MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon4d Structured version   Visualization version   GIF version

Theorem necon4d 2952
Description: Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
necon4d.1 (𝜑 → (𝐴𝐵𝐶𝐷))
Assertion
Ref Expression
necon4d (𝜑 → (𝐶 = 𝐷𝐴 = 𝐵))

Proof of Theorem necon4d
StepHypRef Expression
1 necon4d.1 . . 3 (𝜑 → (𝐴𝐵𝐶𝐷))
21necon2bd 2944 . 2 (𝜑 → (𝐶 = 𝐷 → ¬ 𝐴𝐵))
3 nne 2932 . 2 𝐴𝐵𝐴 = 𝐵)
42, 3imbitrdi 251 1 (𝜑 → (𝐶 = 𝐷𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wne 2928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2929
This theorem is referenced by:  oa00  8474  map0g  8808  epfrs  9621  fin23lem24  10210  abs00  15193  oddvds  19457  01eq0ringOLD  20444  isdomn4  20629  isabvd  20725  uvcf1  21727  lindff1  21755  hausnei2  23266  dfconn2  23332  hausflimi  23893  hauspwpwf1  23900  cxpeq0  26612  his6  31074  fnpreimac  32648  deg1le0eq0  33531  lkreqN  39208  ltrnideq  40213  hdmapip0  41953  sticksstones2  42179  unitscyglem4  42230  rpnnen3  43064
  Copyright terms: Public domain W3C validator