MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnf Structured version   Visualization version   GIF version

Theorem cantnf 9583
Description: The Cantor Normal Form theorem. The function (𝐴 CNF 𝐵), which maps a finitely supported function from 𝐵 to 𝐴 to the sum ((𝐴o 𝑓(𝑎1)) ∘ 𝑎1) +o ((𝐴o 𝑓(𝑎2)) ∘ 𝑎2) +o ... over all indices 𝑎 < 𝐵 such that 𝑓(𝑎) is nonzero, is an order isomorphism from the ordering 𝑇 of finitely supported functions to the set (𝐴o 𝐵) under the natural order. Setting 𝐴 = ω and letting 𝐵 be arbitrarily large, the surjectivity of this function implies that every ordinal has a Cantor normal form (and injectivity, together with coherence cantnfres 9567, implies that such a representation is unique). (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
Assertion
Ref Expression
cantnf (𝜑 → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴o 𝐵)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝐴,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cantnf
Dummy variables 𝑓 𝑐 𝑔 𝑘 𝑡 𝑢 𝑣 𝑎 𝑏 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . 3 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
3 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
4 oemapval.t . . 3 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
51, 2, 3, 4oemapso 9572 . 2 (𝜑𝑇 Or 𝑆)
6 oecl 8452 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
72, 3, 6syl2anc 584 . . . 4 (𝜑 → (𝐴o 𝐵) ∈ On)
8 eloni 6316 . . . 4 ((𝐴o 𝐵) ∈ On → Ord (𝐴o 𝐵))
97, 8syl 17 . . 3 (𝜑 → Ord (𝐴o 𝐵))
10 ordwe 6319 . . 3 (Ord (𝐴o 𝐵) → E We (𝐴o 𝐵))
11 weso 5605 . . 3 ( E We (𝐴o 𝐵) → E Or (𝐴o 𝐵))
12 sopo 5541 . . 3 ( E Or (𝐴o 𝐵) → E Po (𝐴o 𝐵))
139, 10, 11, 124syl 19 . 2 (𝜑 → E Po (𝐴o 𝐵))
141, 2, 3cantnff 9564 . . 3 (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵))
1514frnd 6659 . . . 4 (𝜑 → ran (𝐴 CNF 𝐵) ⊆ (𝐴o 𝐵))
16 onss 7718 . . . . . . . 8 ((𝐴o 𝐵) ∈ On → (𝐴o 𝐵) ⊆ On)
177, 16syl 17 . . . . . . 7 (𝜑 → (𝐴o 𝐵) ⊆ On)
1817sseld 3928 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ On))
19 eleq1w 2814 . . . . . . . . . 10 (𝑡 = 𝑦 → (𝑡 ∈ (𝐴o 𝐵) ↔ 𝑦 ∈ (𝐴o 𝐵)))
20 eleq1w 2814 . . . . . . . . . 10 (𝑡 = 𝑦 → (𝑡 ∈ ran (𝐴 CNF 𝐵) ↔ 𝑦 ∈ ran (𝐴 CNF 𝐵)))
2119, 20imbi12d 344 . . . . . . . . 9 (𝑡 = 𝑦 → ((𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)) ↔ (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))))
2221imbi2d 340 . . . . . . . 8 (𝑡 = 𝑦 → ((𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))) ↔ (𝜑 → (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)))))
23 r19.21v 3157 . . . . . . . . 9 (∀𝑦𝑡 (𝜑 → (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) ↔ (𝜑 → ∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))))
24 ordelss 6322 . . . . . . . . . . . . . . . . . . 19 ((Ord (𝐴o 𝐵) ∧ 𝑡 ∈ (𝐴o 𝐵)) → 𝑡 ⊆ (𝐴o 𝐵))
259, 24sylan 580 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (𝐴o 𝐵)) → 𝑡 ⊆ (𝐴o 𝐵))
2625sselda 3929 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡 ∈ (𝐴o 𝐵)) ∧ 𝑦𝑡) → 𝑦 ∈ (𝐴o 𝐵))
27 pm5.5 361 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (𝐴o 𝐵) → ((𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ 𝑦 ∈ ran (𝐴 CNF 𝐵)))
2826, 27syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑡 ∈ (𝐴o 𝐵)) ∧ 𝑦𝑡) → ((𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ 𝑦 ∈ ran (𝐴 CNF 𝐵)))
2928ralbidva 3153 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (𝐴o 𝐵)) → (∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ ∀𝑦𝑡 𝑦 ∈ ran (𝐴 CNF 𝐵)))
30 dfss3 3918 . . . . . . . . . . . . . . 15 (𝑡 ⊆ ran (𝐴 CNF 𝐵) ↔ ∀𝑦𝑡 𝑦 ∈ ran (𝐴 CNF 𝐵))
