Step | Hyp | Ref
| Expression |
1 | | cantnfs.s |
. . 3
⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
2 | | cantnfs.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ On) |
3 | | cantnfs.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ On) |
4 | | oemapval.t |
. . 3
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
5 | 1, 2, 3, 4 | oemapso 9418 |
. 2
⊢ (𝜑 → 𝑇 Or 𝑆) |
6 | | oecl 8352 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) ∈ On) |
7 | 2, 3, 6 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝐴 ↑o 𝐵) ∈ On) |
8 | | eloni 6275 |
. . . 4
⊢ ((𝐴 ↑o 𝐵) ∈ On → Ord (𝐴 ↑o 𝐵)) |
9 | 7, 8 | syl 17 |
. . 3
⊢ (𝜑 → Ord (𝐴 ↑o 𝐵)) |
10 | | ordwe 6278 |
. . 3
⊢ (Ord
(𝐴 ↑o 𝐵) → E We (𝐴 ↑o 𝐵)) |
11 | | weso 5581 |
. . 3
⊢ ( E We
(𝐴 ↑o 𝐵) → E Or (𝐴 ↑o 𝐵)) |
12 | | sopo 5523 |
. . 3
⊢ ( E Or
(𝐴 ↑o 𝐵) → E Po (𝐴 ↑o 𝐵)) |
13 | 9, 10, 11, 12 | 4syl 19 |
. 2
⊢ (𝜑 → E Po (𝐴 ↑o 𝐵)) |
14 | 1, 2, 3 | cantnff 9410 |
. . 3
⊢ (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴 ↑o 𝐵)) |
15 | 14 | frnd 6606 |
. . . 4
⊢ (𝜑 → ran (𝐴 CNF 𝐵) ⊆ (𝐴 ↑o 𝐵)) |
16 | | onss 7628 |
. . . . . . . 8
⊢ ((𝐴 ↑o 𝐵) ∈ On → (𝐴 ↑o 𝐵) ⊆ On) |
17 | 7, 16 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ↑o 𝐵) ⊆ On) |
18 | 17 | sseld 3925 |
. . . . . 6
⊢ (𝜑 → (𝑡 ∈ (𝐴 ↑o 𝐵) → 𝑡 ∈ On)) |
19 | | eleq1w 2823 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑦 → (𝑡 ∈ (𝐴 ↑o 𝐵) ↔ 𝑦 ∈ (𝐴 ↑o 𝐵))) |
20 | | eleq1w 2823 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑦 → (𝑡 ∈ ran (𝐴 CNF 𝐵) ↔ 𝑦 ∈ ran (𝐴 CNF 𝐵))) |
21 | 19, 20 | imbi12d 345 |
. . . . . . . . 9
⊢ (𝑡 = 𝑦 → ((𝑡 ∈ (𝐴 ↑o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)) ↔ (𝑦 ∈ (𝐴 ↑o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)))) |
22 | 21 | imbi2d 341 |
. . . . . . . 8
⊢ (𝑡 = 𝑦 → ((𝜑 → (𝑡 ∈ (𝐴 ↑o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))) ↔ (𝜑 → (𝑦 ∈ (𝐴 ↑o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))))) |
23 | | r19.21v 3103 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝑡 (𝜑 → (𝑦 ∈ (𝐴 ↑o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) ↔ (𝜑 → ∀𝑦 ∈ 𝑡 (𝑦 ∈ (𝐴 ↑o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)))) |
24 | | ordelss 6281 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((Ord
(𝐴 ↑o 𝐵) ∧ 𝑡 ∈ (𝐴 ↑o 𝐵)) → 𝑡 ⊆ (𝐴 ↑o 𝐵)) |
25 | 9, 24 | sylan 580 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴 ↑o 𝐵)) → 𝑡 ⊆ (𝐴 ↑o 𝐵)) |
26 | 25 | sselda 3926 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐴 ↑o 𝐵)) ∧ 𝑦 ∈ 𝑡) → 𝑦 ∈ (𝐴 ↑o 𝐵)) |
27 | | pm5.5 362 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (𝐴 ↑o 𝐵) → ((𝑦 ∈ (𝐴 ↑o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ 𝑦 ∈ ran (𝐴 CNF 𝐵))) |
28 | 26, 27 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐴 ↑o 𝐵)) ∧ 𝑦 ∈ 𝑡) → ((𝑦 ∈ (𝐴 ↑o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ 𝑦 ∈ ran (𝐴 CNF 𝐵))) |
