MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon4d Structured version   Visualization version   GIF version

Theorem necon4d 2960
Description: Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
necon4d.1 (𝜑 → (𝐴𝐵𝐶𝐷))
Assertion
Ref Expression
necon4d (𝜑 → (𝐶 = 𝐷𝐴 = 𝐵))

Proof of Theorem necon4d
StepHypRef Expression
1 necon4d.1 . . 3 (𝜑 → (𝐴𝐵𝐶𝐷))
21necon2bd 2952 . 2 (𝜑 → (𝐶 = 𝐷 → ¬ 𝐴𝐵))
3 nne 2940 . 2 𝐴𝐵𝐴 = 𝐵)
42, 3imbitrdi 250 1 (𝜑 → (𝐶 = 𝐷𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1534  wne 2936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2937
This theorem is referenced by:  oa00  8574  map0g  8897  epfrs  9749  fin23lem24  10340  abs00  15263  oddvds  19496  01eq0ringOLD  20462  isabvd  20694  isdomn4  21244  uvcf1  21720  lindff1  21748  hausnei2  23251  dfconn2  23317  hausflimi  23878  hauspwpwf1  23885  cxpeq0  26606  his6  30903  fnpreimac  32451  deg1le0eq0  33248  lkreqN  38637  ltrnideq  39643  hdmapip0  41383  sticksstones2  41614  rpnnen3  42444
  Copyright terms: Public domain W3C validator