MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1d Structured version   Visualization version   GIF version

Theorem necon1d 2968
Description: Contrapositive law deduction for inequality. (Contributed by NM, 28-Dec-2008.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
necon1d.1 (𝜑 → (𝐴𝐵𝐶 = 𝐷))
Assertion
Ref Expression
necon1d (𝜑 → (𝐶𝐷𝐴 = 𝐵))

Proof of Theorem necon1d
StepHypRef Expression
1 necon1d.1 . . 3 (𝜑 → (𝐴𝐵𝐶 = 𝐷))
2 nne 2950 . . 3 𝐶𝐷𝐶 = 𝐷)
31, 2imbitrrdi 252 . 2 (𝜑 → (𝐴𝐵 → ¬ 𝐶𝐷))
43necon4ad 2965 1 (𝜑 → (𝐶𝐷𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wne 2946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2947
This theorem is referenced by:  disji  5151  mul02lem2  11467  mhpmulcl  22176  xblss2ps  24432  xblss2  24433  lgsne0  27397  h1datomi  31613  eigorthi  31869  disjif  32600  lineintmo  36121  poimirlem6  37586  poimirlem7  37587  2llnmat  39481  2lnat  39741  tendospcanN  40980  dihmeetlem13N  41276  dochkrshp  41343  remul02  42381  remul01  42383  sn-0tie0  42415
  Copyright terms: Public domain W3C validator