3129, 30bitr4di 289 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (𝐴o 𝐵)) → (∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ 𝑡 ⊆ ran (𝐴 CNF 𝐵)))
32 eleq1 2819 . . . . . . . . . . . . . . . 16 (𝑡 = ∅ → (𝑡 ∈ ran (𝐴 CNF 𝐵) ↔ ∅ ∈ ran (𝐴 CNF 𝐵)))
332adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝐴 ∈ On)
3433adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝐴 ∈ On)
353adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝐵 ∈ On)
3635adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝐵 ∈ On)
37 simplrl 776 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝑡 ∈ (𝐴o 𝐵))
38 simplrr 777 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝑡 ⊆ ran (𝐴 CNF 𝐵))
397adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴o 𝐵) ∈ On)
40 simprl 770 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝑡 ∈ (𝐴o 𝐵))
41 onelon 6331 . . . . . . . . . . . . . . . . . . . 20 (((𝐴o 𝐵) ∈ On ∧ 𝑡 ∈ (𝐴o 𝐵)) → 𝑡 ∈ On)
4239, 40, 41syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝑡 ∈ On)
43 on0eln0 6363 . . . . . . . . . . . . . . . . . . 19 (𝑡 ∈ On → (∅ ∈ 𝑡𝑡 ≠ ∅))
4442, 43syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (∅ ∈ 𝑡𝑡 ≠ ∅))
4544biimpar 477 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → ∅ ∈ 𝑡)
46 eqid 2731 . . . . . . . . . . . . . . . . 17 {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)} = {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}
47 eqid 2731 . . . . . . . . . . . . . . . . 17 (℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡)) = (℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡))
48 eqid 2731 . . . . . . . . . . . . . . . . 17 (1st ‘(℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡))) = (1st ‘(℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡)))
49 eqid 2731 . . . . . . . . . . . . . . . . 17 (2nd ‘(℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡))) = (2nd ‘(℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴o 𝑐)}) ·o 𝑎) +o 𝑏) = 𝑡)))
501, 34, 36, 4, 37, 38, 45, 46, 47, 48, 49cantnflem4 9582 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝑡 ∈ ran (𝐴 CNF 𝐵))
51 fczsupp0 8123 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 × {∅}) supp ∅) = ∅
5251eqcomi 2740 . . . . . . . . . . . . . . . . . . . 20 ∅ = ((𝐵 × {∅}) supp ∅)
53 oieq2 9399 . . . . . . . . . . . . . . . . . . . 20 (∅ = ((𝐵 × {∅}) supp ∅) → OrdIso( E , ∅) = OrdIso( E , ((𝐵 × {∅}) supp ∅)))
5452, 53ax-mp 5 . . . . . . . . . . . . . . . . . . 19 OrdIso( E , ∅) = OrdIso( E , ((𝐵 × {∅}) supp ∅))
55 ne0i 4288 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 ∈ (𝐴o 𝐵) → (𝐴o 𝐵) ≠ ∅)
5655ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴o 𝐵) ≠ ∅)
57 oveq1 7353 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴 = ∅ → (𝐴o 𝐵) = (∅ ↑o 𝐵))
5857neeq1d 2987 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 = ∅ → ((𝐴o 𝐵) ≠ ∅ ↔ (∅ ↑o 𝐵) ≠ ∅))
5956, 58syl5ibcom 245 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴 = ∅ → (∅ ↑o 𝐵) ≠ ∅))
6059necon2d 2951 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((∅ ↑o 𝐵) = ∅ → 𝐴 ≠ ∅))
61 on0eln0 6363 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐵 ∈ On → (∅ ∈ 𝐵𝐵 ≠ ∅))
62 oe0m1 8436 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ (∅ ↑o 𝐵) = ∅))
6361, 62bitr3d 281 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐵 ∈ On → (𝐵 ≠ ∅ ↔ (∅ ↑o 𝐵) = ∅))
6435, 63syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 ≠ ∅ ↔ (∅ ↑o 𝐵) = ∅))
65 on0eln0 6363 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
6633, 65syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (∅ ∈ 𝐴𝐴 ≠ ∅))
6760, 64, 663imtr4d 294 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 ≠ ∅ → ∅ ∈ 𝐴))
