MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnf Structured version   Visualization version   GIF version

Theorem cantnf 9429
Description: The Cantor Normal Form theorem. The function (𝐴 CNF 𝐵), which maps a finitely supported function from 𝐵 to 𝐴 to the sum ((𝐴o 𝑓(𝑎1)) ∘ 𝑎1) +o ((𝐴o 𝑓(𝑎2)) ∘ 𝑎2) +o ... over all indices 𝑎 < 𝐵 such that 𝑓(𝑎) is nonzero, is an order isomorphism from the ordering 𝑇 of finitely supported functions to the set (𝐴o 𝐵) under the natural order. Setting 𝐴 = ω and letting 𝐵 be arbitrarily large, the surjectivity of this function implies that every ordinal has a Cantor normal form (and injectivity, together with coherence cantnfres 9413, implies that such a representation is unique). (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
Assertion
Ref Expression
cantnf (𝜑 → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴o 𝐵)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝐴,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cantnf
Dummy variables 𝑓 𝑐 𝑔 𝑘 𝑡 𝑢 𝑣 𝑎 𝑏 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . 3 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
3 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
4 oemapval.t . . 3 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
51, 2, 3, 4oemapso 9418 . 2 (𝜑𝑇 Or 𝑆)
6 oecl 8352 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
72, 3, 6syl2anc 584 . . . 4 (𝜑 → (𝐴o 𝐵) ∈ On)
8 eloni 6275 . . . 4 ((𝐴o 𝐵) ∈ On → Ord (𝐴o 𝐵))
97, 8syl 17 . . 3 (𝜑 → Ord (𝐴o 𝐵))
10 ordwe 6278 . . 3 (Ord (𝐴o 𝐵) → E We (𝐴o 𝐵))
11 weso 5581 . . 3 ( E We (𝐴o 𝐵) → E Or (𝐴o 𝐵))
12 sopo 5523 . . 3 ( E Or (𝐴o 𝐵) → E Po (𝐴o 𝐵))
139, 10, 11, 124syl 19 . 2 (𝜑 → E Po (𝐴o 𝐵))
141, 2, 3cantnff 9410 . . 3 (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵))
1514frnd 6606 . . . 4 (𝜑 → ran (𝐴 CNF 𝐵) ⊆ (𝐴o 𝐵))
16 onss 7628 . . . . . . . 8 ((𝐴o 𝐵) ∈ On → (𝐴o 𝐵) ⊆ On)
177, 16syl 17 . . . . . . 7 (𝜑 → (𝐴o 𝐵) ⊆ On)
1817sseld 3925 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ On))
19 eleq1w 2823 . . . . . . . . . 10 (𝑡 = 𝑦 → (𝑡 ∈ (𝐴o 𝐵) ↔ 𝑦 ∈ (𝐴o 𝐵)))
20 eleq1w 2823 . . . . . . . . . 10 (𝑡 = 𝑦 → (𝑡 ∈ ran (𝐴 CNF 𝐵) ↔ 𝑦 ∈ ran (𝐴 CNF 𝐵)))
2119, 20imbi12d 345 . . . . . . . . 9 (𝑡 = 𝑦 → ((𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)) ↔ (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))))
2221imbi2d 341 . . . . . . . 8 (𝑡 = 𝑦 → ((𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))) ↔ (𝜑 → (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)))))
23 r19.21v 3103 . . . . . . . . 9 (∀𝑦𝑡 (𝜑 → (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) ↔ (𝜑 → ∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))))
24 ordelss 6281 . . . . . . . . . . . . . . . . . . 19 ((Ord (𝐴o 𝐵) ∧ 𝑡 ∈ (𝐴o 𝐵)) → 𝑡 ⊆ (𝐴o 𝐵))
259, 24sylan 580 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (𝐴o 𝐵)) → 𝑡 ⊆ (𝐴o 𝐵))
2625sselda 3926 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡 ∈ (𝐴o 𝐵)) ∧ 𝑦𝑡) → 𝑦 ∈ (𝐴o 𝐵))
27 pm5.5 362 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (𝐴o 𝐵) → ((𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ 𝑦 ∈ ran (𝐴 CNF 𝐵)))
2826, 27syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑡 ∈ (𝐴o 𝐵)) ∧ 𝑦𝑡) → ((𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ 𝑦 ∈ ran (𝐴 CNF 𝐵)))
2928ralbidva 3122 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (𝐴o 𝐵)) → (∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ ∀𝑦𝑡 𝑦 ∈ ran (𝐴 CNF 𝐵)))
