MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnf Structured version   Visualization version   GIF version

Theorem cantnf 9622
Description: The Cantor Normal Form theorem. The function (𝐴 CNF 𝐵), which maps a finitely supported function from 𝐵 to 𝐴 to the sum ((𝐴o 𝑓(𝑎1)) ∘ 𝑎1) +o ((𝐴o 𝑓(𝑎2)) ∘ 𝑎2) +o ... over all indices 𝑎 < 𝐵 such that 𝑓(𝑎) is nonzero, is an order isomorphism from the ordering 𝑇 of finitely supported functions to the set (𝐴o 𝐵) under the natural order. Setting 𝐴 = ω and letting 𝐵 be arbitrarily large, the surjectivity of this function implies that every ordinal has a Cantor normal form (and injectivity, together with coherence cantnfres 9606, implies that such a representation is unique). (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
Assertion
Ref Expression
cantnf (𝜑 → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴o 𝐵)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝐴,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cantnf
Dummy variables 𝑓 𝑐 𝑔 𝑘 𝑡 𝑢 𝑣 𝑎 𝑏 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . 3 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
3 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
4 oemapval.t . . 3 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
51, 2, 3, 4oemapso 9611 . 2 (𝜑𝑇 Or 𝑆)
6 oecl 8478 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
72, 3, 6syl2anc 584 . . . 4 (𝜑 → (𝐴o 𝐵) ∈ On)
8 eloni 6330 . . . 4 ((𝐴o 𝐵) ∈ On → Ord (𝐴o 𝐵))
97, 8syl 17 . . 3 (𝜑 → Ord (𝐴o 𝐵))
10 ordwe 6333 . . 3 (Ord (𝐴o 𝐵) → E We (𝐴o 𝐵))
11 weso 5622 . . 3 ( E We (𝐴o 𝐵) → E Or (𝐴o 𝐵))
12 sopo 5558 . . 3 ( E Or (𝐴o 𝐵) → E Po (𝐴o 𝐵))
139, 10, 11, 124syl 19 . 2 (𝜑 → E Po (𝐴o 𝐵))
141, 2, 3cantnff 9603 . . 3 (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵))
1514frnd 6678 . . . 4 (𝜑 → ran (𝐴 CNF 𝐵) ⊆ (𝐴o 𝐵))
16 onss 7741 . . . . . . . 8 ((𝐴o 𝐵) ∈ On → (𝐴o 𝐵) ⊆ On)
177, 16syl 17 . . . . . . 7 (𝜑 → (𝐴o 𝐵) ⊆ On)
1817sseld 3942 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ On))
19 eleq1w 2811 . . . . . . . . . 10 (𝑡 = 𝑦 → (𝑡 ∈ (𝐴o 𝐵) ↔ 𝑦 ∈ (𝐴o 𝐵)))
20 eleq1w 2811 . . . . . . . . . 10 (𝑡 = 𝑦 → (𝑡 ∈ ran (𝐴 CNF 𝐵) ↔ 𝑦 ∈ ran (𝐴 CNF 𝐵)))
2119, 20imbi12d 344 . . . . . . . . 9 (𝑡 = 𝑦 → ((𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)) ↔ (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))))
2221imbi2d 340 . . . . . . . 8 (𝑡 = 𝑦 → ((𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))) ↔ (𝜑 → (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)))))
23 r19.21v 3158 . . . . . . . . 9 (∀𝑦𝑡 (𝜑 → (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) ↔ (𝜑 → ∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))))
24 ordelss 6336 . . . . . . . . . . . . . . . . . . 19 ((Ord (𝐴o 𝐵) ∧ 𝑡 ∈ (𝐴o 𝐵)) → 𝑡 ⊆ (𝐴o 𝐵))
259, 24sylan 580 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (𝐴o 𝐵)) → 𝑡 ⊆ (𝐴o 𝐵))
2625sselda 3943 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡 ∈ (𝐴o 𝐵)) ∧ 𝑦𝑡) → 𝑦 ∈ (𝐴o 𝐵))
27 pm5.5 361 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (𝐴o 𝐵) → ((𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ 𝑦 ∈ ran (𝐴 CNF 𝐵)))
2826, 27syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑡 ∈ (𝐴o 𝐵)) ∧ 𝑦𝑡) → ((𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ 𝑦 ∈ ran (𝐴 CNF 𝐵)))
