![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon1d | Structured version Visualization version GIF version |
Description: Contrapositive law deduction for inequality. (Contributed by NM, 28-Dec-2008.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
necon1d.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝐶 = 𝐷)) |
Ref | Expression |
---|---|
necon1d | ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon1d.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝐶 = 𝐷)) | |
2 | nne 2950 | . . 3 ⊢ (¬ 𝐶 ≠ 𝐷 ↔ 𝐶 = 𝐷) | |
3 | 1, 2 | imbitrrdi 252 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝐶 ≠ 𝐷)) |
4 | 3 | necon4ad 2965 | 1 ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2947 |
This theorem is referenced by: disji 5151 mul02lem2 11467 mhpmulcl 22176 xblss2ps 24432 xblss2 24433 lgsne0 27397 h1datomi 31613 eigorthi 31869 disjif 32600 lineintmo 36121 poimirlem6 37586 poimirlem7 37587 2llnmat 39481 2lnat 39741 tendospcanN 40980 dihmeetlem13N 41276 dochkrshp 41343 remul02 42381 remul01 42383 sn-0tie0 42415 |
Copyright terms: Public domain | W3C validator |