Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon4d | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
necon4d.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝐶 ≠ 𝐷)) |
Ref | Expression |
---|---|
necon4d | ⊢ (𝜑 → (𝐶 = 𝐷 → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon4d.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝐶 ≠ 𝐷)) | |
2 | 1 | necon2bd 2958 | . 2 ⊢ (𝜑 → (𝐶 = 𝐷 → ¬ 𝐴 ≠ 𝐵)) |
3 | nne 2946 | . 2 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
4 | 2, 3 | syl6ib 250 | 1 ⊢ (𝜑 → (𝐶 = 𝐷 → 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2943 |
This theorem is referenced by: oa00 8352 map0g 8630 epfrs 9420 fin23lem24 10009 abs00 14929 oddvds 19070 isabvd 19995 01eq0ring 20456 uvcf1 20909 lindff1 20937 hausnei2 22412 dfconn2 22478 hausflimi 23039 hauspwpwf1 23046 cxpeq0 25738 his6 29362 fnpreimac 30910 lkreqN 37111 ltrnideq 38116 hdmapip0 39856 sticksstones2 40031 isdomn4 40100 rpnnen3 40770 |
Copyright terms: Public domain | W3C validator |