
((1st ‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) < 𝐾)) |
203 | 31, 202 | sylib 219 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ ℕ0 ∧ 𝐾 ∈ ℕ ∧
((1st ‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) < 𝐾)) |
204 | 203 | simp2d 1136 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ∈ ℕ) |
205 | 201 | nn0red 11804 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) ∈
ℝ) |
206 | 33 | nn0red 11804 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ ℝ) |
207 | 204 | nnred 11501 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾 ∈ ℝ) |
208 | 206 | ltm1d 11420 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) < ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
209 | | elfzolt2 12897 |
. . . . . . . . . . . . . 14
⊢
(((1st ‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) ∈ (0..^𝐾) → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) < 𝐾) |
210 | 31, 209 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) < 𝐾) |
211 | 205, 206,
207, 208, 210 | lttrd 10648 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) < 𝐾) |
212 | | elfzo0 12928 |
. . . . . . . . . . . 12
⊢
((((1st ‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) ∈ (0..^𝐾) ↔ ((((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) ∈ ℕ0
∧ 𝐾 ∈ ℕ
∧ (((1st ‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) < 𝐾)) |
213 | 201, 204,
211, 212 | syl3anbrc 1336 |
. . . . . . . . . . 11
⊢ (𝜑 → (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) ∈ (0..^𝐾)) |
214 | 213 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) → (((1st
‘(1st ‘𝑇))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) ∈ (0..^𝐾)) |
215 | 7, 214 | eqeltrd 2883 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) − 1) ∈ (0..^𝐾)) |
216 | 215 | adantlr 711 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) − 1) ∈ (0..^𝐾)) |
217 | 18 | ffvelrnda 6716 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑇))‘𝑛) ∈ (0..^𝐾)) |
218 | | elfzonn0 12932 |
. . . . . . . . . . . . 13
⊢
(((1st ‘(1st ‘𝑇))‘𝑛) ∈ (0..^𝐾) → ((1st
‘(1st ‘𝑇))‘𝑛) ∈
ℕ0) |
219 | 217, 218 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑇))‘𝑛) ∈
ℕ0) |
220 | 219 | nn0cnd 11805 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑇))‘𝑛) ∈ ℂ) |
221 | 220 | subid1d 10834 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) − 0) = ((1st
‘(1st ‘𝑇))‘𝑛)) |
222 | 221, 217 | eqeltrd 2883 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) − 0) ∈ (0..^𝐾)) |
223 | 222 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑁)) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) − 0) ∈ (0..^𝐾)) |
224 | 2, 4, 216, 223 | ifbothda 4418 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)) ∈ (0..^𝐾)) |
225 | 224 | fmpttd 6742 |
. . . . . 6
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))):(1...𝑁)⟶(0..^𝐾)) |
226 | | ovex 7048 |
. . . . . . 7
⊢
(0..^𝐾) ∈
V |
227 | 226, 96 | elmap 8285 |
. . . . . 6
⊢ ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∈ ((0..^𝐾) ↑𝑚
(1...𝑁)) ↔ (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))):(1...𝑁)⟶(0..^𝐾)) |
228 | 225, 227 | sylibr 235 |
. . . . 5
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∈ ((0..^𝐾) ↑𝑚
(1...𝑁))) |
229 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ((1 + 1)...𝑁)) → 𝑛 ∈ ((1 + 1)...𝑁)) |
230 | | 1z 11861 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℤ |
231 | | peano2z 11872 |
. . . . . . . . . . . . . . . 16
⊢ (1 ∈
ℤ → (1 + 1) ∈ ℤ) |
232 | 230, 231 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (1 + 1)
∈ ℤ |
233 | 110, 232 | jctil 520 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((1 + 1) ∈ ℤ
∧ 𝑁 ∈
ℤ)) |
234 | | elfzelz 12758 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ((1 + 1)...𝑁) → 𝑛 ∈ ℤ) |
