MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnf Structured version   Visualization version   GIF version

Theorem cantnf 9381
Description: The Cantor Normal Form theorem. The function (𝐴 CNF 𝐵), which maps a finitely supported function from 𝐵 to 𝐴 to the sum ((𝐴o 𝑓(𝑎1)) ∘ 𝑎1) +o ((𝐴o 𝑓(𝑎2)) ∘ 𝑎2) +o ... over all indices 𝑎 < 𝐵 such that 𝑓(𝑎) is nonzero, is an order isomorphism from the ordering 𝑇 of finitely supported functions to the set (𝐴o 𝐵) under the natural order. Setting 𝐴 = ω and letting 𝐵 be arbitrarily large, the surjectivity of this function implies that every ordinal has a Cantor normal form (and injectivity, together with coherence cantnfres 9365, implies that such a representation is unique). (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
Assertion
Ref Expression
cantnf (𝜑 → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴o 𝐵)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝐴,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cantnf
Dummy variables 𝑓 𝑐 𝑔 𝑘 𝑡 𝑢 𝑣 𝑎 𝑏 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . 3 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
3 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
4 oemapval.t . . 3 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
51, 2, 3, 4oemapso 9370 . 2 (𝜑𝑇 Or 𝑆)
6 oecl 8329 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
72, 3, 6syl2anc 583 . . . 4 (𝜑 → (𝐴o 𝐵) ∈ On)
8 eloni 6261 . . . 4 ((𝐴o 𝐵) ∈ On → Ord (𝐴o 𝐵))
97, 8syl 17 . . 3 (𝜑 → Ord (𝐴o 𝐵))
10 ordwe 6264 . . 3 (Ord (𝐴o 𝐵) → E We (𝐴o 𝐵))
11 weso 5571 . . 3 ( E We (𝐴o 𝐵) → E Or (𝐴o 𝐵))
12 sopo 5513 . . 3 ( E Or (𝐴o 𝐵) → E Po (𝐴o 𝐵))
139, 10, 11, 124syl 19 . 2 (𝜑 → E Po (𝐴o 𝐵))
141, 2, 3cantnff 9362 . . 3 (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵))
1514frnd 6592 . . . 4 (𝜑 → ran (𝐴 CNF 𝐵) ⊆ (𝐴o 𝐵))
16 onss 7611 . . . . . . . 8 ((𝐴o 𝐵) ∈ On → (𝐴o 𝐵) ⊆ On)
177, 16syl 17 . . . . . . 7 (𝜑 → (𝐴o 𝐵) ⊆ On)
1817sseld 3916 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ On))
19 eleq1w 2821 . . . . . . . . . 10 (𝑡 = 𝑦 → (𝑡 ∈ (𝐴o 𝐵) ↔ 𝑦 ∈ (𝐴o 𝐵)))
20 eleq1w 2821 . . . . . . . . . 10 (𝑡 = 𝑦 → (𝑡 ∈ ran (𝐴 CNF 𝐵) ↔ 𝑦 ∈ ran (𝐴 CNF 𝐵)))
2119, 20imbi12d 344 . . . . . . . . 9 (𝑡 = 𝑦 → ((𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)) ↔ (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))))
2221imbi2d 340 . . . . . . . 8 (𝑡 = 𝑦 → ((𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))) ↔ (𝜑 → (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)))))
23 r19.21v 3100 . . . . . . . . 9 (∀𝑦𝑡 (𝜑 → (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) ↔ (𝜑 → ∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))))
24 ordelss 6267 . . . . . . . . . . . . . . . . . . 19 ((Ord (𝐴o 𝐵) ∧ 𝑡 ∈ (𝐴o 𝐵)) → 𝑡 ⊆ (𝐴o 𝐵))
259, 24sylan 579 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (𝐴o 𝐵)) → 𝑡 ⊆ (𝐴o 𝐵))
2625sselda 3917 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡 ∈ (𝐴o 𝐵)) ∧ 𝑦𝑡) → 𝑦 ∈ (𝐴o 𝐵))
27 pm5.5 361 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (𝐴o 𝐵) → ((𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ 𝑦 ∈ ran (𝐴 CNF 𝐵)))
2826, 27syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑡 ∈ (𝐴o 𝐵)) ∧ 𝑦𝑡) → ((𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ 𝑦 ∈ ran (𝐴 CNF 𝐵)))