29 | 28 | ralbidva 3122 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴 ↑o 𝐵)) → (∀𝑦 ∈ 𝑡 (𝑦 ∈ (𝐴 ↑o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ ∀𝑦 ∈ 𝑡 𝑦 ∈ ran (𝐴 CNF 𝐵))) |
30 | | dfss3 3914 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ⊆ ran (𝐴 CNF 𝐵) ↔ ∀𝑦 ∈ 𝑡 𝑦 ∈ ran (𝐴 CNF 𝐵)) |
31 | 29, 30 | bitr4di 289 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴 ↑o 𝐵)) → (∀𝑦 ∈ 𝑡 (𝑦 ∈ (𝐴 ↑o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) |
32 | | eleq1 2828 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = ∅ → (𝑡 ∈ ran (𝐴 CNF 𝐵) ↔ ∅ ∈ ran (𝐴 CNF 𝐵))) |
33 | 2 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝐴 ∈ On) |
34 | 33 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑡 ∈ (𝐴 ↑o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝐴 ∈ On) |
35 | 3 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝐵 ∈ On) |
36 | 35 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑡 ∈ (𝐴 ↑o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝐵 ∈ On) |
37 | | simplrl 774 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑡 ∈ (𝐴 ↑o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝑡 ∈ (𝐴 ↑o 𝐵)) |
38 | | simplrr 775 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑡 ∈ (𝐴 ↑o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝑡 ⊆ ran (𝐴 CNF 𝐵)) |
39 | 7 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴 ↑o 𝐵) ∈ On) |
40 | | simprl 768 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝑡 ∈ (𝐴 ↑o 𝐵)) |
41 | | onelon 6290 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ↑o 𝐵) ∈ On ∧ 𝑡 ∈ (𝐴 ↑o 𝐵)) → 𝑡 ∈ On) |
42 | 39, 40, 41 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝑡 ∈ On) |
43 | | on0eln0 6320 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 ∈ On → (∅
∈ 𝑡 ↔ 𝑡 ≠ ∅)) |
44 | 42, 43 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (∅ ∈ 𝑡 ↔ 𝑡 ≠ ∅)) |
45 | 44 | biimpar 478 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑡 ∈ (𝐴 ↑o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → ∅ ∈ 𝑡) |
46 | | eqid 2740 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ ∩ {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴 ↑o 𝑐)} = ∪ ∩ {𝑐
∈ On ∣ 𝑡 ∈
(𝐴 ↑o 𝑐)} |
47 | | eqid 2740 |
. . . . . . . . . . . . . . . . 17
⊢
(℩𝑑∃𝑎 ∈ On ∃𝑏 ∈ (𝐴 ↑o ∪ ∩ {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴 ↑o 𝑐)})(𝑑 = 〈𝑎, 𝑏〉 ∧ (((𝐴 ↑o ∪ ∩ {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴 ↑o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡)) = (℩𝑑∃𝑎 ∈ On ∃𝑏 ∈ (𝐴 ↑o ∪ ∩ {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴 ↑o 𝑐)})(𝑑 = 〈𝑎, 𝑏〉 ∧ (((𝐴 ↑o ∪ ∩ {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴 ↑o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡)) |
48 | | eqid 2740 |
. . . . . . . . . . . . . . . . 17
⊢
