| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon4d | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| necon4d.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝐶 ≠ 𝐷)) |
| Ref | Expression |
|---|---|
| necon4d | ⊢ (𝜑 → (𝐶 = 𝐷 → 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon4d.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝐶 ≠ 𝐷)) | |
| 2 | 1 | necon2bd 2948 | . 2 ⊢ (𝜑 → (𝐶 = 𝐷 → ¬ 𝐴 ≠ 𝐵)) |
| 3 | nne 2936 | . 2 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
| 4 | 2, 3 | imbitrdi 251 | 1 ⊢ (𝜑 → (𝐶 = 𝐷 → 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2933 |
| This theorem is referenced by: oa00 8571 map0g 8898 epfrs 9745 fin23lem24 10336 abs00 15308 oddvds 19528 01eq0ringOLD 20491 isdomn4 20676 isabvd 20772 uvcf1 21752 lindff1 21780 hausnei2 23291 dfconn2 23357 hausflimi 23918 hauspwpwf1 23925 cxpeq0 26639 his6 31080 fnpreimac 32649 deg1le0eq0 33586 lkreqN 39188 ltrnideq 40194 hdmapip0 41934 sticksstones2 42160 unitscyglem4 42211 rpnnen3 43056 |
| Copyright terms: Public domain | W3C validator |