235 | 234, 230 | jctir 521 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ((1 + 1)...𝑁) → (𝑛 ∈ ℤ ∧ 1 ∈
ℤ)) |
236 | | fzsubel 12793 |
. . . . . . . . . . . . . 14
⊢ ((((1 +
1) ∈ ℤ ∧ 𝑁
∈ ℤ) ∧ (𝑛
∈ ℤ ∧ 1 ∈ ℤ)) → (𝑛 ∈ ((1 + 1)...𝑁) ↔ (𝑛 − 1) ∈ (((1 + 1) −
1)...(𝑁 −
1)))) |
237 | 233, 235,
236 | syl2an 595 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ((1 + 1)...𝑁)) → (𝑛 ∈ ((1 + 1)...𝑁) ↔ (𝑛 − 1) ∈ (((1 + 1) −
1)...(𝑁 −
1)))) |
238 | 229, 237 | mpbid 233 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ((1 + 1)...𝑁)) → (𝑛 − 1) ∈ (((1 + 1) −
1)...(𝑁 −
1))) |
239 | | ax-1cn 10441 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℂ |
240 | 239, 239 | pncan3oi 10750 |
. . . . . . . . . . . . 13
⊢ ((1 + 1)
− 1) = 1 |
241 | 240 | oveq1i 7026 |
. . . . . . . . . . . 12
⊢ (((1 + 1)
− 1)...(𝑁 − 1))
= (1...(𝑁 −
1)) |
242 | 238, 241 | syl6eleq 2893 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ((1 + 1)...𝑁)) → (𝑛 − 1) ∈ (1...(𝑁 − 1))) |
243 | 242 | ralrimiva 3149 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑛 ∈ ((1 + 1)...𝑁)(𝑛 − 1) ∈ (1...(𝑁 − 1))) |
244 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → 𝑦 ∈ (1...(𝑁 − 1))) |
245 | 157, 230 | jctil 520 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (1 ∈ ℤ ∧
(𝑁 − 1) ∈
ℤ)) |
246 | | elfzelz 12758 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (1...(𝑁 − 1)) → 𝑦 ∈ ℤ) |
247 | 246, 230 | jctir 521 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (1...(𝑁 − 1)) → (𝑦 ∈ ℤ ∧ 1 ∈
ℤ)) |
248 | | fzaddel 12791 |
. . . . . . . . . . . . . . 15
⊢ (((1
∈ ℤ ∧ (𝑁
− 1) ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 1 ∈ ℤ))
→ (𝑦 ∈
(1...(𝑁 − 1)) ↔
(𝑦 + 1) ∈ ((1 +
1)...((𝑁 − 1) +
1)))) |
249 | 245, 247,
248 | syl2an 595 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → (𝑦 ∈ (1...(𝑁 − 1)) ↔ (𝑦 + 1) ∈ ((1 + 1)...((𝑁 − 1) + 1)))) |
250 | 244, 249 | mpbid 233 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → (𝑦 + 1) ∈ ((1 + 1)...((𝑁 − 1) + 1))) |
251 | 78 | oveq2d 7032 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((1 + 1)...((𝑁 − 1) + 1)) = ((1 +
1)...𝑁)) |
252 | 251 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → ((1 + 1)...((𝑁 − 1) + 1)) = ((1 +
1)...𝑁)) |
253 | 250, 252 | eleqtrd 2885 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → (𝑦 + 1) ∈ ((1 + 1)...𝑁)) |
254 | 234 | zcnd 11937 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ((1 + 1)...𝑁) → 𝑛 ∈ ℂ) |
255 | 246 | zcnd 11937 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (1...(𝑁 − 1)) → 𝑦 ∈ ℂ) |
256 | | subadd2 10737 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ ∧ 𝑦 ∈
ℂ) → ((𝑛 −
1) = 𝑦 ↔ (𝑦 + 1) = 𝑛)) |
257 | 239, 256 | mp3an2 1441 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑛 − 1) = 𝑦 ↔ (𝑦 + 1) = 𝑛)) |
258 | | eqcom 2802 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑛 − 1) ↔ (𝑛 − 1) = 𝑦) |
259 | | eqcom 2802 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (𝑦 + 1) ↔ (𝑦 + 1) = 𝑛) |
260 | 257, 258,
259 | 3bitr4g 315 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1))) |
261 | 254, 255,
260 | syl2anr 596 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ (1...(𝑁 − 1)) ∧ 𝑛 ∈ ((1 + 1)...𝑁)) → (𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1))) |
262 | 261 | ralrimiva 3149 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (1...(𝑁 − 1)) → ∀𝑛 ∈ ((1 + 1)...𝑁)(𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1))) |
263 | 262 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → ∀𝑛 ∈ ((1 + 1)...𝑁)(𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1))) |
264 | | reu6i 3653 |
. . . . . . . . . . . 12
⊢ (((𝑦 + 1) ∈ ((1 + 1)...𝑁) ∧ ∀𝑛 ∈ ((1 + 1)...𝑁)(𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1))) → ∃!𝑛 ∈ ((1 + 1)...𝑁)𝑦 = (𝑛 − 1)) |
265 | 253, 263,