(1st ‘(℩𝑑∃𝑎 ∈ On ∃𝑏 ∈ (𝐴 ↑o ∪ ∩ {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴 ↑o 𝑐)})(𝑑 = 〈𝑎, 𝑏〉 ∧ (((𝐴 ↑o ∪ ∩ {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴 ↑o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡))) = (1st ‘(℩𝑑∃𝑎 ∈ On ∃𝑏 ∈ (𝐴 ↑o ∪ ∩ {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴 ↑o 𝑐)})(𝑑 = 〈𝑎, 𝑏〉 ∧ (((𝐴 ↑o ∪ ∩ {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴 ↑o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡))) |
49 | | eqid 2740 |
. . . . . . . . . . . . . . . . 17
⊢
(2nd ‘(℩𝑑∃𝑎 ∈ On ∃𝑏 ∈ (𝐴 ↑o ∪ ∩ {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴 ↑o 𝑐)})(𝑑 = 〈𝑎, 𝑏〉 ∧ (((𝐴 ↑o ∪ ∩ {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴 ↑o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡))) = (2nd ‘(℩𝑑∃𝑎 ∈ On ∃𝑏 ∈ (𝐴 ↑o ∪ ∩ {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴 ↑o 𝑐)})(𝑑 = 〈𝑎, 𝑏〉 ∧ (((𝐴 ↑o ∪ ∩ {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴 ↑o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡))) |
50 | 1, 34, 36, 4, 37, 38, 45, 46, 47, 48, 49 | cantnflem4 9428 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑡 ∈ (𝐴 ↑o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝑡 ∈ ran (𝐴 CNF 𝐵)) |
51 | | fczsupp0 8000 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐵 × {∅}) supp
∅) = ∅ |
52 | 51 | eqcomi 2749 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ∅ =
((𝐵 × {∅}) supp
∅) |
53 | | oieq2 9250 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (∅
= ((𝐵 × {∅})
supp ∅) → OrdIso( E , ∅) = OrdIso( E , ((𝐵 × {∅}) supp
∅))) |
54 | 52, 53 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ OrdIso( E
, ∅) = OrdIso( E , ((𝐵 × {∅}) supp
∅)) |
55 | | ne0i 4274 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑡 ∈ (𝐴 ↑o 𝐵) → (𝐴 ↑o 𝐵) ≠ ∅) |
56 | 55 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴 ↑o 𝐵) ≠ ∅) |
57 | | oveq1 7278 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐴 = ∅ → (𝐴 ↑o 𝐵) = (∅ ↑o
𝐵)) |
58 | 57 | neeq1d 3005 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐴 = ∅ → ((𝐴 ↑o 𝐵) ≠ ∅ ↔ (∅
↑o 𝐵) ≠
∅)) |
59 | 56, 58 | syl5ibcom 244 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴 = ∅ → (∅
↑o 𝐵) ≠
∅)) |
60 | 59 | necon2d 2968 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((∅ ↑o
𝐵) = ∅ → 𝐴 ≠ ∅)) |
61 | | on0eln0 6320 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐵 ∈ On → (∅
∈ 𝐵 ↔ 𝐵 ≠ ∅)) |
62 | | oe0m1 8336 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐵 ∈ On → (∅
∈ 𝐵 ↔ (∅
↑o 𝐵) =
∅)) |
63 | 61, 62 | bitr3d 280 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐵 ∈ On → (𝐵 ≠ ∅ ↔ (∅
↑o 𝐵) =
∅)) |
64 | 35, 63 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 ≠ ∅ ↔ (∅
↑o 𝐵) =
∅)) |
65 | | on0eln0 6320 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐴 ∈ On → (∅
∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