2928ralbidva 3154 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (𝐴o 𝐵)) → (∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ ∀𝑦𝑡 𝑦 ∈ ran (𝐴 CNF 𝐵)))
30 dfss3 3932 . . . . . . . . . . . . . . 15 (𝑡 ⊆ ran (𝐴 CNF 𝐵) ↔ ∀𝑦𝑡 𝑦 ∈ ran (𝐴 CNF 𝐵))
3129, 30bitr4di 289 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (𝐴o 𝐵)) → (∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ 𝑡 ⊆ ran (𝐴 CNF 𝐵)))
32 eleq1 2816 . . . . . . . . . . . . . . . 16 (𝑡 = ∅ → (𝑡 ∈ ran (𝐴 CNF 𝐵) ↔ ∅ ∈ ran (𝐴 CNF 𝐵)))
332adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝐴 ∈ On)
3433adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝐴 ∈ On)
353adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝐵 ∈ On)
3635adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝐵 ∈ On)
37 simplrl 776 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝑡 ∈ (𝐴o 𝐵))
38 simplrr 777 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝑡 ⊆ ran (𝐴 CNF 𝐵))
397adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴o 𝐵) ∈ On)
40 simprl 770 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝑡 ∈ (𝐴o 𝐵))
41 onelon 6345 . . . . . . . . . . . . . . . . . . . 20 (((𝐴o 𝐵) ∈ On ∧ 𝑡 ∈ (𝐴o 𝐵)) → 𝑡 ∈ On)
4239, 40, 41syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝑡 ∈ On)
43 on0eln0 6377 . . . . . . . . . . . . . . . . . . 19 (𝑡 ∈ On → (∅ ∈ 𝑡𝑡 ≠ ∅))
4442, 43syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (∅ ∈ 𝑡𝑡 ≠ ∅))
4544biimpar 477 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → ∅ ∈ 𝑡)
46 eqid 2729 . . . . . . . . . . . . . . . . 17 {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)} = {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}
47 eqid 2729 . . . . . . . . . . . . . . . . 17 (℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡)) = (℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡))
48 eqid 2729 . . . . . . . . . . . . . . . . 17 (1st ‘(℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡))) = (1st ‘(℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡)))
49 eqid 2729 . . . . . . . . . . . . . . . . 17 (2nd ‘(℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡))) = (2nd ‘(℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡)))
501, 34, 36, 4, 37, 38, 45, 46, 47, 48, 49cantnflem4 9621 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝑡 ∈ ran (𝐴 CNF 𝐵))
51 fczsupp0 8149 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 × {∅}) supp ∅) = ∅
5251eqcomi 2738 . . . . . . . . . . . . . . . . . . . 20 ∅ = ((𝐵 × {∅}) supp ∅)
53 oieq2 9442 . . . . . . . . . . . . . . . . . . . 20 (∅ = ((𝐵 × {∅}) supp ∅) → OrdIso( E , ∅) = OrdIso( E , ((𝐵 × {∅}) supp ∅)))
5452, 53ax-mp 5 . . . . . . . . . . . . . . . . . . 19 OrdIso( E , ∅) = OrdIso( E , ((𝐵 × {∅}) supp ∅))
55 ne0i 4300 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 ∈ (𝐴o 𝐵) → (𝐴o 𝐵) ≠ ∅)
5655ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴o 𝐵) ≠ ∅)
57 oveq1 7376 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴 = ∅ → (𝐴o 𝐵) = (∅ ↑o 𝐵))
5857neeq1d 2984 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 = ∅ → ((𝐴o 𝐵) ≠ ∅ ↔ (∅ ↑o 𝐵) ≠ ∅))
5956, 58syl5ibcom 245 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴 = ∅ → (∅ ↑o 𝐵) ≠ ∅))
6059necon2d 2948 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((∅ ↑o 𝐵) = ∅ → 𝐴 ≠ ∅))
61 on0eln0 6377 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐵 ∈ On → (∅ ∈ 𝐵𝐵 ≠ ∅))
