| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon1d | Structured version Visualization version GIF version | ||
| Description: Contrapositive law deduction for inequality. (Contributed by NM, 28-Dec-2008.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| necon1d.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝐶 = 𝐷)) |
| Ref | Expression |
|---|---|
| necon1d | ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon1d.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝐶 = 𝐷)) | |
| 2 | nne 2929 | . . 3 ⊢ (¬ 𝐶 ≠ 𝐷 ↔ 𝐶 = 𝐷) | |
| 3 | 1, 2 | imbitrrdi 252 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝐶 ≠ 𝐷)) |
| 4 | 3 | necon4ad 2944 | 1 ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: disji 5080 mul02lem2 11311 mhpmulcl 22052 xblss2ps 24305 xblss2 24306 lgsne0 27262 h1datomi 31543 eigorthi 31799 disjif 32540 lineintmo 36130 poimirlem6 37605 poimirlem7 37606 2llnmat 39503 2lnat 39763 tendospcanN 41002 dihmeetlem13N 41298 dochkrshp 41365 remul02 42378 remul01 42380 sn-0tie0 42424 oppcthinendcALT 49427 |
| Copyright terms: Public domain | W3C validator |