30 dfss3 3914 . . . . . . . . . . . . . . 15 (𝑡 ⊆ ran (𝐴 CNF 𝐵) ↔ ∀𝑦𝑡 𝑦 ∈ ran (𝐴 CNF 𝐵))
3129, 30bitr4di 289 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (𝐴o 𝐵)) → (∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ 𝑡 ⊆ ran (𝐴 CNF 𝐵)))
32 eleq1 2828 . . . . . . . . . . . . . . . 16 (𝑡 = ∅ → (𝑡 ∈ ran (𝐴 CNF 𝐵) ↔ ∅ ∈ ran (𝐴 CNF 𝐵)))
332adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝐴 ∈ On)
3433adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝐴 ∈ On)
353adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝐵 ∈ On)
3635adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝐵 ∈ On)
37 simplrl 774 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝑡 ∈ (𝐴o 𝐵))
38 simplrr 775 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝑡 ⊆ ran (𝐴 CNF 𝐵))
397adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴o 𝐵) ∈ On)
40 simprl 768 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝑡 ∈ (𝐴o 𝐵))
41 onelon 6290 . . . . . . . . . . . . . . . . . . . 20 (((𝐴o 𝐵) ∈ On ∧ 𝑡 ∈ (𝐴o 𝐵)) → 𝑡 ∈ On)
4239, 40, 41syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝑡 ∈ On)
43 on0eln0 6320 . . . . . . . . . . . . . . . . . . 19 (𝑡 ∈ On → (∅ ∈ 𝑡𝑡 ≠ ∅))
4442, 43syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (∅ ∈ 𝑡𝑡 ≠ ∅))
4544biimpar 478 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → ∅ ∈ 𝑡)
46 eqid 2740 . . . . . . . . . . . . . . . . 17 {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)} = {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}
47 eqid 2740 . . . . . . . . . . . . . . . . 17 (℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡)) = (℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡))
48 eqid 2740 . . . . . . . . . . . . . . . . 17 (1st ‘(℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡))) = (1st ‘(℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡)))
49 eqid 2740 . . . . . . . . . . . . . . . . 17 (2nd ‘(℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡))) = (2nd ‘(℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡)))
501, 34, 36, 4, 37, 38, 45, 46, 47, 48, 49cantnflem4 9428 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝑡 ∈ ran (𝐴 CNF 𝐵))
51 fczsupp0 8000 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 × {∅}) supp ∅) = ∅
5251eqcomi 2749 . . . . . . . . . . . . . . . . . . . 20 ∅ = ((𝐵 × {∅}) supp ∅)
53 oieq2 9250 . . . . . . . . . . . . . . . . . . . 20 (∅ = ((𝐵 × {∅}) supp ∅) → OrdIso( E , ∅) = OrdIso( E , ((𝐵 × {∅}) supp ∅)))
5452, 53ax-mp 5 . . . . . . . . . . . . . . . . . . 19 OrdIso( E , ∅) = OrdIso( E , ((𝐵 × {∅}) supp ∅))
55 ne0i 4274 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 ∈ (𝐴o 𝐵) → (𝐴o 𝐵) ≠ ∅)
5655ad2antrl 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴o 𝐵) ≠ ∅)
57 oveq1 7278 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴 = ∅ → (𝐴o 𝐵) = (∅ ↑o 𝐵))
5857neeq1d 3005 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 = ∅ → ((𝐴o 𝐵) ≠ ∅ ↔ (∅ ↑o 𝐵) ≠ ∅))
5956, 58syl5ibcom 244 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴 = ∅ → (∅ ↑o 𝐵) ≠ ∅))
6059necon2d 2968 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((∅ ↑o 𝐵) = ∅ → 𝐴 ≠ ∅))
61 on0eln0 6320 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐵 ∈ On → (∅ ∈ 𝐵𝐵 ≠ ∅))
62 oe0m1 8336 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ (∅ ↑o 𝐵) = ∅))