62 oe0m1 8462 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ (∅ ↑o 𝐵) = ∅))
6361, 62bitr3d 281 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐵 ∈ On → (𝐵 ≠ ∅ ↔ (∅ ↑o 𝐵) = ∅))
6435, 63syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 ≠ ∅ ↔ (∅ ↑o 𝐵) = ∅))
65 on0eln0 6377 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
6633, 65syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (∅ ∈ 𝐴𝐴 ≠ ∅))
6760, 64, 663imtr4d 294 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 ≠ ∅ → ∅ ∈ 𝐴))
68 ne0i 4300 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵𝐵 ≠ ∅)
6967, 68impel 505 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑦𝐵) → ∅ ∈ 𝐴)
70 fconstmpt 5693 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 × {∅}) = (𝑦𝐵 ↦ ∅)
7169, 70fmptd 7068 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 × {∅}):𝐵𝐴)
72 0ex 5257 . . . . . . . . . . . . . . . . . . . . . . 23 ∅ ∈ V
7372a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ∅ ∈ V)
743, 73fczfsuppd 9313 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐵 × {∅}) finSupp ∅)
7574adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 × {∅}) finSupp ∅)
761, 2, 3cantnfs 9595 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐵 × {∅}) ∈ 𝑆 ↔ ((𝐵 × {∅}):𝐵𝐴 ∧ (𝐵 × {∅}) finSupp ∅)))
7776adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐵 × {∅}) ∈ 𝑆 ↔ ((𝐵 × {∅}):𝐵𝐴 ∧ (𝐵 × {∅}) finSupp ∅)))
7871, 75, 77mpbir2and 713 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 × {∅}) ∈ 𝑆)
79 eqid 2729 . . . . . . . . . . . . . . . . . . 19 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)
801, 33, 35, 54, 78, 79cantnfval 9597 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ∅)))
81 we0 5626 . . . . . . . . . . . . . . . . . . . . . 22 E We ∅
82 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . 23 OrdIso( E , ∅) = OrdIso( E , ∅)
8382oien 9467 . . . . . . . . . . . . . . . . . . . . . 22 ((∅ ∈ V ∧ E We ∅) → dom OrdIso( E , ∅) ≈ ∅)
8472, 81, 83mp2an 692 . . . . . . . . . . . . . . . . . . . . 21 dom OrdIso( E , ∅) ≈ ∅
85 en0 8966 . . . . . . . . . . . . . . . . . . . . 21 (dom OrdIso( E , ∅) ≈ ∅ ↔ dom OrdIso( E , ∅) = ∅)
8684, 85mpbi 230 . . . . . . . . . . . . . . . . . . . 20 dom OrdIso( E , ∅) = ∅
8786fveq2i 6843 . . . . . . . . . . . . . . . . . . 19 (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ∅)) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘∅)
8879seqom0g 8401 . . . . . . . . . . . . . . . . . . . 20 (∅ ∈ V → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘∅) = ∅)
8972, 88ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘∅) = ∅
9087, 89eqtri 2752 . . . . . . . . . . . . . . . . . 18 (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ∅)) = ∅
9180, 90eqtrdi 2780 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = ∅)
9214adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵))
9392ffnd 6671 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴 CNF 𝐵) Fn 𝑆)
94 fnfvelrn 7034 . . . . . . . . . . . . . . . . . 18 (((𝐴 CNF 𝐵) Fn 𝑆 ∧ (𝐵 × {∅}) ∈ 𝑆) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) ∈ ran (𝐴 CNF 𝐵))
9593, 78, 94syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) ∈ ran (𝐴 CNF 𝐵))
9691, 95eqeltrrd 2829 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ∅ ∈ ran (𝐴 CNF 𝐵))
9732, 50, 96pm2.61ne 3010 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝑡 ∈ ran (𝐴 CNF 𝐵))