66 | 33, 65 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
67 | 60, 64, 66 | 3imtr4d 294 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 ≠ ∅ → ∅ ∈ 𝐴)) |
68 | | ne0i 4274 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ 𝐵 → 𝐵 ≠ ∅) |
69 | 67, 68 | impel 506 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑡 ∈ (𝐴 ↑o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑦 ∈ 𝐵) → ∅ ∈ 𝐴) |
70 | | fconstmpt 5650 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐵 × {∅}) = (𝑦 ∈ 𝐵 ↦ ∅) |
71 | 69, 70 | fmptd 6985 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 × {∅}):𝐵⟶𝐴) |
72 | | 0ex 5235 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ∅
∈ V |
73 | 72 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ∅ ∈
V) |
74 | 3, 73 | fczfsuppd 9124 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐵 × {∅}) finSupp
∅) |
75 | 74 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 × {∅}) finSupp
∅) |
76 | 1, 2, 3 | cantnfs 9402 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝐵 × {∅}) ∈ 𝑆 ↔ ((𝐵 × {∅}):𝐵⟶𝐴 ∧ (𝐵 × {∅}) finSupp
∅))) |
77 | 76 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐵 × {∅}) ∈ 𝑆 ↔ ((𝐵 × {∅}):𝐵⟶𝐴 ∧ (𝐵 × {∅}) finSupp
∅))) |
78 | 71, 75, 77 | mpbir2and 710 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 × {∅}) ∈ 𝑆) |
79 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . 19
⊢
seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E ,
∅)‘𝑘))
·o ((𝐵
× {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E ,
∅)‘𝑘))
·o ((𝐵
× {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅) |
80 | 1, 33, 35, 54, 78, 79 | cantnfval 9404 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) =
(seqω((𝑘
∈ V, 𝑧 ∈ V
↦ (((𝐴
↑o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E ,
∅)‘𝑘)))
+o 𝑧)),
∅)‘dom OrdIso( E , ∅))) |
81 | | we0 5585 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ E We
∅ |
82 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ OrdIso( E
, ∅) = OrdIso( E , ∅) |
83 | 82 | oien 9275 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((∅
∈ V ∧ E We ∅) → dom OrdIso( E , ∅) ≈
∅) |
84 | 72, 81, 83 | mp2an 689 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ dom
OrdIso( E , ∅) ≈ ∅ |
85 | | en0 8786 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (dom
OrdIso( E , ∅) ≈ ∅ ↔ dom OrdIso( E , ∅) =
∅) |
86 | 84, 85 | mpbi 229 |
. . . . . . . . . . . . . . . . . . . 20
⊢ dom
OrdIso( E , ∅) = ∅ |
87 | 86 | fveq2i 6774 |
. . . . . . . . . . . . . . . . . . 19
⊢
(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E ,
∅)‘𝑘))
·o ((𝐵
× {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ∅))
= (seqω((𝑘
∈ V, 𝑧 ∈ V
↦ (((𝐴
↑o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E ,
∅)‘𝑘)))
+o 𝑧)),
∅)‘∅) |
88 | 79 | seqom0g 8278 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (∅