6361, 62bitr3d 280 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐵 ∈ On → (𝐵 ≠ ∅ ↔ (∅ ↑o 𝐵) = ∅))
6435, 63syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 ≠ ∅ ↔ (∅ ↑o 𝐵) = ∅))
65 on0eln0 6320 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
6633, 65syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (∅ ∈ 𝐴𝐴 ≠ ∅))
6760, 64, 663imtr4d 294 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 ≠ ∅ → ∅ ∈ 𝐴))
68 ne0i 4274 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵𝐵 ≠ ∅)
6967, 68impel 506 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑦𝐵) → ∅ ∈ 𝐴)
70 fconstmpt 5650 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 × {∅}) = (𝑦𝐵 ↦ ∅)
7169, 70fmptd 6985 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 × {∅}):𝐵𝐴)
72 0ex 5235 . . . . . . . . . . . . . . . . . . . . . . 23 ∅ ∈ V
7372a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ∅ ∈ V)
743, 73fczfsuppd 9124 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐵 × {∅}) finSupp ∅)
7574adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 × {∅}) finSupp ∅)
761, 2, 3cantnfs 9402 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐵 × {∅}) ∈ 𝑆 ↔ ((𝐵 × {∅}):𝐵𝐴 ∧ (𝐵 × {∅}) finSupp ∅)))
7776adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐵 × {∅}) ∈ 𝑆 ↔ ((𝐵 × {∅}):𝐵𝐴 ∧ (𝐵 × {∅}) finSupp ∅)))
7871, 75, 77mpbir2and 710 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 × {∅}) ∈ 𝑆)
79 eqid 2740 . . . . . . . . . . . . . . . . . . 19 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)
801, 33, 35, 54, 78, 79cantnfval 9404 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ∅)))
81 we0 5585 . . . . . . . . . . . . . . . . . . . . . 22 E We ∅
82 eqid 2740 . . . . . . . . . . . . . . . . . . . . . . 23 OrdIso( E , ∅) = OrdIso( E , ∅)
8382oien 9275 . . . . . . . . . . . . . . . . . . . . . 22 ((∅ ∈ V ∧ E We ∅) → dom OrdIso( E , ∅) ≈ ∅)
8472, 81, 83mp2an 689 . . . . . . . . . . . . . . . . . . . . 21 dom OrdIso( E , ∅) ≈ ∅
85 en0 8786 . . . . . . . . . . . . . . . . . . . . 21 (dom OrdIso( E , ∅) ≈ ∅ ↔ dom OrdIso( E , ∅) = ∅)
8684, 85mpbi 229 . . . . . . . . . . . . . . . . . . . 20 dom OrdIso( E , ∅) = ∅
8786fveq2i 6774 . . . . . . . . . . . . . . . . . . 19 (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ∅)) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘∅)
8879seqom0g 8278 . . . . . . . . . . . . . . . . . . . 20 (∅ ∈ V → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘∅) = ∅)
8972, 88ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘∅) = ∅
9087, 89eqtri 2768 . . . . . . . . . . . . . . . . . 18 (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ∅)) = ∅
9180, 90eqtrdi 2796 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = ∅)
9214adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵))
9392ffnd 6599 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴 CNF 𝐵) Fn 𝑆)
94 fnfvelrn 6955 . . . . . . . . . . . . . . . . . 18 (((𝐴 CNF 𝐵) Fn 𝑆 ∧ (𝐵 × {∅}) ∈ 𝑆) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) ∈ ran (𝐴 CNF 𝐵))
9593, 78, 94syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) ∈ ran (𝐴 CNF 𝐵))
9691, 95eqeltrrd 2842 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ∅ ∈ ran (𝐴 CNF 𝐵))
9732, 50, 96pm2.61ne 3032 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝑡 ∈ ran (𝐴 CNF 𝐵))
