MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon4d Structured version   Visualization version   GIF version

Theorem necon4d 2966
Description: Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
necon4d.1 (𝜑 → (𝐴𝐵𝐶𝐷))
Assertion
Ref Expression
necon4d (𝜑 → (𝐶 = 𝐷𝐴 = 𝐵))

Proof of Theorem necon4d
StepHypRef Expression
1 necon4d.1 . . 3 (𝜑 → (𝐴𝐵𝐶𝐷))
21necon2bd 2958 . 2 (𝜑 → (𝐶 = 𝐷 → ¬ 𝐴𝐵))
3 nne 2946 . 2 𝐴𝐵𝐴 = 𝐵)
42, 3syl6ib 250 1 (𝜑 → (𝐶 = 𝐷𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wne 2942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2943
This theorem is referenced by:  oa00  8352  map0g  8630  epfrs  9420  fin23lem24  10009  abs00  14929  oddvds  19070  isabvd  19995  01eq0ring  20456  uvcf1  20909  lindff1  20937  hausnei2  22412  dfconn2  22478  hausflimi  23039  hauspwpwf1  23046  cxpeq0  25738  his6  29362  fnpreimac  30910  lkreqN  37111  ltrnideq  38116  hdmapip0  39856  sticksstones2  40031  isdomn4  40100  rpnnen3  40770
  Copyright terms: Public domain W3C validator