![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon1d | Structured version Visualization version GIF version |
Description: Contrapositive law deduction for inequality. (Contributed by NM, 28-Dec-2008.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
necon1d.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝐶 = 𝐷)) |
Ref | Expression |
---|---|
necon1d | ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon1d.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝐶 = 𝐷)) | |
2 | nne 2975 | . . 3 ⊢ (¬ 𝐶 ≠ 𝐷 ↔ 𝐶 = 𝐷) | |
3 | 1, 2 | syl6ibr 244 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝐶 ≠ 𝐷)) |
4 | 3 | necon4ad 2990 | 1 ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1653 ≠ wne 2971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-ne 2972 |
This theorem is referenced by: disji 4828 mul02lem2 10503 xblss2ps 22534 xblss2 22535 lgsne0 25412 h1datomi 28965 eigorthi 29221 disjif 29908 lineintmo 32777 poimirlem6 33904 poimirlem7 33905 2llnmat 35545 2lnat 35805 tendospcanN 37044 dihmeetlem13N 37340 dochkrshp 37407 |
Copyright terms: Public domain | W3C validator |