| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon4d | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| necon4d.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝐶 ≠ 𝐷)) |
| Ref | Expression |
|---|---|
| necon4d | ⊢ (𝜑 → (𝐶 = 𝐷 → 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon4d.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝐶 ≠ 𝐷)) | |
| 2 | 1 | necon2bd 2947 | . 2 ⊢ (𝜑 → (𝐶 = 𝐷 → ¬ 𝐴 ≠ 𝐵)) |
| 3 | nne 2935 | . 2 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
| 4 | 2, 3 | imbitrdi 251 | 1 ⊢ (𝜑 → (𝐶 = 𝐷 → 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2932 |
| This theorem is referenced by: oa00 8565 map0g 8892 epfrs 9737 fin23lem24 10328 abs00 15295 oddvds 19513 01eq0ringOLD 20476 isdomn4 20661 isabvd 20757 uvcf1 21737 lindff1 21765 hausnei2 23276 dfconn2 23342 hausflimi 23903 hauspwpwf1 23910 cxpeq0 26623 his6 31012 fnpreimac 32582 deg1le0eq0 33503 lkreqN 39109 ltrnideq 40115 hdmapip0 41855 sticksstones2 42082 unitscyglem4 42133 rpnnen3 42981 |
| Copyright terms: Public domain | W3C validator |