9897expr 457 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (𝐴o 𝐵)) → (𝑡 ⊆ ran (𝐴 CNF 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))
9931, 98sylbid 239 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝐴o 𝐵)) → (∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))
10099ex 413 . . . . . . . . . . . 12 (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → (∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
101100com23 86 . . . . . . . . . . 11 (𝜑 → (∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
102101a2i 14 . . . . . . . . . 10 ((𝜑 → ∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) → (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
103102a1i 11 . . . . . . . . 9 (𝑡 ∈ On → ((𝜑 → ∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) → (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))))
10423, 103syl5bi 241 . . . . . . . 8 (𝑡 ∈ On → (∀𝑦𝑡 (𝜑 → (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) → (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))))
10522, 104tfis2 7697 . . . . . . 7 (𝑡 ∈ On → (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
106105com3l 89 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → (𝑡 ∈ On → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
10718, 106mpdd 43 . . . . 5 (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))
108107ssrdv 3932 . . . 4 (𝜑 → (𝐴o 𝐵) ⊆ ran (𝐴 CNF 𝐵))
10915, 108eqssd 3943 . . 3 (𝜑 → ran (𝐴 CNF 𝐵) = (𝐴o 𝐵))
110 dffo2 6690 . . 3 ((𝐴 CNF 𝐵):𝑆onto→(𝐴o 𝐵) ↔ ((𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵) ∧ ran (𝐴 CNF 𝐵) = (𝐴o 𝐵)))
11114, 109, 110sylanbrc 583 . 2 (𝜑 → (𝐴 CNF 𝐵):𝑆onto→(𝐴o 𝐵))
1122adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝐴 ∈ On)
1133adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝐵 ∈ On)
114 fveq2 6771 . . . . . . . . . . . 12 (𝑧 = 𝑡 → (𝑥𝑧) = (𝑥𝑡))
115 fveq2 6771 . . . . . . . . . . . 12 (𝑧 = 𝑡 → (𝑦𝑧) = (𝑦𝑡))
116114, 115eleq12d 2835 . . . . . . . . . . 11 (𝑧 = 𝑡 → ((𝑥𝑧) ∈ (𝑦𝑧) ↔ (𝑥𝑡) ∈ (𝑦𝑡)))
117 eleq1w 2823 . . . . . . . . . . . . 13 (𝑧 = 𝑡 → (𝑧𝑤𝑡𝑤))
118117imbi1d 342 . . . . . . . . . . . 12 (𝑧 = 𝑡 → ((𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))))
119118ralbidv 3123 . . . . . . . . . . 11 (𝑧 = 𝑡 → (∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))))
120116, 119anbi12d 631 . . . . . . . . . 10 (𝑧 = 𝑡 → (((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ((𝑥𝑡) ∈ (𝑦𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤)))))
121120cbvrexvw 3382 . . . . . . . . 9 (∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑡𝐵 ((𝑥𝑡) ∈ (𝑦𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))))
122 fveq1 6770 . . . . . . . . . . . 12 (𝑥 = 𝑢 → (𝑥𝑡) = (𝑢𝑡))
123 fveq1 6770 . . . . . . . . . . . 12 (𝑦 = 𝑣 → (𝑦𝑡) = (𝑣𝑡))
124 eleq12 2830 . . . . . . . . . . . 12 (((𝑥𝑡) = (𝑢𝑡) ∧ (𝑦𝑡) = (𝑣𝑡)) → ((𝑥𝑡) ∈ (𝑦𝑡) ↔ (𝑢𝑡) ∈ (𝑣𝑡)))
125122, 123, 124syl2an 596 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝑥𝑡) ∈ (𝑦𝑡) ↔ (𝑢𝑡) ∈ (𝑣𝑡)))
126 fveq1 6770 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → (𝑥𝑤) = (𝑢𝑤))
127 fveq1 6770 . . . . . . . . . . . . . 14 (𝑦 = 𝑣 → (𝑦𝑤) = (𝑣𝑤))
128126, 127eqeqan12d 2754 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝑥𝑤) = (𝑦𝑤) ↔ (𝑢𝑤) = (𝑣𝑤)))
129128imbi2d 341 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤))))
130129ralbidv 3123 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑣) → (∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤))))