9897expr 456 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (𝐴o 𝐵)) → (𝑡 ⊆ ran (𝐴 CNF 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))
9931, 98sylbid 240 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝐴o 𝐵)) → (∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))
10099ex 412 . . . . . . . . . . . 12 (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → (∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
101100com23 86 . . . . . . . . . . 11 (𝜑 → (∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
102101a2i 14 . . . . . . . . . 10 ((𝜑 → ∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) → (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
103102a1i 11 . . . . . . . . 9 (𝑡 ∈ On → ((𝜑 → ∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) → (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))))
10423, 103biimtrid 242 . . . . . . . 8 (𝑡 ∈ On → (∀𝑦𝑡 (𝜑 → (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) → (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))))
10522, 104tfis2 7813 . . . . . . 7 (𝑡 ∈ On → (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
106105com3l 89 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → (𝑡 ∈ On → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
10718, 106mpdd 43 . . . . 5 (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))
108107ssrdv 3949 . . . 4 (𝜑 → (𝐴o 𝐵) ⊆ ran (𝐴 CNF 𝐵))
10915, 108eqssd 3961 . . 3 (𝜑 → ran (𝐴 CNF 𝐵) = (𝐴o 𝐵))
110 dffo2 6758 . . 3 ((𝐴 CNF 𝐵):𝑆onto→(𝐴o 𝐵) ↔ ((𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵) ∧ ran (𝐴 CNF 𝐵) = (𝐴o 𝐵)))
11114, 109, 110sylanbrc 583 . 2 (𝜑 → (𝐴 CNF 𝐵):𝑆onto→(𝐴o 𝐵))
1122adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝐴 ∈ On)
1133adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝐵 ∈ On)
114 fveq2 6840 . . . . . . . . . . . 12 (𝑧 = 𝑡 → (𝑥𝑧) = (𝑥𝑡))
115 fveq2 6840 . . . . . . . . . . . 12 (𝑧 = 𝑡 → (𝑦𝑧) = (𝑦𝑡))
116114, 115eleq12d 2822 . . . . . . . . . . 11 (𝑧 = 𝑡 → ((𝑥𝑧) ∈ (𝑦𝑧) ↔ (𝑥𝑡) ∈ (𝑦𝑡)))
117 eleq1w 2811 . . . . . . . . . . . . 13 (𝑧 = 𝑡 → (𝑧𝑤𝑡𝑤))
118117imbi1d 341 . . . . . . . . . . . 12 (𝑧 = 𝑡 → ((𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))))
119118ralbidv 3156 . . . . . . . . . . 11 (𝑧 = 𝑡 → (∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))))
120116, 119anbi12d 632 . . . . . . . . . 10 (𝑧 = 𝑡 → (((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ((𝑥𝑡) ∈ (𝑦𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤)))))
121120cbvrexvw 3214 . . . . . . . . 9 (∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑡𝐵 ((𝑥𝑡) ∈ (𝑦𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))))
122 fveq1 6839 . . . . . . . . . . . 12 (𝑥 = 𝑢 → (𝑥𝑡) = (𝑢𝑡))
123 fveq1 6839 . . . . . . . . . . . 12 (𝑦 = 𝑣 → (𝑦𝑡) = (𝑣𝑡))
124 eleq12 2818 . . . . . . . . . . . 12 (((𝑥𝑡) = (𝑢𝑡) ∧ (𝑦𝑡) = (𝑣𝑡)) → ((𝑥𝑡) ∈ (𝑦𝑡) ↔ (𝑢𝑡) ∈ (𝑣𝑡)))
125122, 123, 124syl2an 596 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝑥𝑡) ∈ (𝑦𝑡) ↔ (𝑢𝑡) ∈ (𝑣𝑡)))
126 fveq1 6839 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → (𝑥𝑤) = (𝑢𝑤))
127 fveq1 6839 . . . . . . . . . . . . . 14 (𝑦 = 𝑣 → (𝑦𝑤) = (𝑣𝑤))
128126, 127eqeqan12d 2743 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝑥𝑤) = (𝑦𝑤) ↔ (𝑢𝑤) = (𝑣𝑤)))
129128imbi2d 340 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤))))
