| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon1d | Structured version Visualization version GIF version | ||
| Description: Contrapositive law deduction for inequality. (Contributed by NM, 28-Dec-2008.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| necon1d.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝐶 = 𝐷)) |
| Ref | Expression |
|---|---|
| necon1d | ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon1d.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝐶 = 𝐷)) | |
| 2 | nne 2936 | . . 3 ⊢ (¬ 𝐶 ≠ 𝐷 ↔ 𝐶 = 𝐷) | |
| 3 | 1, 2 | imbitrrdi 252 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝐶 ≠ 𝐷)) |
| 4 | 3 | necon4ad 2951 | 1 ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2933 |
| This theorem is referenced by: disji 5104 mul02lem2 11412 mhpmulcl 22087 xblss2ps 24340 xblss2 24341 lgsne0 27298 h1datomi 31562 eigorthi 31818 disjif 32559 lineintmo 36175 poimirlem6 37650 poimirlem7 37651 2llnmat 39543 2lnat 39803 tendospcanN 41042 dihmeetlem13N 41338 dochkrshp 41405 remul02 42448 remul01 42450 sn-0tie0 42482 oppcthinendcALT 49327 |
| Copyright terms: Public domain | W3C validator |