∈ V → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E ,
∅)‘𝑘))
·o ((𝐵
× {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘∅) =
∅) |
89 | 72, 88 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E ,
∅)‘𝑘))
·o ((𝐵
× {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘∅) =
∅ |
90 | 87, 89 | eqtri 2768 |
. . . . . . . . . . . . . . . . . 18
⊢
(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E ,
∅)‘𝑘))
·o ((𝐵
× {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ∅))
= ∅ |
91 | 80, 90 | eqtrdi 2796 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) =
∅) |
92 | 14 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴 CNF 𝐵):𝑆⟶(𝐴 ↑o 𝐵)) |
93 | 92 | ffnd 6599 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴 CNF 𝐵) Fn 𝑆) |
94 | | fnfvelrn 6955 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 CNF 𝐵) Fn 𝑆 ∧ (𝐵 × {∅}) ∈ 𝑆) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) ∈ ran (𝐴 CNF 𝐵)) |
95 | 93, 78, 94 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) ∈ ran (𝐴 CNF 𝐵)) |
96 | 91, 95 | eqeltrrd 2842 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ∅ ∈ ran (𝐴 CNF 𝐵)) |
97 | 32, 50, 96 | pm2.61ne 3032 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝑡 ∈ ran (𝐴 CNF 𝐵)) |
98 | 97 | expr 457 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴 ↑o 𝐵)) → (𝑡 ⊆ ran (𝐴 CNF 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))) |
99 | 31, 98 | sylbid 239 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴 ↑o 𝐵)) → (∀𝑦 ∈ 𝑡 (𝑦 ∈ (𝐴 ↑o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) → 𝑡 ∈ ran (𝐴 CNF 𝐵))) |
100 | 99 | ex 413 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑡 ∈ (𝐴 ↑o 𝐵) → (∀𝑦 ∈ 𝑡 (𝑦 ∈ (𝐴 ↑o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))) |
101 | 100 | com23 86 |
. . . . . . . . . . 11
⊢ (𝜑 → (∀𝑦 ∈ 𝑡 (𝑦 ∈ (𝐴 ↑o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) → (𝑡 ∈ (𝐴 ↑o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))) |
102 | 101 | a2i 14 |
. . . . . . . . . 10
⊢ ((𝜑 → ∀𝑦 ∈ 𝑡 (𝑦 ∈ (𝐴 ↑o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) → (𝜑 → (𝑡 ∈ (𝐴 ↑o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))) |
103 | 102 | a1i 11 |
. . . . . . . . 9
⊢ (𝑡 ∈ On → ((𝜑 → ∀𝑦 ∈ 𝑡 (𝑦 ∈ (𝐴 ↑o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) → (𝜑 → (𝑡 ∈ (𝐴 ↑o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))))) |
104 | 23, 103 | syl5bi 241 |
. . . . . . . 8
⊢ (𝑡 ∈ On → (∀𝑦 ∈ 𝑡 (𝜑 → (𝑦 ∈ (𝐴 ↑o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) → (𝜑 → (𝑡 ∈ (𝐴 ↑o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))))) |
105 | 22, 104 | tfis2 7697 |
. . . . . . 7
⊢ (𝑡 ∈ On → (𝜑 → (𝑡 ∈ (𝐴 ↑o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))) |
106 | 105 | com3l 89 |
. . . . . 6
⊢ (𝜑 → (𝑡 ∈ (𝐴 ↑o 𝐵) → (𝑡 ∈ On → 𝑡 ∈ ran (𝐴 CNF 𝐵)))) |
107 | 18, 106 | mpdd 43 |
. . . . 5