264 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → ∃!𝑛 ∈ ((1 + 1)...𝑁)𝑦 = (𝑛 − 1)) |
266 | 265 | ralrimiva 3149 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑦 ∈ (1...(𝑁 − 1))∃!𝑛 ∈ ((1 + 1)...𝑁)𝑦 = (𝑛 − 1)) |
267 | | eqid 2795 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) = (𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) |
268 | 267 | f1ompt 6738 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)):((1 + 1)...𝑁)–1-1-onto→(1...(𝑁 − 1)) ↔ (∀𝑛 ∈ ((1 + 1)...𝑁)(𝑛 − 1) ∈ (1...(𝑁 − 1)) ∧ ∀𝑦 ∈ (1...(𝑁 − 1))∃!𝑛 ∈ ((1 + 1)...𝑁)𝑦 = (𝑛 − 1))) |
269 | 243, 266,
268 | sylanbrc 583 |
. . . . . . . . 9
⊢ (𝜑 → (𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)):((1 + 1)...𝑁)–1-1-onto→(1...(𝑁 − 1))) |
270 | | f1osng 6523 |
. . . . . . . . . 10
⊢ ((1
∈ V ∧ 𝑁 ∈
ℕ) → {〈1, 𝑁〉}:{1}–1-1-onto→{𝑁}) |
271 | 47, 27, 270 | sylancr 587 |
. . . . . . . . 9
⊢ (𝜑 → {〈1, 𝑁〉}:{1}–1-1-onto→{𝑁}) |
272 | 158, 160 | ltnled 10634 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑁 − 1) < 𝑁 ↔ ¬ 𝑁 ≤ (𝑁 − 1))) |
273 | 164, 272 | mpbid 233 |
. . . . . . . . . . 11
⊢ (𝜑 → ¬ 𝑁 ≤ (𝑁 − 1)) |
274 | | elfzle2 12761 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1)) |
275 | 273, 274 | nsyl 142 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ 𝑁 ∈ (1...(𝑁 − 1))) |
276 | | disjsn 4554 |
. . . . . . . . . 10
⊢
(((1...(𝑁 −
1)) ∩ {𝑁}) = ∅
↔ ¬ 𝑁 ∈
(1...(𝑁 −
1))) |
277 | 275, 276 | sylibr 235 |
. . . . . . . . 9
⊢ (𝜑 → ((1...(𝑁 − 1)) ∩ {𝑁}) = ∅) |
278 | | 1re 10487 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℝ |
279 | 278 | ltp1i 11392 |
. . . . . . . . . . . . 13
⊢ 1 < (1
+ 1) |
280 | 232 | zrei 11835 |
. . . . . . . . . . . . . 14
⊢ (1 + 1)
∈ ℝ |
281 | 278, 280 | ltnlei 10608 |
. . . . . . . . . . . . 13
⊢ (1 <
(1 + 1) ↔ ¬ (1 + 1) ≤ 1) |
282 | 279, 281 | mpbi 231 |
. . . . . . . . . . . 12
⊢ ¬ (1
+ 1) ≤ 1 |
283 | | elfzle1 12760 |
. . . . . . . . . . . 12
⊢ (1 ∈
((1 + 1)...𝑁) → (1 +
1) ≤ 1) |
284 | 282, 283 | mto 198 |
. . . . . . . . . . 11
⊢ ¬ 1
∈ ((1 + 1)...𝑁) |
285 | | disjsn 4554 |
. . . . . . . . . . 11
⊢ ((((1 +
1)...𝑁) ∩ {1}) =
∅ ↔ ¬ 1 ∈ ((1 + 1)...𝑁)) |
286 | 284, 285 | mpbir 232 |
. . . . . . . . . 10
⊢ (((1 +
1)...𝑁) ∩ {1}) =
∅ |
287 | | f1oun 6502 |
. . . . . . . . . 10
⊢ ((((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)):((1 + 1)...𝑁)–1-1-onto→(1...(𝑁 − 1)) ∧ {〈1, 𝑁〉}:{1}–1-1-onto→{𝑁}) ∧ ((((1 + 1)...𝑁) ∩ {1}) = ∅ ∧ ((1...(𝑁 − 1)) ∩ {𝑁}) = ∅)) → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {〈1, 𝑁〉}):(((1 + 1)...𝑁) ∪ {1})–1-1-onto→((1...(𝑁 − 1)) ∪ {𝑁})) |
288 | 286, 287 | mpanr1 699 |
. . . . . . . . 9
⊢ ((((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)):((1 + 1)...𝑁)–1-1-onto→(1...(𝑁 − 1)) ∧ {〈1, 𝑁〉}:{1}–1-1-onto→{𝑁}) ∧ ((1...(𝑁 − 1)) ∩ {𝑁}) = ∅) → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {〈1, 𝑁〉}):(((1 + 1)...𝑁) ∪ {1})–1-1-onto→((1...(𝑁 − 1)) ∪ {𝑁})) |
289 | 269, 271,
277, 288 | syl21anc 834 |
. . . . . . . 8
⊢ (𝜑 → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {〈1, 𝑁〉}):(((1 + 1)...𝑁) ∪ {1})–1-1-onto→((1...(𝑁 − 1)) ∪ {𝑁})) |
290 | | eleq1 2870 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 1 → (𝑛 ∈ ((1 + 1)...𝑁) ↔ 1 ∈ ((1 + 1)...𝑁))) |
291 | 284, 290 | mtbiri 328 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 1 → ¬ 𝑛 ∈ ((1 + 1)...𝑁)) |
292 | 291 | necon2ai 3013 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ((1 + 1)...𝑁) → 𝑛 ≠ 1) |
293 | | ifnefalse 4393 |
. . . . . . . . . . . . 13
⊢ (𝑛 ≠ 1 → if(𝑛 = 1, 𝑁, (𝑛 − 1)) = (𝑛 − 1)) |
294 | 292, 293 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ((1 + 1)...𝑁) → if(𝑛 = 1, 𝑁, (𝑛 − 1)) = (𝑛 − 1)) |
295 | 294 | mpteq2ia 5051 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ((1 + 1)...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) = (𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) |
