MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon4d Structured version   Visualization version   GIF version

Theorem necon4d 2950
Description: Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
necon4d.1 (𝜑 → (𝐴𝐵𝐶𝐷))
Assertion
Ref Expression
necon4d (𝜑 → (𝐶 = 𝐷𝐴 = 𝐵))

Proof of Theorem necon4d
StepHypRef Expression
1 necon4d.1 . . 3 (𝜑 → (𝐴𝐵𝐶𝐷))
21necon2bd 2942 . 2 (𝜑 → (𝐶 = 𝐷 → ¬ 𝐴𝐵))
3 nne 2930 . 2 𝐴𝐵𝐴 = 𝐵)
42, 3imbitrdi 251 1 (𝜑 → (𝐶 = 𝐷𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wne 2926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2927
This theorem is referenced by:  oa00  8526  map0g  8860  epfrs  9691  fin23lem24  10282  abs00  15262  oddvds  19484  01eq0ringOLD  20447  isdomn4  20632  isabvd  20728  uvcf1  21708  lindff1  21736  hausnei2  23247  dfconn2  23313  hausflimi  23874  hauspwpwf1  23881  cxpeq0  26594  his6  31035  fnpreimac  32602  deg1le0eq0  33549  lkreqN  39170  ltrnideq  40176  hdmapip0  41916  sticksstones2  42142  unitscyglem4  42193  rpnnen3  43028
  Copyright terms: Public domain W3C validator