MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1d Structured version   Visualization version   GIF version

Theorem necon1d 2964
Description: Contrapositive law deduction for inequality. (Contributed by NM, 28-Dec-2008.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
necon1d.1 (𝜑 → (𝐴𝐵𝐶 = 𝐷))
Assertion
Ref Expression
necon1d (𝜑 → (𝐶𝐷𝐴 = 𝐵))

Proof of Theorem necon1d
StepHypRef Expression
1 necon1d.1 . . 3 (𝜑 → (𝐴𝐵𝐶 = 𝐷))
2 nne 2946 . . 3 𝐶𝐷𝐶 = 𝐷)
31, 2syl6ibr 251 . 2 (𝜑 → (𝐴𝐵 → ¬ 𝐶𝐷))
43necon4ad 2961 1 (𝜑 → (𝐶𝐷𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wne 2942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2943
This theorem is referenced by:  disji  5053  mul02lem2  11082  mhpmulcl  21249  xblss2ps  23462  xblss2  23463  lgsne0  26388  h1datomi  29844  eigorthi  30100  disjif  30818  lineintmo  34386  poimirlem6  35710  poimirlem7  35711  2llnmat  37465  2lnat  37725  tendospcanN  38964  dihmeetlem13N  39260  dochkrshp  39327  remul02  40309  remul01  40311  sn-0tie0  40342
  Copyright terms: Public domain W3C validator