MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1d Structured version   Visualization version   GIF version

Theorem necon1d 2965
Description: Contrapositive law deduction for inequality. (Contributed by NM, 28-Dec-2008.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
necon1d.1 (𝜑 → (𝐴𝐵𝐶 = 𝐷))
Assertion
Ref Expression
necon1d (𝜑 → (𝐶𝐷𝐴 = 𝐵))

Proof of Theorem necon1d
StepHypRef Expression
1 necon1d.1 . . 3 (𝜑 → (𝐴𝐵𝐶 = 𝐷))
2 nne 2947 . . 3 𝐶𝐷𝐶 = 𝐷)
31, 2syl6ibr 251 . 2 (𝜑 → (𝐴𝐵 → ¬ 𝐶𝐷))
43necon4ad 2962 1 (𝜑 → (𝐶𝐷𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wne 2943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2944
This theorem is referenced by:  disji  5057  mul02lem2  11152  mhpmulcl  21339  xblss2ps  23554  xblss2  23555  lgsne0  26483  h1datomi  29943  eigorthi  30199  disjif  30917  lineintmo  34459  poimirlem6  35783  poimirlem7  35784  2llnmat  37538  2lnat  37798  tendospcanN  39037  dihmeetlem13N  39333  dochkrshp  39400  remul02  40388  remul01  40390  sn-0tie0  40421
  Copyright terms: Public domain W3C validator