2928ralbidva 3119 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (𝐴o 𝐵)) → (∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ ∀𝑦𝑡 𝑦 ∈ ran (𝐴 CNF 𝐵)))
30 dfss3 3905 . . . . . . . . . . . . . . 15 (𝑡 ⊆ ran (𝐴 CNF 𝐵) ↔ ∀𝑦𝑡 𝑦 ∈ ran (𝐴 CNF 𝐵))
3129, 30bitr4di 288 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (𝐴o 𝐵)) → (∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ 𝑡 ⊆ ran (𝐴 CNF 𝐵)))
32 eleq1 2826 . . . . . . . . . . . . . . . 16 (𝑡 = ∅ → (𝑡 ∈ ran (𝐴 CNF 𝐵) ↔ ∅ ∈ ran (𝐴 CNF 𝐵)))
332adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝐴 ∈ On)
3433adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝐴 ∈ On)
353adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝐵 ∈ On)
3635adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝐵 ∈ On)
37 simplrl 773 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝑡 ∈ (𝐴o 𝐵))
38 simplrr 774 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝑡 ⊆ ran (𝐴 CNF 𝐵))
397adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴o 𝐵) ∈ On)
40 simprl 767 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝑡 ∈ (𝐴o 𝐵))
41 onelon 6276 . . . . . . . . . . . . . . . . . . . 20 (((𝐴o 𝐵) ∈ On ∧ 𝑡 ∈ (𝐴o 𝐵)) → 𝑡 ∈ On)
4239, 40, 41syl2anc 583 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝑡 ∈ On)
43 on0eln0 6306 . . . . . . . . . . . . . . . . . . 19 (𝑡 ∈ On → (∅ ∈ 𝑡𝑡 ≠ ∅))
4442, 43syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (∅ ∈ 𝑡𝑡 ≠ ∅))
4544biimpar 477 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → ∅ ∈ 𝑡)
46 eqid 2738 . . . . . . . . . . . . . . . . 17 {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)} = {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}
47 eqid 2738 . . . . . . . . . . . . . . . . 17 (℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡)) = (℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡))
48 eqid 2738 . . . . . . . . . . . . . . . . 17 (1st ‘(℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡))) = (1st ‘(℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡)))
49 eqid 2738 . . . . . . . . . . . . . . . . 17 (2nd ‘(℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡))) = (2nd ‘(℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡)))
501, 34, 36, 4, 37, 38, 45, 46, 47, 48, 49cantnflem4 9380 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝑡 ∈ ran (𝐴 CNF 𝐵))
51 fczsupp0 7980 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 × {∅}) supp ∅) = ∅
5251eqcomi 2747 . . . . . . . . . . . . . . . . . . . 20 ∅ = ((𝐵 × {∅}) supp ∅)
53 oieq2 9202 . . . . . . . . . . . . . . . . . . . 20 (∅ = ((𝐵 × {∅}) supp ∅) → OrdIso( E , ∅) = OrdIso( E , ((𝐵 × {∅}) supp ∅)))
5452, 53ax-mp 5 . . . . . . . . . . . . . . . . . . 19 OrdIso( E , ∅) = OrdIso( E , ((𝐵 × {∅}) supp ∅))
55 ne0i 4265 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 ∈ (𝐴o 𝐵) → (𝐴o 𝐵) ≠ ∅)
5655ad2antrl 724 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴o 𝐵) ≠ ∅)
57 oveq1 7262 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴 = ∅ → (𝐴o 𝐵) = (∅ ↑o 𝐵))
5857neeq1d 3002 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 = ∅ → ((𝐴o 𝐵) ≠ ∅ ↔ (∅ ↑o 𝐵) ≠ ∅))
5956, 58syl5ibcom 244 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴 = ∅ → (∅ ↑o 𝐵) ≠ ∅))
6059necon2d 2965 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((∅ ↑o 𝐵) = ∅ → 𝐴 ≠ ∅))
61 on0eln0 6306 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐵 ∈ On → (∅ ∈ 𝐵𝐵 ≠ ∅))
