| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon1d | Structured version Visualization version GIF version | ||
| Description: Contrapositive law deduction for inequality. (Contributed by NM, 28-Dec-2008.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| necon1d.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝐶 = 𝐷)) |
| Ref | Expression |
|---|---|
| necon1d | ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon1d.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝐶 = 𝐷)) | |
| 2 | nne 2936 | . . 3 ⊢ (¬ 𝐶 ≠ 𝐷 ↔ 𝐶 = 𝐷) | |
| 3 | 1, 2 | imbitrrdi 252 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝐶 ≠ 𝐷)) |
| 4 | 3 | necon4ad 2951 | 1 ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2933 |
| This theorem is referenced by: disji 5104 mul02lem2 11410 mhpmulcl 22085 xblss2ps 24338 xblss2 24339 lgsne0 27296 h1datomi 31508 eigorthi 31764 disjif 32505 lineintmo 36121 poimirlem6 37596 poimirlem7 37597 2llnmat 39489 2lnat 39749 tendospcanN 40988 dihmeetlem13N 41284 dochkrshp 41351 remul02 42395 remul01 42397 sn-0tie0 42429 oppcthinendcALT 49244 |
| Copyright terms: Public domain | W3C validator |