MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon4d Structured version   Visualization version   GIF version

Theorem necon4d 2949
Description: Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
necon4d.1 (𝜑 → (𝐴𝐵𝐶𝐷))
Assertion
Ref Expression
necon4d (𝜑 → (𝐶 = 𝐷𝐴 = 𝐵))

Proof of Theorem necon4d
StepHypRef Expression
1 necon4d.1 . . 3 (𝜑 → (𝐴𝐵𝐶𝐷))
21necon2bd 2941 . 2 (𝜑 → (𝐶 = 𝐷 → ¬ 𝐴𝐵))
3 nne 2929 . 2 𝐴𝐵𝐴 = 𝐵)
42, 3imbitrdi 251 1 (𝜑 → (𝐶 = 𝐷𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wne 2925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2926
This theorem is referenced by:  oa00  8484  map0g  8818  epfrs  9646  fin23lem24  10235  abs00  15214  oddvds  19444  01eq0ringOLD  20434  isdomn4  20619  isabvd  20715  uvcf1  21717  lindff1  21745  hausnei2  23256  dfconn2  23322  hausflimi  23883  hauspwpwf1  23890  cxpeq0  26603  his6  31061  fnpreimac  32628  deg1le0eq0  33518  lkreqN  39148  ltrnideq  40154  hdmapip0  41894  sticksstones2  42120  unitscyglem4  42171  rpnnen3  43005
  Copyright terms: Public domain W3C validator