296 | 295 | uneq1i 4056 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ((1 + 1)...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ∪ {〈1, 𝑁〉}) = ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {〈1, 𝑁〉}) |
297 | 47 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈
V) |
298 | | ssv 3912 |
. . . . . . . . . . . 12
⊢ ℕ
⊆ V |
299 | 298, 27 | sseldi 3887 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ V) |
300 | 27, 72 | syl6eleq 2893 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘1)) |
301 | | fzpred 12805 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈
(ℤ≥‘1) → (1...𝑁) = ({1} ∪ ((1 + 1)...𝑁))) |
302 | 300, 301 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1...𝑁) = ({1} ∪ ((1 + 1)...𝑁))) |
303 | | uncom 4050 |
. . . . . . . . . . . 12
⊢ ({1}
∪ ((1 + 1)...𝑁)) = (((1
+ 1)...𝑁) ∪
{1}) |
304 | 302, 303 | syl6req 2848 |
. . . . . . . . . . 11
⊢ (𝜑 → (((1 + 1)...𝑁) ∪ {1}) = (1...𝑁)) |
305 | | iftrue 4387 |
. . . . . . . . . . . 12
⊢ (𝑛 = 1 → if(𝑛 = 1, 𝑁, (𝑛 − 1)) = 𝑁) |
306 | 305 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 = 1) → if(𝑛 = 1, 𝑁, (𝑛 − 1)) = 𝑁) |
307 | 297, 299,
304, 306 | fmptapd 6796 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ∪ {〈1, 𝑁〉}) = (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) |
308 | 296, 307 | syl5eqr 2845 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {〈1, 𝑁〉}) = (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) |
309 | 78, 300 | eqeltrd 2883 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑁 − 1) + 1) ∈
(ℤ≥‘1)) |
310 | | uzid 12108 |
. . . . . . . . . . . . 13
⊢ ((𝑁 − 1) ∈ ℤ
→ (𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1))) |
311 | | peano2uz 12150 |
. . . . . . . . . . . . 13
⊢ ((𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) |
312 | 157, 310,
311 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) |
313 | 78, 312 | eqeltrrd 2884 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) |
314 | | fzsplit2 12782 |
. . . . . . . . . . 11
⊢ ((((𝑁 − 1) + 1) ∈
(ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) → (1...𝑁) = ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) |
315 | 309, 313,
314 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) |
316 | 78 | oveq1d 7031 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝑁 − 1) + 1)...𝑁) = (𝑁...𝑁)) |
317 | | fzsn 12799 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁}) |
318 | 110, 317 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑁...𝑁) = {𝑁}) |
319 | 316, 318 | eqtrd 2831 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝑁 − 1) + 1)...𝑁) = {𝑁}) |
320 | 319 | uneq2d 4060 |
. . . . . . . . . 10
⊢ (𝜑 → ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)) = ((1...(𝑁 − 1)) ∪ {𝑁})) |
321 | 315, 320 | eqtr2d 2832 |
. . . . . . . . 9
⊢ (𝜑 → ((1...(𝑁 − 1)) ∪ {𝑁}) = (1...𝑁)) |
322 | 308, 304,
321 | f1oeq123d 6478 |
. . . . . . . 8
⊢ (𝜑 → (((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {〈1, 𝑁〉}):(((1 + 1)...𝑁) ∪ {1})–1-1-onto→((1...(𝑁 − 1)) ∪ {𝑁}) ↔ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))):(1...𝑁)–1-1-onto→(1...𝑁))) |
323 | 289, 322 | mpbid 233 |
. . . . . . 7
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))):(1...𝑁)–1-1-onto→(1...𝑁)) |
324 | | f1oco 6505 |
. . . . . . 7
⊢
(((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) ∧ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))):(1...𝑁)–1-1-onto→(1...𝑁)) → ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–1-1-onto→(1...𝑁)) |
325 | 24, 323, 324 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–1-1-onto→(1...𝑁)) |
326 | 96 | mptex 6852 |
. . . . . . . 8
⊢ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ∈ V |
