MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon4d Structured version   Visualization version   GIF version

Theorem necon4d 2949
Description: Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
necon4d.1 (𝜑 → (𝐴𝐵𝐶𝐷))
Assertion
Ref Expression
necon4d (𝜑 → (𝐶 = 𝐷𝐴 = 𝐵))

Proof of Theorem necon4d
StepHypRef Expression
1 necon4d.1 . . 3 (𝜑 → (𝐴𝐵𝐶𝐷))
21necon2bd 2941 . 2 (𝜑 → (𝐶 = 𝐷 → ¬ 𝐴𝐵))
3 nne 2929 . 2 𝐴𝐵𝐴 = 𝐵)
42, 3imbitrdi 251 1 (𝜑 → (𝐶 = 𝐷𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wne 2925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2926
This theorem is referenced by:  oa00  8523  map0g  8857  epfrs  9684  fin23lem24  10275  abs00  15255  oddvds  19477  01eq0ringOLD  20440  isdomn4  20625  isabvd  20721  uvcf1  21701  lindff1  21729  hausnei2  23240  dfconn2  23306  hausflimi  23867  hauspwpwf1  23874  cxpeq0  26587  his6  31028  fnpreimac  32595  deg1le0eq0  33542  lkreqN  39163  ltrnideq  40169  hdmapip0  41909  sticksstones2  42135  unitscyglem4  42186  rpnnen3  43021
  Copyright terms: Public domain W3C validator