MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1d Structured version   Visualization version   GIF version

Theorem necon1d 2947
Description: Contrapositive law deduction for inequality. (Contributed by NM, 28-Dec-2008.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
necon1d.1 (𝜑 → (𝐴𝐵𝐶 = 𝐷))
Assertion
Ref Expression
necon1d (𝜑 → (𝐶𝐷𝐴 = 𝐵))

Proof of Theorem necon1d
StepHypRef Expression
1 necon1d.1 . . 3 (𝜑 → (𝐴𝐵𝐶 = 𝐷))
2 nne 2929 . . 3 𝐶𝐷𝐶 = 𝐷)
31, 2imbitrrdi 252 . 2 (𝜑 → (𝐴𝐵 → ¬ 𝐶𝐷))
43necon4ad 2944 1 (𝜑 → (𝐶𝐷𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wne 2925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2926
This theorem is referenced by:  disji  5080  mul02lem2  11311  mhpmulcl  22052  xblss2ps  24305  xblss2  24306  lgsne0  27262  h1datomi  31543  eigorthi  31799  disjif  32540  lineintmo  36130  poimirlem6  37605  poimirlem7  37606  2llnmat  39503  2lnat  39763  tendospcanN  41002  dihmeetlem13N  41298  dochkrshp  41365  remul02  42378  remul01  42380  sn-0tie0  42424  oppcthinendcALT  49427
  Copyright terms: Public domain W3C validator