327 | 21, 326 | coex 7491 |
. . . . . . 7
⊢
((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) ∈ V |
328 | | f1oeq1 6472 |
. . . . . . 7
⊢ (𝑓 = ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–1-1-onto→(1...𝑁))) |
329 | 327, 328 | elab 3605 |
. . . . . 6
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–1-1-onto→(1...𝑁)) |
330 | 325, 329 | sylibr 235 |
. . . . 5
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
331 | | opelxpi 5480 |
. . . . 5
⊢ (((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∈ ((0..^𝐾) ↑𝑚
(1...𝑁)) ∧
((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → 〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉 ∈ (((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
332 | 228, 330,
331 | syl2anc 584 |
. . . 4
⊢ (𝜑 → 〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉 ∈ (((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
333 | 27 | nnnn0d 11803 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
334 | | 0elfz 12854 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ 0 ∈ (0...𝑁)) |
335 | 333, 334 | syl 17 |
. . . 4
⊢ (𝜑 → 0 ∈ (0...𝑁)) |
336 | | opelxpi 5480 |
. . . 4
⊢
((〈(𝑛 ∈
(1...𝑁) ↦
(((1st ‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉 ∈ (((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ 0 ∈ (0...𝑁)) → 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 ∈
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
337 | 332, 335,
336 | syl2anc 584 |
. . 3
⊢ (𝜑 → 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 ∈
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
338 | | poimirlem22.1 |
. . . . 5
⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑𝑚 (1...𝑁))) |
339 | 27, 10, 338, 8, 41, 167 | poimirlem19 34461 |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))
∘𝑓 + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))) |
340 | | elfzle1 12760 |
. . . . . . . . 9
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 0 ≤ 𝑦) |
341 | | 0re 10489 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ |
342 | | lenlt 10566 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ ∧ 𝑦
∈ ℝ) → (0 ≤ 𝑦 ↔ ¬ 𝑦 < 0)) |
343 | 341, 60, 342 | sylancr 587 |
. . . . . . . . 9
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (0 ≤ 𝑦 ↔ ¬ 𝑦 < 0)) |
344 | 340, 343 | mpbid 233 |
. . . . . . . 8
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ¬ 𝑦 < 0) |
345 | 344 | iffalsed 4392 |
. . . . . . 7
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → if(𝑦 < 0, 𝑦, (𝑦 + 1)) = (𝑦 + 1)) |
346 | 345 | csbeq1d 3815 |
. . . . . 6
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ⦋if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗⦌((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))
∘𝑓 + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋(𝑦 + 1) / 𝑗⦌((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))
∘𝑓 + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})))) |
347 | | ovex 7048 |
. . . . . . 7
⊢ (𝑦 + 1) ∈ V |
348 | | oveq2 7024 |
. . . . . . . . . . 11
⊢ (𝑗 = (𝑦 + 1) → (1...𝑗) = (1...(𝑦 + 1))) |
349 | 348 | imaeq2d 5806 |
. . . . . . . . . 10
⊢ (𝑗 = (𝑦 + 1) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) = (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1)))) |
350 | 349 | xpeq1d 5472 |
. . . . . . . . 9
⊢ (𝑗 = (𝑦 + 1) → ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) =
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ×
{1})) |
351 | | oveq1 7023 |
. . . . . . . . . . . 12
⊢ (𝑗 = (𝑦 + 1) → (𝑗 + 1) = ((𝑦 + 1) + 1)) |
352 | 351 | oveq1d 7031 |
. . . . . . . . . . 11
⊢ (𝑗 = (𝑦 + 1) → ((𝑗 + 1)...𝑁) = (((𝑦 + 1) + 1)...𝑁)) |
353 | 352 | imaeq2d 5806 |
. . . . . . . . . 10