68 ne0i 4288 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵𝐵 ≠ ∅)
6967, 68impel 505 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑦𝐵) → ∅ ∈ 𝐴)
70 fconstmpt 5676 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 × {∅}) = (𝑦𝐵 ↦ ∅)
7169, 70fmptd 7047 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 × {∅}):𝐵𝐴)
72 0ex 5243 . . . . . . . . . . . . . . . . . . . . . . 23 ∅ ∈ V
7372a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ∅ ∈ V)
743, 73fczfsuppd 9270 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐵 × {∅}) finSupp ∅)
7574adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 × {∅}) finSupp ∅)
761, 2, 3cantnfs 9556 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐵 × {∅}) ∈ 𝑆 ↔ ((𝐵 × {∅}):𝐵𝐴 ∧ (𝐵 × {∅}) finSupp ∅)))
7776adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐵 × {∅}) ∈ 𝑆 ↔ ((𝐵 × {∅}):𝐵𝐴 ∧ (𝐵 × {∅}) finSupp ∅)))
7871, 75, 77mpbir2and 713 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 × {∅}) ∈ 𝑆)
79 eqid 2731 . . . . . . . . . . . . . . . . . . 19 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)
801, 33, 35, 54, 78, 79cantnfval 9558 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ∅)))
81 we0 5609 . . . . . . . . . . . . . . . . . . . . . 22 E We ∅
82 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . 23 OrdIso( E , ∅) = OrdIso( E , ∅)
8382oien 9424 . . . . . . . . . . . . . . . . . . . . . 22 ((∅ ∈ V ∧ E We ∅) → dom OrdIso( E , ∅) ≈ ∅)
8472, 81, 83mp2an 692 . . . . . . . . . . . . . . . . . . . . 21 dom OrdIso( E , ∅) ≈ ∅
85 en0 8940 . . . . . . . . . . . . . . . . . . . . 21 (dom OrdIso( E , ∅) ≈ ∅ ↔ dom OrdIso( E , ∅) = ∅)
8684, 85mpbi 230 . . . . . . . . . . . . . . . . . . . 20 dom OrdIso( E , ∅) = ∅
8786fveq2i 6825 . . . . . . . . . . . . . . . . . . 19 (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ∅)) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘∅)
8879seqom0g 8375 . . . . . . . . . . . . . . . . . . . 20 (∅ ∈ V → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘∅) = ∅)
8972, 88ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘∅) = ∅
9087, 89eqtri 2754 . . . . . . . . . . . . . . . . . 18 (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ∅)‘𝑘)) ·o ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ∅)) = ∅
9180, 90eqtrdi 2782 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = ∅)
9214adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵))
9392ffnd 6652 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴 CNF 𝐵) Fn 𝑆)
94 fnfvelrn 7013 . . . . . . . . . . . . . . . . . 18 (((𝐴 CNF 𝐵) Fn 𝑆 ∧ (𝐵 × {∅}) ∈ 𝑆) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) ∈ ran (𝐴 CNF 𝐵))
9593, 78, 94syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) ∈ ran (𝐴 CNF 𝐵))
9691, 95eqeltrrd 2832 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ∅ ∈ ran (𝐴 CNF 𝐵))
9732, 50, 96pm2.61ne 3013 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑡 ∈ (𝐴o 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝑡 ∈ ran (𝐴 CNF 𝐵))
9897expr 456 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (𝐴o 𝐵)) → (𝑡 ⊆ ran (𝐴 CNF 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))
9931, 98sylbid 240 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝐴o 𝐵)) → (∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))
10099ex 412 . . . . . . . . . . . 12 (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → (∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
101100com23 86 . . . . . . . . . . 11 (𝜑 → (∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
