MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnf Structured version   Visualization version   GIF version

Theorem cantnf 9707
Description: The Cantor Normal Form theorem. The function (𝐴 CNF 𝐵), which maps a finitely supported function from 𝐵 to 𝐴 to the sum ((𝐴o 𝑓(𝑎1)) ∘ 𝑎1) +o ((𝐴o 𝑓(𝑎2)) ∘ 𝑎2) +o ... over all indices 𝑎 < 𝐵 such that 𝑓(𝑎) is nonzero, is an order isomorphism from the ordering 𝑇 of finitely supported functions to the set (𝐴o 𝐵) under the natural order. Setting 𝐴 = ω and letting 𝐵 be arbitrarily large, the surjectivity of this function implies that every ordinal has a Cantor normal form (and injectivity, together with coherence cantnfres 9691, implies that such a representation is unique). (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
Assertion
Ref Expression
cantnf (𝜑 → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴o 𝐵)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝐴,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cantnf
Dummy variables 𝑓 𝑐 𝑔 𝑘 𝑡 𝑢 𝑣 𝑎 𝑏 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . 3 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
3 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
4 oemapval.t . . 3 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
51, 2, 3, 4oemapso 9696 . 2 (𝜑𝑇 Or 𝑆)
6 oecl 8549 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
72, 3, 6syl2anc 584 . . . 4 (𝜑 → (𝐴o 𝐵) ∈ On)
8 eloni 6362 . . . 4 ((𝐴o 𝐵) ∈ On → Ord (𝐴o 𝐵))
97, 8syl 17 . . 3 (𝜑 → Ord (𝐴o 𝐵))
10 ordwe 6365 . . 3 (Ord (𝐴o 𝐵) → E We (𝐴o 𝐵))
11 weso 5645 . . 3 ( E We (𝐴o 𝐵) → E Or (𝐴o 𝐵))
12 sopo 5580 . . 3 ( E Or (𝐴o 𝐵) → E Po (𝐴o 𝐵))
139, 10, 11, 124syl 19 . 2 (𝜑 → E Po (𝐴o 𝐵))
141, 2, 3cantnff 9688 . . 3 (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵))
1514frnd 6714 . . . 4 (𝜑 → ran (𝐴 CNF 𝐵) ⊆ (𝐴o 𝐵))
16 onss 7779 . . . . . . . 8 ((𝐴o 𝐵) ∈ On → (𝐴o 𝐵) ⊆ On)
177, 16syl 17 . . . . . . 7 (𝜑 → (𝐴o 𝐵) ⊆ On)
1817sseld 3957 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ On))
19 eleq1w 2817 . . . . . . . . . 10 (𝑡 = 𝑦 → (𝑡 ∈ (𝐴o 𝐵) ↔ 𝑦 ∈ (𝐴o 𝐵)))
20 eleq1w 2817 . . . . . . . . . 10 (𝑡 = 𝑦 → (𝑡 ∈ ran (𝐴 CNF 𝐵) ↔ 𝑦 ∈ ran (𝐴 CNF 𝐵)))
2119, 20imbi12d 344 . . . . . . . . 9 (𝑡 = 𝑦 → ((𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)) ↔ (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))))
2221imbi2d 340 . . . . . . . 8 (𝑡 = 𝑦 → ((𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))) ↔ (𝜑 → (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)))))
23 r19.21v 3165 . . . . . . . . 9 (∀𝑦𝑡 (𝜑 → (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) ↔ (𝜑 → ∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))))
24 ordelss 6368 . . . . . . . . . . . . . . . . . . 19 ((Ord (𝐴o 𝐵) ∧ 𝑡 ∈ (𝐴o 𝐵)) → 𝑡 ⊆ (𝐴o 𝐵))
259, 24sylan 580 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (𝐴o 𝐵)) → 𝑡 ⊆ (𝐴o 𝐵))
2625sselda 3958 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡 ∈ (𝐴o 𝐵)) ∧ 𝑦𝑡) → 𝑦 ∈ (𝐴o 𝐵))
27 pm5.5 361 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (𝐴o 𝐵) → ((𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ 𝑦 ∈ ran (𝐴 CNF 𝐵)))
2826, 27syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑡 ∈ (𝐴o 𝐵)) ∧ 𝑦𝑡) → ((𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ 𝑦 ∈ ran (𝐴 CNF 𝐵)))