⊢ (𝑗 = (𝑦 + 1) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) = (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁))) |
354 | 353 | xpeq1d 5472 |
. . . . . . . . 9
⊢ (𝑗 = (𝑦 + 1) → ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}) = ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) |
355 | 350, 354 | uneq12d 4061 |
. . . . . . . 8
⊢ (𝑗 = (𝑦 + 1) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})) = (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))) |
356 | 355 | oveq2d 7032 |
. . . . . . 7
⊢ (𝑗 = (𝑦 + 1) → ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))
∘𝑓 + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))
∘𝑓 + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))) |
357 | 347, 356 | csbie 3843 |
. . . . . 6
⊢
⦋(𝑦 +
1) / 𝑗⦌((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))
∘𝑓 + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))
∘𝑓 + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))) |
358 | 346, 357 | syl6eq 2847 |
. . . . 5
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ⦋if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗⦌((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))
∘𝑓 + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))
∘𝑓 + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))) |
359 | 358 | mpteq2ia 5051 |
. . . 4
⊢ (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗⦌((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))
∘𝑓 + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))
∘𝑓 + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))) |
360 | 339, 359 | syl6eqr 2849 |
. . 3
⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗⦌((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))
∘𝑓 + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
361 | | opex 5248 |
. . . . . . . . . . 11
⊢
〈(𝑛 ∈
(1...𝑁) ↦
(((1st ‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉 ∈
V |
362 | 361, 50 | op2ndd 7556 |
. . . . . . . . . 10
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
(2nd ‘𝑡) =
0) |
363 | 362 | breq2d 4974 |
. . . . . . . . 9
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 → (𝑦 < (2nd
‘𝑡) ↔ 𝑦 < 0)) |
364 | 363 | ifbid 4403 |
. . . . . . . 8
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 → if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < 0, 𝑦, (𝑦 + 1))) |
365 | 364 | csbeq1d 3815 |
. . . . . . 7
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
⦋if(𝑦 <
(2nd ‘𝑡),
𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
366 | 361, 50 | op1std 7555 |
. . . . . . . . . 10
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
(1st ‘𝑡) =
〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉) |
367 | 96 | mptex 6852 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) ∈
V |
368 | 367, 327 | op1std 7555 |
. . . . . . . . . 10
⊢
((1st ‘𝑡) = 〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉 → (1st
‘(1st ‘𝑡)) = (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))) |
369 | 366, 368 | syl 17 |
. . . . . . . . 9
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
(1st ‘(1st ‘𝑡)) = (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))) |
370 | 367, 327 | op2ndd 7556 |
. . . . . . . . . . . . 13
⊢
((1st ‘𝑡) = 〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉 → (2nd
‘(1st ‘𝑡)) = ((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))) |
371 | 366, 370 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
(2nd ‘(1st ‘𝑡)) = ((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))) |
372 | 371 | imaeq1d 5805 |
. . . . . . . . . . 11
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) = (((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗))) |
373 | 372 | xpeq1d 5472 |
. . . . . . . . . 10
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