130129ralbidv 3156 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑣) → (∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤))))
131125, 130anbi12d 632 . . . . . . . . . 10 ((𝑥 = 𝑢𝑦 = 𝑣) → (((𝑥𝑡) ∈ (𝑦𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))))
132131rexbidv 3157 . . . . . . . . 9 ((𝑥 = 𝑢𝑦 = 𝑣) → (∃𝑡𝐵 ((𝑥𝑡) ∈ (𝑦𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑡𝐵 ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))))
133121, 132bitrid 283 . . . . . . . 8 ((𝑥 = 𝑢𝑦 = 𝑣) → (∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑡𝐵 ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))))
134133cbvopabv 5175 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))} = {⟨𝑢, 𝑣⟩ ∣ ∃𝑡𝐵 ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))}
1354, 134eqtri 2752 . . . . . 6 𝑇 = {⟨𝑢, 𝑣⟩ ∣ ∃𝑡𝐵 ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))}
136 simprll 778 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝑓𝑆)
137 simprlr 779 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝑔𝑆)
138 simprr 772 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝑓𝑇𝑔)
139 eqid 2729 . . . . . 6 {𝑐𝐵 ∣ (𝑓𝑐) ∈ (𝑔𝑐)} = {𝑐𝐵 ∣ (𝑓𝑐) ∈ (𝑔𝑐)}
140 eqid 2729 . . . . . 6 OrdIso( E , (𝑔 supp ∅)) = OrdIso( E , (𝑔 supp ∅))
141 eqid 2729 . . . . . 6 seqω((𝑘 ∈ V, 𝑡 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑔 supp ∅))‘𝑘)) ·o (𝑔‘(OrdIso( E , (𝑔 supp ∅))‘𝑘))) +o 𝑡)), ∅) = seqω((𝑘 ∈ V, 𝑡 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑔 supp ∅))‘𝑘)) ·o (𝑔‘(OrdIso( E , (𝑔 supp ∅))‘𝑘))) +o 𝑡)), ∅)
1421, 112, 113, 135, 136, 137, 138, 139, 140, 141cantnflem1 9618 . . . . 5 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → ((𝐴 CNF 𝐵)‘𝑓) ∈ ((𝐴 CNF 𝐵)‘𝑔))
143 fvex 6853 . . . . . 6 ((𝐴 CNF 𝐵)‘𝑔) ∈ V
144143epeli 5533 . . . . 5 (((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔) ↔ ((𝐴 CNF 𝐵)‘𝑓) ∈ ((𝐴 CNF 𝐵)‘𝑔))
145142, 144sylibr 234 . . . 4 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔))
146145expr 456 . . 3 ((𝜑 ∧ (𝑓𝑆𝑔𝑆)) → (𝑓𝑇𝑔 → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔)))
147146ralrimivva 3178 . 2 (𝜑 → ∀𝑓𝑆𝑔𝑆 (𝑓𝑇𝑔 → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔)))
148 soisoi 7285 . 2 (((𝑇 Or 𝑆 ∧ E Po (𝐴o 𝐵)) ∧ ((𝐴 CNF 𝐵):𝑆onto→(𝐴o 𝐵) ∧ ∀𝑓𝑆𝑔𝑆 (𝑓𝑇𝑔 → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔)))) → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴o 𝐵)))
1495, 13, 111, 147, 148syl22anc 838 1 (𝜑 → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  wss 3911  c0 4292  {csn 4585  cop 4591   cuni 4867   cint 4906   class class class wbr 5102  {copab 5164   E cep 5530   Po wpo 5537   Or wor 5538   We wwe 5583   × cxp 5629  dom cdm 5631  ran crn 5632  Ord word 6319  Oncon0 6320  cio 6450   Fn wfn 6494  wf 6495  ontowfo 6497  cfv 6499   Isom wiso 6500  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946   supp csupp 8116  seqωcseqom 8392   +o coa 8408   ·o comu 8409  o coe 8410  cen 8892   finSupp cfsupp 9288  OrdIsocoi 9438   CNF ccnf 9590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-seqom 8393  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-oexp 8417  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-oi 9439  df-cnf 9591
This theorem is referenced by:  oemapwe  9623  cantnffval2  9624  cantnff1o  9625  cantnfresb  43286
  Copyright terms: Public domain W3C validator