2928ralbidva 3161 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (𝐴o 𝐵)) → (∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ ∀𝑦𝑡 𝑦 ∈ ran (𝐴 CNF 𝐵)))
30 dfss3 3947 . . . . . . . . . . . . . . 15 (𝑡 ⊆ ran (𝐴 CNF 𝐵) ↔ ∀𝑦𝑡 𝑦 ∈ ran (𝐴 CNF 𝐵))
3129, 30bitr4di 289 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (𝐴o 𝐵)) → (∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ 𝑡 ⊆ ran (𝐴 CNF 𝐵)))
32 eleq1 2822 . . . . . . . . . . . . . . . 16 (𝑡 = ∅ → (𝑡 ∈ ran (𝐴 CNF 𝐵) ↔ ∅ ∈ ran (𝐴 CNF 𝐵)))
332adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝐴 ∈ On)
3433adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝐴 ∈ On)
353adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝐵 ∈ On)
3635adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝐵 ∈ On)
37 simplrl 776 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝑡 ∈ (𝐴o 𝐵))
38 simplrr 777 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝑡 ⊆ ran (𝐴 CNF 𝐵))
397adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴o 𝐵) ∈ On)
40 simprl 770 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝑡 ∈ (𝐴o 𝐵))
41 onelon 6377 . . . . . . . . . . . . . . . . . . . 20 (((𝐴o 𝐵) ∈ On ∧ 𝑡 ∈ (𝐴o 𝐵)) → 𝑡 ∈ On)
4239, 40, 41syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝑡 ∈ On)
43 on0eln0 6409 . . . . . . . . . . . . . . . . . . 19 (𝑡 ∈ On → (∅ ∈ 𝑡𝑡 ≠ ∅))
4442, 43syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (∅ ∈ 𝑡𝑡 ≠ ∅))
4544biimpar 477 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → ∅ ∈ 𝑡)
46 eqid 2735 . . . . . . . . . . . . . . . . 17 {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)} = {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}
47 eqid 2735 . . . . . . . . . . . . . . . . 17 (℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡)) = (℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡))
48 eqid 2735 . . . . . . . . . . . . . . . . 17 (1st ‘(℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡))) = (1st ‘(℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡)))
49 eqid 2735 . . . . . . . . . . . . . . . . 17 (2nd ‘(℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡))) = (2nd ‘(℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡)))
501, 34, 36, 4, 37, 38, 45, 46, 47, 48, 49cantnflem4 9706 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝑡 ∈ ran (𝐴 CNF 𝐵))
51 fczsupp0 8192 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 × {∅}) supp ∅) = ∅
5251eqcomi 2744 . . . . . . . . . . . . . . . . . . . 20 ∅ = ((𝐵 × {∅}) supp ∅)
53 oieq2 9527 . . . . . . . . . . . . . . . . . . . 20 (∅ = ((𝐵 × {∅}) supp ∅) → OrdIso( E , ∅) = OrdIso( E , ((𝐵 × {∅}) supp ∅)))
5452, 53ax-mp 5 . . . . . . . . . . . . . . . . . . 19 OrdIso( E , ∅) = OrdIso( E , ((𝐵 × {∅}) supp ∅))
55 ne0i 4316 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 ∈ (𝐴o 𝐵) → (𝐴o 𝐵) ≠ ∅)
5655ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴o 𝐵) ≠ ∅)
57 oveq1 7412 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴 = ∅ → (𝐴o 𝐵) = (∅ ↑o 𝐵))
5857neeq1d 2991 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 = ∅ → ((𝐴o 𝐵) ≠ ∅ ↔ (∅ ↑o 𝐵) ≠ ∅))
5956, 58syl5ibcom 245 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴 = ∅ → (∅ ↑o 𝐵) ≠ ∅))
6059necon2d 2955 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((∅ ↑o 𝐵) = ∅ → 𝐴 ≠ ∅))
61 on0eln0 6409 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐵 ∈ On → (∅ ∈ 𝐵𝐵 ≠ ∅))