(((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) = ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) ×
{1})) |
374 | 371 | imaeq1d 5805 |
. . . . . . . . . . 11
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) = (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁))) |
375 | 374 | xpeq1d 5472 |
. . . . . . . . . 10
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
(((2nd ‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})) |
376 | 373, 375 | uneq12d 4061 |
. . . . . . . . 9
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))) |
377 | 369, 376 | oveq12d 7034 |
. . . . . . . 8
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
((1st ‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))
∘𝑓 + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})))) |
378 | 377 | csbeq2dv 3818 |
. . . . . . 7
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
⦋if(𝑦 < 0,
𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗⦌((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))
∘𝑓 + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})))) |
379 | 365, 378 | eqtrd 2831 |
. . . . . 6
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
⦋if(𝑦 <
(2nd ‘𝑡),
𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗⦌((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))
∘𝑓 + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})))) |
380 | 379 | mpteq2dv 5056 |
. . . . 5
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗⦌((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))
∘𝑓 + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
381 | 380 | eqeq2d 2805 |
. . . 4
⊢ (𝑡 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗⦌((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))
∘𝑓 + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})))))) |
382 | 381, 10 | elrab2 3621 |
. . 3
⊢
(〈〈(𝑛
∈ (1...𝑁) ↦
(((1st ‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 ∈ 𝑆 ↔ (〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 ∈
((((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 0, 𝑦, (𝑦 + 1)) / 𝑗⦌((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))
∘𝑓 + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑗)) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((𝑗 + 1)...𝑁)) × {0})))))) |
383 | 337, 360,
382 | sylanbrc 583 |
. 2
⊢ (𝜑 → 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 ∈ 𝑆) |
384 | 361, 50 | op2ndd 7556 |
. . . . . 6
⊢ (𝑇 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 →
(2nd ‘𝑇) =
0) |
385 | 384 | eqcoms 2803 |
. . . . 5
⊢
(〈〈(𝑛
∈ (1...𝑁) ↦
(((1st ‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 = 𝑇 → (2nd
‘𝑇) =
0) |
386 | 27 | nnne0d 11535 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ≠ 0) |
387 | 386 | necomd 3039 |
. . . . . 6
⊢ (𝜑 → 0 ≠ 𝑁) |
388 | | neeq1 3046 |
. . . . . 6
⊢
((2nd ‘𝑇) = 0 → ((2nd ‘𝑇) ≠ 𝑁 ↔ 0 ≠ 𝑁)) |
389 | 387, 388 | syl5ibrcom 248 |
. . . . 5
⊢ (𝜑 → ((2nd
‘𝑇) = 0 →
(2nd ‘𝑇)
≠ 𝑁)) |
390 | 385, 389 | syl5 34 |
. . . 4
⊢ (𝜑 → (〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 = 𝑇 → (2nd
‘𝑇) ≠ 𝑁)) |
391 | 390 | necon2d 3007 |
. . 3
⊢ (𝜑 → ((2nd
‘𝑇) = 𝑁 → 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 ≠ 𝑇)) |
392 | 167, 391 | mpd 15 |
. 2
⊢ (𝜑 → 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 ≠ 𝑇) |
393 | | neeq1 3046 |
. . 3
⊢ (𝑧 = 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 → (𝑧 ≠ 𝑇 ↔ 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 ≠ 𝑇)) |
394 | 393 | rspcev 3559 |
. 2
⊢
((〈〈(𝑛
∈ (1...𝑁) ↦
(((1st ‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 ∈ 𝑆 ∧ 〈〈(𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))), ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))〉, 0〉 ≠ 𝑇) → ∃𝑧 ∈ 𝑆 𝑧 ≠ 𝑇) |
395 | 383, 392,
394 | syl2anc 584 |
1
⊢ (𝜑 → ∃𝑧 ∈ 𝑆 𝑧 ≠ 𝑇) |