62 oe0m1 8313 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ (∅ ↑o 𝐵) = ∅))
6361, 62bitr3d 280 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐵 ∈ On → (𝐵 ≠ ∅ ↔ (∅ ↑o 𝐵) = ∅))
6435, 63syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 ≠ ∅ ↔ (∅ ↑o 𝐵) = ∅))
65 on0eln0 6306 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
6633, 65syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (∅ ∈ 𝐴𝐴 ≠ ∅))
6760, 64, 663imtr4d 293 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 ≠ ∅ → ∅ ∈ 𝐴))
68 ne0i 4265 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵𝐵 ≠ ∅)
6967, 68impel 505 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑦𝐵) → ∅ ∈ 𝐴)
70 fconstmpt 5640 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 × {∅}) = (𝑦𝐵 ↦ ∅)
7169, 70fmptd 6970 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 × {∅}):𝐵𝐴)
72 0ex 5226 . . . . . . . . . . . . . . . . . . . . . . 23 ∅ ∈ V
7372a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ∅ ∈ V)
743, 73fczfsuppd 9076 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐵 × {∅}) finSupp ∅)
7574adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 × {∅}) finSupp ∅)
761, 2, 3cantnfs 9354 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐵 × {∅}) ∈ 𝑆 ↔ ((𝐵 × {∅}):𝐵𝐴 ∧ (𝐵 × {∅}) finSupp ∅)))
7776adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐵 × {∅}) ∈ 𝑆 ↔ ((𝐵 × {∅}):𝐵𝐴 ∧ (𝐵 × {∅}) finSupp ∅)))
7871, 75, 77mpbir2and 709 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 × {∅}) ∈ 𝑆)
79 eqid 2738 . . . . . . . . . . . . . . . . . . 19 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)
801, 33, 35, 54, 78, 79cantnfval 9356 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ∅)))
81 we0 5575 . . . . . . . . . . . . . . . . . . . . . 22 E We ∅
82 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . 23 OrdIso( E , ∅) = OrdIso( E , ∅)
8382oien 9227 . . . . . . . . . . . . . . . . . . . . . 22 ((∅ ∈ V ∧ E We ∅) → dom OrdIso( E , ∅) ≈ ∅)
8472, 81, 83mp2an 688 . . . . . . . . . . . . . . . . . . . . 21 dom OrdIso( E , ∅) ≈ ∅
85 en0 8758 . . . . . . . . . . . . . . . . . . . . 21 (dom OrdIso( E , ∅) ≈ ∅ ↔ dom OrdIso( E , ∅) = ∅)
8684, 85mpbi 229 . . . . . . . . . . . . . . . . . . . 20 dom OrdIso( E , ∅) = ∅
8786fveq2i 6759 . . . . . . . . . . . . . . . . . . 19 (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ∅)) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘∅)
8879seqom0g 8257 . . . . . . . . . . . . . . . . . . . 20 (∅ ∈ V → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘∅) = ∅)
8972, 88ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘∅) = ∅
9087, 89eqtri 2766 . . . . . . . . . . . . . . . . . 18 (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ∅)) = ∅
9180, 90eqtrdi 2795 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = ∅)
9214adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵))
9392ffnd 6585 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴 CNF 𝐵) Fn 𝑆)
94 fnfvelrn 6940 . . . . . . . . . . . . . . . . . 18 (((𝐴 CNF 𝐵) Fn 𝑆 ∧ (𝐵 × {∅}) ∈ 𝑆) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) ∈ ran (𝐴 CNF 𝐵))
9593, 78, 94syl2anc 583 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) ∈ ran (𝐴 CNF 𝐵))
9691, 95eqeltrrd 2840 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ∅ ∈ ran (𝐴 CNF 𝐵))