62 oe0m1 8533 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ (∅ ↑o 𝐵) = ∅))
6361, 62bitr3d 281 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐵 ∈ On → (𝐵 ≠ ∅ ↔ (∅ ↑o 𝐵) = ∅))
6435, 63syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 ≠ ∅ ↔ (∅ ↑o 𝐵) = ∅))
65 on0eln0 6409 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
6633, 65syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (∅ ∈ 𝐴𝐴 ≠ ∅))
6760, 64, 663imtr4d 294 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 ≠ ∅ → ∅ ∈ 𝐴))
68 ne0i 4316 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵𝐵 ≠ ∅)
6967, 68impel 505 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑦𝐵) → ∅ ∈ 𝐴)
70 fconstmpt 5716 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 × {∅}) = (𝑦𝐵 ↦ ∅)
7169, 70fmptd 7104 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 × {∅}):𝐵𝐴)
72 0ex 5277 . . . . . . . . . . . . . . . . . . . . . . 23 ∅ ∈ V
7372a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ∅ ∈ V)
743, 73fczfsuppd 9398 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐵 × {∅}) finSupp ∅)
7574adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 × {∅}) finSupp ∅)
761, 2, 3cantnfs 9680 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐵 × {∅}) ∈ 𝑆 ↔ ((𝐵 × {∅}):𝐵𝐴 ∧ (𝐵 × {∅}) finSupp ∅)))
7776adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐵 × {∅}) ∈ 𝑆 ↔ ((𝐵 × {∅}):𝐵𝐴 ∧ (𝐵 × {∅}) finSupp ∅)))
7871, 75, 77mpbir2and 713 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 × {∅}) ∈ 𝑆)
79 eqid 2735 . . . . . . . . . . . . . . . . . . 19 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)
801, 33, 35, 54, 78, 79cantnfval 9682 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ∅)))
81 we0 5649 . . . . . . . . . . . . . . . . . . . . . 22 E We ∅
82 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . 23 OrdIso( E , ∅) = OrdIso( E , ∅)
8382oien 9552 . . . . . . . . . . . . . . . . . . . . . 22 ((∅ ∈ V ∧ E We ∅) → dom OrdIso( E , ∅) ≈ ∅)
8472, 81, 83mp2an 692 . . . . . . . . . . . . . . . . . . . . 21 dom OrdIso( E , ∅) ≈ ∅
85 en0 9032 . . . . . . . . . . . . . . . . . . . . 21 (dom OrdIso( E , ∅) ≈ ∅ ↔ dom OrdIso( E , ∅) = ∅)
8684, 85mpbi 230 . . . . . . . . . . . . . . . . . . . 20 dom OrdIso( E , ∅) = ∅
8786fveq2i 6879 . . . . . . . . . . . . . . . . . . 19 (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ∅)) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘∅)
8879seqom0g 8470 . . . . . . . . . . . . . . . . . . . 20 (∅ ∈ V → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘∅) = ∅)
8972, 88ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘∅) = ∅
9087, 89eqtri 2758 . . . . . . . . . . . . . . . . . 18 (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ∅)) = ∅
9180, 90eqtrdi 2786 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = ∅)
9214adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵))
9392ffnd 6707 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴 CNF 𝐵) Fn 𝑆)
94 fnfvelrn 7070 . . . . . . . . . . . . . . . . . 18 (((𝐴 CNF 𝐵) Fn 𝑆 ∧ (𝐵 × {∅}) ∈ 𝑆) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) ∈ ran (𝐴 CNF 𝐵))
9593, 78, 94syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) ∈ ran (𝐴 CNF 𝐵))
9691, 95eqeltrrd 2835 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ∅ ∈ ran (𝐴 CNF 𝐵))
9732, 50, 96pm2.61ne 3017 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝑡 ∈ ran (𝐴 CNF 𝐵))