⊢ (𝜑 → (𝑡 ∈ (𝐴 ↑o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))) |
108 | 107 | ssrdv 3932 |
. . . 4
⊢ (𝜑 → (𝐴 ↑o 𝐵) ⊆ ran (𝐴 CNF 𝐵)) |
109 | 15, 108 | eqssd 3943 |
. . 3
⊢ (𝜑 → ran (𝐴 CNF 𝐵) = (𝐴 ↑o 𝐵)) |
110 | | dffo2 6690 |
. . 3
⊢ ((𝐴 CNF 𝐵):𝑆–onto→(𝐴 ↑o 𝐵) ↔ ((𝐴 CNF 𝐵):𝑆⟶(𝐴 ↑o 𝐵) ∧ ran (𝐴 CNF 𝐵) = (𝐴 ↑o 𝐵))) |
111 | 14, 109, 110 | sylanbrc 583 |
. 2
⊢ (𝜑 → (𝐴 CNF 𝐵):𝑆–onto→(𝐴 ↑o 𝐵)) |
112 | 2 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ 𝑓𝑇𝑔)) → 𝐴 ∈ On) |
113 | 3 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ 𝑓𝑇𝑔)) → 𝐵 ∈ On) |
114 | | fveq2 6771 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑡 → (𝑥‘𝑧) = (𝑥‘𝑡)) |
115 | | fveq2 6771 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑡 → (𝑦‘𝑧) = (𝑦‘𝑡)) |
116 | 114, 115 | eleq12d 2835 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑡 → ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ↔ (𝑥‘𝑡) ∈ (𝑦‘𝑡))) |
117 | | eleq1w 2823 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑡 → (𝑧 ∈ 𝑤 ↔ 𝑡 ∈ 𝑤)) |
118 | 117 | imbi1d 342 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑡 → ((𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ (𝑡 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))) |
119 | 118 | ralbidv 3123 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑡 → (∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ ∀𝑤 ∈ 𝐵 (𝑡 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))) |
120 | 116, 119 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑡 → (((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ((𝑥‘𝑡) ∈ (𝑦‘𝑡) ∧ ∀𝑤 ∈ 𝐵 (𝑡 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))) |
121 | 120 | cbvrexvw 3382 |
. . . . . . . . 9
⊢
(∃𝑧 ∈
𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ∃𝑡 ∈ 𝐵 ((𝑥‘𝑡) ∈ (𝑦‘𝑡) ∧ ∀𝑤 ∈ 𝐵 (𝑡 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))) |
122 | | fveq1 6770 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑢 → (𝑥‘𝑡) = (𝑢‘𝑡)) |
123 | | fveq1 6770 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑣 → (𝑦‘𝑡) = (𝑣‘𝑡)) |
124 | | eleq12 2830 |
. . . . . . . . . . . 12
⊢ (((𝑥‘𝑡) = (𝑢‘𝑡) ∧ (𝑦‘𝑡) = (𝑣‘𝑡)) → ((𝑥‘𝑡) ∈ (𝑦‘𝑡) ↔ (𝑢‘𝑡) ∈ (𝑣‘𝑡))) |
125 | 122, 123,
124 | syl2an 596 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ((𝑥‘𝑡) ∈ (𝑦‘𝑡) ↔ (𝑢‘𝑡) ∈ (𝑣‘𝑡))) |
126 | | fveq1 6770 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑢 → (𝑥‘𝑤) = (𝑢‘𝑤)) |
127 | | fveq1 6770 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑣 → (𝑦‘𝑤) = (𝑣‘𝑤)) |
128 | 126, 127 | eqeqan12d 2754 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ((𝑥‘𝑤) = (𝑦‘𝑤) ↔ (𝑢‘𝑤) = (𝑣‘𝑤))) |
129 | 128 | imbi2d 341 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ((𝑡 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ (𝑡 ∈ 𝑤 → (𝑢‘𝑤) = (𝑣‘𝑤)))) |
130 | 129 | ralbidv 3123 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (∀𝑤 ∈ 𝐵 (𝑡 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ ∀𝑤 ∈ 𝐵 (𝑡 ∈ 𝑤 → (𝑢‘𝑤) = (𝑣‘𝑤)))) |
