MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1d Structured version   Visualization version   GIF version

Theorem necon1d 2954
Description: Contrapositive law deduction for inequality. (Contributed by NM, 28-Dec-2008.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
necon1d.1 (𝜑 → (𝐴𝐵𝐶 = 𝐷))
Assertion
Ref Expression
necon1d (𝜑 → (𝐶𝐷𝐴 = 𝐵))

Proof of Theorem necon1d
StepHypRef Expression
1 necon1d.1 . . 3 (𝜑 → (𝐴𝐵𝐶 = 𝐷))
2 nne 2936 . . 3 𝐶𝐷𝐶 = 𝐷)
31, 2imbitrrdi 252 . 2 (𝜑 → (𝐴𝐵 → ¬ 𝐶𝐷))
43necon4ad 2951 1 (𝜑 → (𝐶𝐷𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wne 2932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2933
This theorem is referenced by:  disji  5104  mul02lem2  11410  mhpmulcl  22085  xblss2ps  24338  xblss2  24339  lgsne0  27296  h1datomi  31508  eigorthi  31764  disjif  32505  lineintmo  36121  poimirlem6  37596  poimirlem7  37597  2llnmat  39489  2lnat  39749  tendospcanN  40988  dihmeetlem13N  41284  dochkrshp  41351  remul02  42395  remul01  42397  sn-0tie0  42429  oppcthinendcALT  49244
  Copyright terms: Public domain W3C validator