9897expr 456 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (𝐴o 𝐵)) → (𝑡 ⊆ ran (𝐴 CNF 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))
9931, 98sylbid 240 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝐴o 𝐵)) → (∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))
10099ex 412 . . . . . . . . . . . 12 (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → (∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
101100com23 86 . . . . . . . . . . 11 (𝜑 → (∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
102101a2i 14 . . . . . . . . . 10 ((𝜑 → ∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) → (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
103102a1i 11 . . . . . . . . 9 (𝑡 ∈ On → ((𝜑 → ∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) → (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))))
10423, 103biimtrid 242 . . . . . . . 8 (𝑡 ∈ On → (∀𝑦𝑡 (𝜑 → (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) → (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))))
10522, 104tfis2 7852 . . . . . . 7 (𝑡 ∈ On → (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
106105com3l 89 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → (𝑡 ∈ On → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
10718, 106mpdd 43 . . . . 5 (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))
108107ssrdv 3964 . . . 4 (𝜑 → (𝐴o 𝐵) ⊆ ran (𝐴 CNF 𝐵))
10915, 108eqssd 3976 . . 3 (𝜑 → ran (𝐴 CNF 𝐵) = (𝐴o 𝐵))
110 dffo2 6794 . . 3 ((𝐴 CNF 𝐵):𝑆onto→(𝐴o 𝐵) ↔ ((𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵) ∧ ran (𝐴 CNF 𝐵) = (𝐴o 𝐵)))
11114, 109, 110sylanbrc 583 . 2 (𝜑 → (𝐴 CNF 𝐵):𝑆onto→(𝐴o 𝐵))
1122adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝐴 ∈ On)
1133adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝐵 ∈ On)
114 fveq2 6876 . . . . . . . . . . . 12 (𝑧 = 𝑡 → (𝑥𝑧) = (𝑥𝑡))
115 fveq2 6876 . . . . . . . . . . . 12 (𝑧 = 𝑡 → (𝑦𝑧) = (𝑦𝑡))
116114, 115eleq12d 2828 . . . . . . . . . . 11 (𝑧 = 𝑡 → ((𝑥𝑧) ∈ (𝑦𝑧) ↔ (𝑥𝑡) ∈ (𝑦𝑡)))
117 eleq1w 2817 . . . . . . . . . . . . 13 (𝑧 = 𝑡 → (𝑧𝑤𝑡𝑤))
118117imbi1d 341 . . . . . . . . . . . 12 (𝑧 = 𝑡 → ((𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))))
119118ralbidv 3163 . . . . . . . . . . 11 (𝑧 = 𝑡 → (∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))))
120116, 119anbi12d 632 . . . . . . . . . 10 (𝑧 = 𝑡 → (((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ((𝑥𝑡) ∈ (𝑦𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤)))))
121120cbvrexvw 3221 . . . . . . . . 9 (∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑡𝐵 ((𝑥𝑡) ∈ (𝑦𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))))
122 fveq1 6875 . . . . . . . . . . . 12 (𝑥 = 𝑢 → (𝑥𝑡) = (𝑢𝑡))
123 fveq1 6875 . . . . . . . . . . . 12 (𝑦 = 𝑣 → (𝑦𝑡) = (𝑣𝑡))
124 eleq12 2824 . . . . . . . . . . . 12 (((𝑥𝑡) = (𝑢𝑡) ∧ (𝑦𝑡) = (𝑣𝑡)) → ((𝑥𝑡) ∈ (𝑦𝑡) ↔ (𝑢𝑡) ∈ (𝑣𝑡)))
125122, 123, 124syl2an 596 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝑥𝑡) ∈ (𝑦𝑡) ↔ (𝑢𝑡) ∈ (𝑣𝑡)))
126 fveq1 6875 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → (𝑥𝑤) = (𝑢𝑤))
127 fveq1 6875 . . . . . . . . . . . . . 14 (𝑦 = 𝑣 → (𝑦𝑤) = (𝑣𝑤))
128126, 127eqeqan12d 2749 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝑥𝑤) = (𝑦𝑤) ↔ (𝑢𝑤) = (𝑣𝑤)))
129128imbi2d 340 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤))))
