| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon1d | Structured version Visualization version GIF version | ||
| Description: Contrapositive law deduction for inequality. (Contributed by NM, 28-Dec-2008.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| necon1d.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝐶 = 𝐷)) |
| Ref | Expression |
|---|---|
| necon1d | ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon1d.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝐶 = 𝐷)) | |
| 2 | nne 2930 | . . 3 ⊢ (¬ 𝐶 ≠ 𝐷 ↔ 𝐶 = 𝐷) | |
| 3 | 1, 2 | imbitrrdi 252 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝐶 ≠ 𝐷)) |
| 4 | 3 | necon4ad 2945 | 1 ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2927 |
| This theorem is referenced by: disji 5095 mul02lem2 11358 mhpmulcl 22043 xblss2ps 24296 xblss2 24297 lgsne0 27253 h1datomi 31517 eigorthi 31773 disjif 32514 lineintmo 36152 poimirlem6 37627 poimirlem7 37628 2llnmat 39525 2lnat 39785 tendospcanN 41024 dihmeetlem13N 41320 dochkrshp 41387 remul02 42400 remul01 42402 sn-0tie0 42446 oppcthinendcALT 49434 |
| Copyright terms: Public domain | W3C validator |