MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1d Structured version   Visualization version   GIF version

Theorem necon1d 2961
Description: Contrapositive law deduction for inequality. (Contributed by NM, 28-Dec-2008.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
necon1d.1 (𝜑 → (𝐴𝐵𝐶 = 𝐷))
Assertion
Ref Expression
necon1d (𝜑 → (𝐶𝐷𝐴 = 𝐵))

Proof of Theorem necon1d
StepHypRef Expression
1 necon1d.1 . . 3 (𝜑 → (𝐴𝐵𝐶 = 𝐷))
2 nne 2943 . . 3 𝐶𝐷𝐶 = 𝐷)
31, 2imbitrrdi 251 . 2 (𝜑 → (𝐴𝐵 → ¬ 𝐶𝐷))
43necon4ad 2958 1 (𝜑 → (𝐶𝐷𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wne 2939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2940
This theorem is referenced by:  disji  5131  mul02lem2  11398  mhpmulcl  21914  xblss2ps  24140  xblss2  24141  lgsne0  27089  h1datomi  31116  eigorthi  31372  disjif  32091  lineintmo  35448  poimirlem6  36810  poimirlem7  36811  2llnmat  38711  2lnat  38971  tendospcanN  40210  dihmeetlem13N  40506  dochkrshp  40573  remul02  41593  remul01  41595  sn-0tie0  41627
  Copyright terms: Public domain W3C validator