130129ralbidv 3163 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑣) → (∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤))))
131125, 130anbi12d 632 . . . . . . . . . 10 ((𝑥 = 𝑢𝑦 = 𝑣) → (((𝑥𝑡) ∈ (𝑦𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))))
132131rexbidv 3164 . . . . . . . . 9 ((𝑥 = 𝑢𝑦 = 𝑣) → (∃𝑡𝐵 ((𝑥𝑡) ∈ (𝑦𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑡𝐵 ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))))
133121, 132bitrid 283 . . . . . . . 8 ((𝑥 = 𝑢𝑦 = 𝑣) → (∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑡𝐵 ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))))
134133cbvopabv 5192 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))} = {⟨𝑢, 𝑣⟩ ∣ ∃𝑡𝐵 ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))}
1354, 134eqtri 2758 . . . . . 6 𝑇 = {⟨𝑢, 𝑣⟩ ∣ ∃𝑡𝐵 ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))}
136 simprll 778 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝑓𝑆)
137 simprlr 779 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝑔𝑆)
138 simprr 772 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝑓𝑇𝑔)
139 eqid 2735 . . . . . 6 {𝑐𝐵 ∣ (𝑓𝑐) ∈ (𝑔𝑐)} = {𝑐𝐵 ∣ (𝑓𝑐) ∈ (𝑔𝑐)}
140 eqid 2735 . . . . . 6 OrdIso( E , (𝑔 supp ∅)) = OrdIso( E , (𝑔 supp ∅))
141 eqid 2735 . . . . . 6 seqω((𝑘 ∈ V, 𝑡 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑔 supp ∅))‘𝑘)) ·o (𝑔‘(OrdIso( E , (𝑔 supp ∅))‘𝑘))) +o 𝑡)), ∅) = seqω((𝑘 ∈ V, 𝑡 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑔 supp ∅))‘𝑘)) ·o (𝑔‘(OrdIso( E , (𝑔 supp ∅))‘𝑘))) +o 𝑡)), ∅)
1421, 112, 113, 135, 136, 137, 138, 139, 140, 141cantnflem1 9703 . . . . 5 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → ((𝐴 CNF 𝐵)‘𝑓) ∈ ((𝐴 CNF 𝐵)‘𝑔))
143 fvex 6889 . . . . . 6 ((𝐴 CNF 𝐵)‘𝑔) ∈ V
144143epeli 5555 . . . . 5 (((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔) ↔ ((𝐴 CNF 𝐵)‘𝑓) ∈ ((𝐴 CNF 𝐵)‘𝑔))
145142, 144sylibr 234 . . . 4 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔))
146145expr 456 . . 3 ((𝜑 ∧ (𝑓𝑆𝑔𝑆)) → (𝑓𝑇𝑔 → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔)))
147146ralrimivva 3187 . 2 (𝜑 → ∀𝑓𝑆𝑔𝑆 (𝑓𝑇𝑔 → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔)))
148 soisoi 7321 . 2 (((𝑇 Or 𝑆 ∧ E Po (𝐴o 𝐵)) ∧ ((𝐴 CNF 𝐵):𝑆onto→(𝐴o 𝐵) ∧ ∀𝑓𝑆𝑔𝑆 (𝑓𝑇𝑔 → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔)))) → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴o 𝐵)))
1495, 13, 111, 147, 148syl22anc 838 1 (𝜑 → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  {crab 3415  Vcvv 3459  wss 3926  c0 4308  {csn 4601  cop 4607   cuni 4883   cint 4922   class class class wbr 5119  {copab 5181   E cep 5552   Po wpo 5559   Or wor 5560   We wwe 5605   × cxp 5652  dom cdm 5654  ran crn 5655  Ord word 6351  Oncon0 6352  cio 6482   Fn wfn 6526  wf 6527  ontowfo 6529  cfv 6531   Isom wiso 6532  (class class class)co 7405  cmpo 7407  1st c1st 7986  2nd c2nd 7987   supp csupp 8159  seqωcseqom 8461   +o coa 8477   ·o comu 8478  o coe 8479  cen 8956   finSupp cfsupp 9373  OrdIsocoi 9523   CNF ccnf 9675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-seqom 8462  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-oexp 8486  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-oi 9524  df-cnf 9676
This theorem is referenced by:  oemapwe  9708  cantnffval2  9709  cantnff1o  9710  cantnfresb  43348
  Copyright terms: Public domain W3C validator