131125, 130anbi12d 631 . . . . . . . . . 10 ((𝑥 = 𝑢𝑦 = 𝑣) → (((𝑥𝑡) ∈ (𝑦𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))))
132131rexbidv 3228 . . . . . . . . 9 ((𝑥 = 𝑢𝑦 = 𝑣) → (∃𝑡𝐵 ((𝑥𝑡) ∈ (𝑦𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑡𝐵 ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))))
133121, 132bitrid 282 . . . . . . . 8 ((𝑥 = 𝑢𝑦 = 𝑣) → (∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑡𝐵 ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))))
134133cbvopabv 5152 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))} = {⟨𝑢, 𝑣⟩ ∣ ∃𝑡𝐵 ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))}
1354, 134eqtri 2768 . . . . . 6 𝑇 = {⟨𝑢, 𝑣⟩ ∣ ∃𝑡𝐵 ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))}
136 simprll 776 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝑓𝑆)
137 simprlr 777 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝑔𝑆)
138 simprr 770 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝑓𝑇𝑔)
139 eqid 2740 . . . . . 6 {𝑐𝐵 ∣ (𝑓𝑐) ∈ (𝑔𝑐)} = {𝑐𝐵 ∣ (𝑓𝑐) ∈ (𝑔𝑐)}
140 eqid 2740 . . . . . 6 OrdIso( E , (𝑔 supp ∅)) = OrdIso( E , (𝑔 supp ∅))
141 eqid 2740 . . . . . 6 seqω((𝑘 ∈ V, 𝑡 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑔 supp ∅))‘𝑘)) ·o (𝑔‘(OrdIso( E , (𝑔 supp ∅))‘𝑘))) +o 𝑡)), ∅) = seqω((𝑘 ∈ V, 𝑡 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑔 supp ∅))‘𝑘)) ·o (𝑔‘(OrdIso( E , (𝑔 supp ∅))‘𝑘))) +o 𝑡)), ∅)
1421, 112, 113, 135, 136, 137, 138, 139, 140, 141cantnflem1 9425 . . . . 5 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → ((𝐴 CNF 𝐵)‘𝑓) ∈ ((𝐴 CNF 𝐵)‘𝑔))
143 fvex 6784 . . . . . 6 ((𝐴 CNF 𝐵)‘𝑔) ∈ V
144143epeli 5498 . . . . 5 (((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔) ↔ ((𝐴 CNF 𝐵)‘𝑓) ∈ ((𝐴 CNF 𝐵)‘𝑔))
145142, 144sylibr 233 . . . 4 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔))
146145expr 457 . . 3 ((𝜑 ∧ (𝑓𝑆𝑔𝑆)) → (𝑓𝑇𝑔 → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔)))
147146ralrimivva 3117 . 2 (𝜑 → ∀𝑓𝑆𝑔𝑆 (𝑓𝑇𝑔 → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔)))
148 soisoi 7195 . 2 (((𝑇 Or 𝑆 ∧ E Po (𝐴o 𝐵)) ∧ ((𝐴 CNF 𝐵):𝑆onto→(𝐴o 𝐵) ∧ ∀𝑓𝑆𝑔𝑆 (𝑓𝑇𝑔 → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔)))) → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴o 𝐵)))
1495, 13, 111, 147, 148syl22anc 836 1 (𝜑 → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wne 2945  wral 3066  wrex 3067  {crab 3070  Vcvv 3431  wss 3892  c0 4262  {csn 4567  cop 4573   cuni 4845   cint 4885   class class class wbr 5079  {copab 5141   E cep 5495   Po wpo 5502   Or wor 5503   We wwe 5544   × cxp 5588  dom cdm 5590  ran crn 5591  Ord word 6264  Oncon0 6265  cio 6388   Fn wfn 6427  wf 6428  ontowfo 6430  cfv 6432   Isom wiso 6433  (class class class)co 7271  cmpo 7273  1st c1st 7822  2nd c2nd 7823   supp csupp 7968  seqωcseqom 8269   +o coa 8285   ·o comu 8286  o coe 8287  cen 8713   finSupp cfsupp 9106  OrdIsocoi 9246   CNF ccnf 9397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-supp 7969  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-seqom 8270  df-1o 8288  df-2o 8289  df-oadd 8292  df-omul 8293  df-oexp 8294  df-er 8481  df-map 8600  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fsupp 9107  df-oi 9247  df-cnf 9398
This theorem is referenced by:  oemapwe  9430  cantnffval2  9431  cantnff1o  9432
  Copyright terms: Public domain W3C validator