9732, 50, 96pm2.61ne 3029 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝑡 ∈ ran (𝐴 CNF 𝐵))
9897expr 456 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (𝐴o 𝐵)) → (𝑡 ⊆ ran (𝐴 CNF 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))
9931, 98sylbid 239 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝐴o 𝐵)) → (∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))
10099ex 412 . . . . . . . . . . . 12 (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → (∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
101100com23 86 . . . . . . . . . . 11 (𝜑 → (∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
102101a2i 14 . . . . . . . . . 10 ((𝜑 → ∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) → (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
103102a1i 11 . . . . . . . . 9 (𝑡 ∈ On → ((𝜑 → ∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) → (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))))
10423, 103syl5bi 241 . . . . . . . 8 (𝑡 ∈ On → (∀𝑦𝑡 (𝜑 → (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) → (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))))
10522, 104tfis2 7678 . . . . . . 7 (𝑡 ∈ On → (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
106105com3l 89 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → (𝑡 ∈ On → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
10718, 106mpdd 43 . . . . 5 (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))
108107ssrdv 3923 . . . 4 (𝜑 → (𝐴o 𝐵) ⊆ ran (𝐴 CNF 𝐵))
10915, 108eqssd 3934 . . 3 (𝜑 → ran (𝐴 CNF 𝐵) = (𝐴o 𝐵))
110 dffo2 6676 . . 3 ((𝐴 CNF 𝐵):𝑆onto→(𝐴o 𝐵) ↔ ((𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵) ∧ ran (𝐴 CNF 𝐵) = (𝐴o 𝐵)))
11114, 109, 110sylanbrc 582 . 2 (𝜑 → (𝐴 CNF 𝐵):𝑆onto→(𝐴o 𝐵))
1122adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝐴 ∈ On)
1133adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝐵 ∈ On)
114 fveq2 6756 . . . . . . . . . . . 12 (𝑧 = 𝑡 → (𝑥𝑧) = (𝑥𝑡))
115 fveq2 6756 . . . . . . . . . . . 12 (𝑧 = 𝑡 → (𝑦𝑧) = (𝑦𝑡))
116114, 115eleq12d 2833 . . . . . . . . . . 11 (𝑧 = 𝑡 → ((𝑥𝑧) ∈ (𝑦𝑧) ↔ (𝑥𝑡) ∈ (𝑦𝑡)))
117 eleq1w 2821 . . . . . . . . . . . . 13 (𝑧 = 𝑡 → (𝑧𝑤𝑡𝑤))
118117imbi1d 341 . . . . . . . . . . . 12 (𝑧 = 𝑡 → ((𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))))
119118ralbidv 3120 . . . . . . . . . . 11 (𝑧 = 𝑡 → (∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))))
120116, 119anbi12d 630 . . . . . . . . . 10 (𝑧 = 𝑡 → (((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ((𝑥𝑡) ∈ (𝑦𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤)))))
121120cbvrexvw 3373 . . . . . . . . 9 (∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑡𝐵 ((𝑥𝑡) ∈ (𝑦𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))))
122 fveq1 6755 . . . . . . . . . . . 12 (𝑥 = 𝑢 → (𝑥𝑡) = (𝑢𝑡))
123 fveq1 6755 . . . . . . . . . . . 12 (𝑦 = 𝑣 → (𝑦𝑡) = (𝑣𝑡))
124 eleq12 2828 . . . . . . . . . . . 12 (((𝑥𝑡) = (𝑢𝑡) ∧ (𝑦𝑡) = (𝑣𝑡)) → ((𝑥𝑡) ∈ (𝑦𝑡) ↔ (𝑢𝑡) ∈ (𝑣𝑡)))
125122, 123, 124syl2an 595 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝑥𝑡) ∈ (𝑦𝑡) ↔ (𝑢𝑡) ∈ (𝑣𝑡)))
126 fveq1 6755 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → (𝑥𝑤) = (𝑢𝑤))
127 fveq1 6755 . . . . . . . . . . . . . 14 (𝑦 = 𝑣 → (𝑦𝑤) = (𝑣𝑤))
128126, 127eqeqan12d 2752 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝑥𝑤) = (𝑦𝑤) ↔ (𝑢𝑤) = (𝑣𝑤)))
129128imbi2d 340 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤))))
