| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon4d | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| necon4d.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝐶 ≠ 𝐷)) |
| Ref | Expression |
|---|---|
| necon4d | ⊢ (𝜑 → (𝐶 = 𝐷 → 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon4d.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝐶 ≠ 𝐷)) | |
| 2 | 1 | necon2bd 2941 | . 2 ⊢ (𝜑 → (𝐶 = 𝐷 → ¬ 𝐴 ≠ 𝐵)) |
| 3 | nne 2929 | . 2 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
| 4 | 2, 3 | imbitrdi 251 | 1 ⊢ (𝜑 → (𝐶 = 𝐷 → 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: oa00 8484 map0g 8818 epfrs 9646 fin23lem24 10235 abs00 15214 oddvds 19444 01eq0ringOLD 20434 isdomn4 20619 isabvd 20715 uvcf1 21717 lindff1 21745 hausnei2 23256 dfconn2 23322 hausflimi 23883 hauspwpwf1 23890 cxpeq0 26603 his6 31061 fnpreimac 32628 deg1le0eq0 33518 lkreqN 39148 ltrnideq 40154 hdmapip0 41894 sticksstones2 42120 unitscyglem4 42171 rpnnen3 43005 |
| Copyright terms: Public domain | W3C validator |