| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon4d | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| necon4d.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝐶 ≠ 𝐷)) |
| Ref | Expression |
|---|---|
| necon4d | ⊢ (𝜑 → (𝐶 = 𝐷 → 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon4d.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝐶 ≠ 𝐷)) | |
| 2 | 1 | necon2bd 2944 | . 2 ⊢ (𝜑 → (𝐶 = 𝐷 → ¬ 𝐴 ≠ 𝐵)) |
| 3 | nne 2932 | . 2 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
| 4 | 2, 3 | imbitrdi 251 | 1 ⊢ (𝜑 → (𝐶 = 𝐷 → 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2929 |
| This theorem is referenced by: oa00 8474 map0g 8808 epfrs 9621 fin23lem24 10210 abs00 15193 oddvds 19457 01eq0ringOLD 20444 isdomn4 20629 isabvd 20725 uvcf1 21727 lindff1 21755 hausnei2 23266 dfconn2 23332 hausflimi 23893 hauspwpwf1 23900 cxpeq0 26612 his6 31074 fnpreimac 32648 deg1le0eq0 33531 lkreqN 39208 ltrnideq 40213 hdmapip0 41953 sticksstones2 42179 unitscyglem4 42230 rpnnen3 43064 |
| Copyright terms: Public domain | W3C validator |