MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon4d Structured version   Visualization version   GIF version

Theorem necon4d 2970
Description: Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
necon4d.1 (𝜑 → (𝐴𝐵𝐶𝐷))
Assertion
Ref Expression
necon4d (𝜑 → (𝐶 = 𝐷𝐴 = 𝐵))

Proof of Theorem necon4d
StepHypRef Expression
1 necon4d.1 . . 3 (𝜑 → (𝐴𝐵𝐶𝐷))
21necon2bd 2962 . 2 (𝜑 → (𝐶 = 𝐷 → ¬ 𝐴𝐵))
3 nne 2950 . 2 𝐴𝐵𝐴 = 𝐵)
42, 3imbitrdi 251 1 (𝜑 → (𝐶 = 𝐷𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wne 2946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2947
This theorem is referenced by:  oa00  8615  map0g  8942  epfrs  9800  fin23lem24  10391  abs00  15338  oddvds  19589  01eq0ringOLD  20557  isdomn4  20738  isabvd  20835  uvcf1  21835  lindff1  21863  hausnei2  23382  dfconn2  23448  hausflimi  24009  hauspwpwf1  24016  cxpeq0  26738  his6  31131  fnpreimac  32689  deg1le0eq0  33563  lkreqN  39126  ltrnideq  40132  hdmapip0  41872  sticksstones2  42104  unitscyglem4  42155  rpnnen3  42989
  Copyright terms: Public domain W3C validator