MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1d Structured version   Visualization version   GIF version

Theorem necon1d 2948
Description: Contrapositive law deduction for inequality. (Contributed by NM, 28-Dec-2008.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
necon1d.1 (𝜑 → (𝐴𝐵𝐶 = 𝐷))
Assertion
Ref Expression
necon1d (𝜑 → (𝐶𝐷𝐴 = 𝐵))

Proof of Theorem necon1d
StepHypRef Expression
1 necon1d.1 . . 3 (𝜑 → (𝐴𝐵𝐶 = 𝐷))
2 nne 2930 . . 3 𝐶𝐷𝐶 = 𝐷)
31, 2imbitrrdi 252 . 2 (𝜑 → (𝐴𝐵 → ¬ 𝐶𝐷))
43necon4ad 2945 1 (𝜑 → (𝐶𝐷𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wne 2926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2927
This theorem is referenced by:  disji  5095  mul02lem2  11358  mhpmulcl  22043  xblss2ps  24296  xblss2  24297  lgsne0  27253  h1datomi  31517  eigorthi  31773  disjif  32514  lineintmo  36152  poimirlem6  37627  poimirlem7  37628  2llnmat  39525  2lnat  39785  tendospcanN  41024  dihmeetlem13N  41320  dochkrshp  41387  remul02  42400  remul01  42402  sn-0tie0  42446  oppcthinendcALT  49434
  Copyright terms: Public domain W3C validator