131 | 125, 130 | anbi12d 631 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (((𝑥‘𝑡) ∈ (𝑦‘𝑡) ∧ ∀𝑤 ∈ 𝐵 (𝑡 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ((𝑢‘𝑡) ∈ (𝑣‘𝑡) ∧ ∀𝑤 ∈ 𝐵 (𝑡 ∈ 𝑤 → (𝑢‘𝑤) = (𝑣‘𝑤))))) |
132 | 131 | rexbidv 3228 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (∃𝑡 ∈ 𝐵 ((𝑥‘𝑡) ∈ (𝑦‘𝑡) ∧ ∀𝑤 ∈ 𝐵 (𝑡 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ∃𝑡 ∈ 𝐵 ((𝑢‘𝑡) ∈ (𝑣‘𝑡) ∧ ∀𝑤 ∈ 𝐵 (𝑡 ∈ 𝑤 → (𝑢‘𝑤) = (𝑣‘𝑤))))) |
133 | 121, 132 | bitrid 282 |
. . . . . . . 8
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ∃𝑡 ∈ 𝐵 ((𝑢‘𝑡) ∈ (𝑣‘𝑡) ∧ ∀𝑤 ∈ 𝐵 (𝑡 ∈ 𝑤 → (𝑢‘𝑤) = (𝑣‘𝑤))))) |
134 | 133 | cbvopabv 5152 |
. . . . . . 7
⊢
{〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} = {〈𝑢, 𝑣〉 ∣ ∃𝑡 ∈ 𝐵 ((𝑢‘𝑡) ∈ (𝑣‘𝑡) ∧ ∀𝑤 ∈ 𝐵 (𝑡 ∈ 𝑤 → (𝑢‘𝑤) = (𝑣‘𝑤)))} |
135 | 4, 134 | eqtri 2768 |
. . . . . 6
⊢ 𝑇 = {〈𝑢, 𝑣〉 ∣ ∃𝑡 ∈ 𝐵 ((𝑢‘𝑡) ∈ (𝑣‘𝑡) ∧ ∀𝑤 ∈ 𝐵 (𝑡 ∈ 𝑤 → (𝑢‘𝑤) = (𝑣‘𝑤)))} |
136 | | simprll 776 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ 𝑓𝑇𝑔)) → 𝑓 ∈ 𝑆) |
137 | | simprlr 777 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ 𝑓𝑇𝑔)) → 𝑔 ∈ 𝑆) |
138 | | simprr 770 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ 𝑓𝑇𝑔)) → 𝑓𝑇𝑔) |
139 | | eqid 2740 |
. . . . . 6
⊢ ∪ {𝑐
∈ 𝐵 ∣ (𝑓‘𝑐) ∈ (𝑔‘𝑐)} = ∪ {𝑐 ∈ 𝐵 ∣ (𝑓‘𝑐) ∈ (𝑔‘𝑐)} |
140 | | eqid 2740 |
. . . . . 6
⊢ OrdIso( E
, (𝑔 supp ∅)) =
OrdIso( E , (𝑔 supp
∅)) |
141 | | eqid 2740 |
. . . . . 6
⊢
seqω((𝑘 ∈ V, 𝑡 ∈ V ↦ (((𝐴 ↑o (OrdIso( E , (𝑔 supp ∅))‘𝑘)) ·o (𝑔‘(OrdIso( E , (𝑔 supp ∅))‘𝑘))) +o 𝑡)), ∅) =
seqω((𝑘
∈ V, 𝑡 ∈ V
↦ (((𝐴
↑o (OrdIso( E , (𝑔 supp ∅))‘𝑘)) ·o (𝑔‘(OrdIso( E , (𝑔 supp ∅))‘𝑘))) +o 𝑡)), ∅) |
142 | 1, 112, 113, 135, 136, 137, 138, 139, 140, 141 | cantnflem1 9425 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ 𝑓𝑇𝑔)) → ((𝐴 CNF 𝐵)‘𝑓) ∈ ((𝐴 CNF 𝐵)‘𝑔)) |
143 | | fvex 6784 |
. . . . . 6
⊢ ((𝐴 CNF 𝐵)‘𝑔) ∈ V |
144 | 143 | epeli 5498 |
. . . . 5
⊢ (((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔) ↔ ((𝐴 CNF 𝐵)‘𝑓) ∈ ((𝐴 CNF 𝐵)‘𝑔)) |
145 | 142, 144 | sylibr 233 |
. . . 4
⊢ ((𝜑 ∧ ((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ 𝑓𝑇𝑔)) → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔)) |
146 | 145 | expr 457 |
. . 3
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆)) → (𝑓𝑇𝑔 → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔))) |
147 | 146 | ralrimivva 3117 |
. 2
⊢ (𝜑 → ∀𝑓 ∈ 𝑆 ∀𝑔 ∈ 𝑆 (𝑓𝑇𝑔 → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔))) |
148 | | soisoi 7195 |
. 2
⊢ (((𝑇 Or 𝑆 ∧ E Po (𝐴 ↑o 𝐵)) ∧ ((𝐴 CNF 𝐵):𝑆–onto→(𝐴 ↑o 𝐵) ∧ ∀𝑓 ∈ 𝑆 ∀𝑔 ∈ 𝑆 (𝑓𝑇𝑔 → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔)))) → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴 ↑o 𝐵))) |
149 | 5, 13, 111, 147, 148 | syl22anc 836 |
1
⊢ (𝜑 → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴 ↑o 𝐵))) |