MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon4d Structured version   Visualization version   GIF version

Theorem necon4d 2956
Description: Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
necon4d.1 (𝜑 → (𝐴𝐵𝐶𝐷))
Assertion
Ref Expression
necon4d (𝜑 → (𝐶 = 𝐷𝐴 = 𝐵))

Proof of Theorem necon4d
StepHypRef Expression
1 necon4d.1 . . 3 (𝜑 → (𝐴𝐵𝐶𝐷))
21necon2bd 2948 . 2 (𝜑 → (𝐶 = 𝐷 → ¬ 𝐴𝐵))
3 nne 2936 . 2 𝐴𝐵𝐴 = 𝐵)
42, 3imbitrdi 251 1 (𝜑 → (𝐶 = 𝐷𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wne 2932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2933
This theorem is referenced by:  oa00  8571  map0g  8898  epfrs  9745  fin23lem24  10336  abs00  15308  oddvds  19528  01eq0ringOLD  20491  isdomn4  20676  isabvd  20772  uvcf1  21752  lindff1  21780  hausnei2  23291  dfconn2  23357  hausflimi  23918  hauspwpwf1  23925  cxpeq0  26639  his6  31080  fnpreimac  32649  deg1le0eq0  33586  lkreqN  39188  ltrnideq  40194  hdmapip0  41934  sticksstones2  42160  unitscyglem4  42211  rpnnen3  43056
  Copyright terms: Public domain W3C validator