![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon4d | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
necon4d.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝐶 ≠ 𝐷)) |
Ref | Expression |
---|---|
necon4d | ⊢ (𝜑 → (𝐶 = 𝐷 → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon4d.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝐶 ≠ 𝐷)) | |
2 | 1 | necon2bd 2952 | . 2 ⊢ (𝜑 → (𝐶 = 𝐷 → ¬ 𝐴 ≠ 𝐵)) |
3 | nne 2940 | . 2 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
4 | 2, 3 | imbitrdi 250 | 1 ⊢ (𝜑 → (𝐶 = 𝐷 → 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1534 ≠ wne 2936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2937 |
This theorem is referenced by: oa00 8574 map0g 8897 epfrs 9749 fin23lem24 10340 abs00 15263 oddvds 19496 01eq0ringOLD 20462 isabvd 20694 isdomn4 21244 uvcf1 21720 lindff1 21748 hausnei2 23251 dfconn2 23317 hausflimi 23878 hauspwpwf1 23885 cxpeq0 26606 his6 30903 fnpreimac 32451 deg1le0eq0 33248 lkreqN 38637 ltrnideq 39643 hdmapip0 41383 sticksstones2 41614 rpnnen3 42444 |
Copyright terms: Public domain | W3C validator |