![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon4d | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
necon4d.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝐶 ≠ 𝐷)) |
Ref | Expression |
---|---|
necon4d | ⊢ (𝜑 → (𝐶 = 𝐷 → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon4d.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝐶 ≠ 𝐷)) | |
2 | 1 | necon2bd 2987 | . 2 ⊢ (𝜑 → (𝐶 = 𝐷 → ¬ 𝐴 ≠ 𝐵)) |
3 | nne 2975 | . 2 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
4 | 2, 3 | syl6ib 243 | 1 ⊢ (𝜑 → (𝐶 = 𝐷 → 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1653 ≠ wne 2971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-ne 2972 |
This theorem is referenced by: oa00 7879 map0g 8136 epfrs 8857 fin23lem24 9432 abs00 14370 oddvds 18279 isabvd 19138 01eq0ring 19595 uvcf1 20456 lindff1 20484 hausnei2 21486 dfconn2 21551 hausflimi 22112 hauspwpwf1 22119 cxpeq0 24765 his6 28481 nn0sqeq1 30031 lkreqN 35191 ltrnideq 36196 hdmapip0 37936 rpnnen3 38384 |
Copyright terms: Public domain | W3C validator |