130129ralbidv 3120 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑣) → (∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤))))
131125, 130anbi12d 630 . . . . . . . . . 10 ((𝑥 = 𝑢𝑦 = 𝑣) → (((𝑥𝑡) ∈ (𝑦𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))))
132131rexbidv 3225 . . . . . . . . 9 ((𝑥 = 𝑢𝑦 = 𝑣) → (∃𝑡𝐵 ((𝑥𝑡) ∈ (𝑦𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑡𝐵 ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))))
133121, 132syl5bb 282 . . . . . . . 8 ((𝑥 = 𝑢𝑦 = 𝑣) → (∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑡𝐵 ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))))
134133cbvopabv 5143 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))} = {⟨𝑢, 𝑣⟩ ∣ ∃𝑡𝐵 ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))}
1354, 134eqtri 2766 . . . . . 6 𝑇 = {⟨𝑢, 𝑣⟩ ∣ ∃𝑡𝐵 ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))}
136 simprll 775 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝑓𝑆)
137 simprlr 776 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝑔𝑆)
138 simprr 769 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝑓𝑇𝑔)
139 eqid 2738 . . . . . 6 {𝑐𝐵 ∣ (𝑓𝑐) ∈ (𝑔𝑐)} = {𝑐𝐵 ∣ (𝑓𝑐) ∈ (𝑔𝑐)}
140 eqid 2738 . . . . . 6 OrdIso( E , (𝑔 supp ∅)) = OrdIso( E , (𝑔 supp ∅))
141 eqid 2738 . . . . . 6 seqω((𝑘 ∈ V, 𝑡 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑔 supp ∅))‘𝑘)) ·o (𝑔‘(OrdIso( E , (𝑔 supp ∅))‘𝑘))) +o 𝑡)), ∅) = seqω((𝑘 ∈ V, 𝑡 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑔 supp ∅))‘𝑘)) ·o (𝑔‘(OrdIso( E , (𝑔 supp ∅))‘𝑘))) +o 𝑡)), ∅)
1421, 112, 113, 135, 136, 137, 138, 139, 140, 141cantnflem1 9377 . . . . 5 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → ((𝐴 CNF 𝐵)‘𝑓) ∈ ((𝐴 CNF 𝐵)‘𝑔))
143 fvex 6769 . . . . . 6 ((𝐴 CNF 𝐵)‘𝑔) ∈ V
144143epeli 5488 . . . . 5 (((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔) ↔ ((𝐴 CNF 𝐵)‘𝑓) ∈ ((𝐴 CNF 𝐵)‘𝑔))
145142, 144sylibr 233 . . . 4 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔))
146145expr 456 . . 3 ((𝜑 ∧ (𝑓𝑆𝑔𝑆)) → (𝑓𝑇𝑔 → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔)))
147146ralrimivva 3114 . 2 (𝜑 → ∀𝑓𝑆𝑔𝑆 (𝑓𝑇𝑔 → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔)))
148 soisoi 7179 . 2 (((𝑇 Or 𝑆 ∧ E Po (𝐴o 𝐵)) ∧ ((𝐴 CNF 𝐵):𝑆onto→(𝐴o 𝐵) ∧ ∀𝑓𝑆𝑔𝑆 (𝑓𝑇𝑔 → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔)))) → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴o 𝐵)))
1495, 13, 111, 147, 148syl22anc 835 1 (𝜑 → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  wss 3883  c0 4253  {csn 4558  cop 4564   cuni 4836   cint 4876   class class class wbr 5070  {copab 5132   E cep 5485   Po wpo 5492   Or wor 5493   We wwe 5534   × cxp 5578  dom cdm 5580  ran crn 5581  Ord word 6250  Oncon0 6251  cio 6374   Fn wfn 6413  wf 6414  ontowfo 6416  cfv 6418   Isom wiso 6419  (class class class)co 7255  cmpo 7257  1st c1st 7802  2nd c2nd 7803   supp csupp 7948  seqωcseqom 8248   +o coa 8264   ·o comu 8265  o coe 8266  cen 8688   finSupp cfsupp 9058  OrdIsocoi 9198   CNF ccnf 9349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-seqom 8249  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-oexp 8273  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-cnf 9350
This theorem is referenced by:  oemapwe  9382  cantnffval2  9383  cantnff1o  9384
  Copyright terms: Public domain W3C validator