102101a2i 14 . . . . . . . . . 10 ((𝜑 → ∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) → (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
103102a1i 11 . . . . . . . . 9 (𝑡 ∈ On → ((𝜑 → ∀𝑦𝑡 (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) → (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))))
10423, 103biimtrid 242 . . . . . . . 8 (𝑡 ∈ On → (∀𝑦𝑡 (𝜑 → (𝑦 ∈ (𝐴o 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) → (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))))
10522, 104tfis2 7787 . . . . . . 7 (𝑡 ∈ On → (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
106105com3l 89 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → (𝑡 ∈ On → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
10718, 106mpdd 43 . . . . 5 (𝜑 → (𝑡 ∈ (𝐴o 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))
108107ssrdv 3935 . . . 4 (𝜑 → (𝐴o 𝐵) ⊆ ran (𝐴 CNF 𝐵))
10915, 108eqssd 3947 . . 3 (𝜑 → ran (𝐴 CNF 𝐵) = (𝐴o 𝐵))
110 dffo2 6739 . . 3 ((𝐴 CNF 𝐵):𝑆onto→(𝐴o 𝐵) ↔ ((𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵) ∧ ran (𝐴 CNF 𝐵) = (𝐴o 𝐵)))
11114, 109, 110sylanbrc 583 . 2 (𝜑 → (𝐴 CNF 𝐵):𝑆onto→(𝐴o 𝐵))
1122adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝐴 ∈ On)
1133adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝐵 ∈ On)
114 fveq2 6822 . . . . . . . . . . . 12 (𝑧 = 𝑡 → (𝑥𝑧) = (𝑥𝑡))
115 fveq2 6822 . . . . . . . . . . . 12 (𝑧 = 𝑡 → (𝑦𝑧) = (𝑦𝑡))
116114, 115eleq12d 2825 . . . . . . . . . . 11 (𝑧 = 𝑡 → ((𝑥𝑧) ∈ (𝑦𝑧) ↔ (𝑥𝑡) ∈ (𝑦𝑡)))
117 eleq1w 2814 . . . . . . . . . . . . 13 (𝑧 = 𝑡 → (𝑧𝑤𝑡𝑤))
118117imbi1d 341 . . . . . . . . . . . 12 (𝑧 = 𝑡 → ((𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))))
119118ralbidv 3155 . . . . . . . . . . 11 (𝑧 = 𝑡 → (∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))))
120116, 119anbi12d 632 . . . . . . . . . 10 (𝑧 = 𝑡 → (((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ((𝑥𝑡) ∈ (𝑦𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤)))))
121120cbvrexvw 3211 . . . . . . . . 9 (∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑡𝐵 ((𝑥𝑡) ∈ (𝑦𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))))
122 fveq1 6821 . . . . . . . . . . . 12 (𝑥 = 𝑢 → (𝑥𝑡) = (𝑢𝑡))
123 fveq1 6821 . . . . . . . . . . . 12 (𝑦 = 𝑣 → (𝑦𝑡) = (𝑣𝑡))
124 eleq12 2821 . . . . . . . . . . . 12 (((𝑥𝑡) = (𝑢𝑡) ∧ (𝑦𝑡) = (𝑣𝑡)) → ((𝑥𝑡) ∈ (𝑦𝑡) ↔ (𝑢𝑡) ∈ (𝑣𝑡)))
125122, 123, 124syl2an 596 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝑥𝑡) ∈ (𝑦𝑡) ↔ (𝑢𝑡) ∈ (𝑣𝑡)))
126 fveq1 6821 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → (𝑥𝑤) = (𝑢𝑤))
127 fveq1 6821 . . . . . . . . . . . . . 14 (𝑦 = 𝑣 → (𝑦𝑤) = (𝑣𝑤))
128126, 127eqeqan12d 2745 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝑥𝑤) = (𝑦𝑤) ↔ (𝑢𝑤) = (𝑣𝑤)))
129128imbi2d 340 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤))))
130129ralbidv 3155 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑣) → (∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤))))
131125, 130anbi12d 632 . . . . . . . . . 10 ((𝑥 = 𝑢𝑦 = 𝑣) → (((𝑥𝑡) ∈ (𝑦𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))))
132131rexbidv 3156 . . . . . . . . 9 ((𝑥 = 𝑢𝑦 = 𝑣) → (∃𝑡𝐵 ((𝑥𝑡) ∈ (𝑦𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑡𝐵 ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))))
133121, 132bitrid 283 . . . . . . . 8 ((𝑥 = 𝑢𝑦 = 𝑣) → (∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑡𝐵 ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))))
134133cbvopabv 5162 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))} = {⟨𝑢, 𝑣⟩ ∣ ∃𝑡𝐵 ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))}
1354, 134eqtri 2754 . . . . . 6 𝑇 = {⟨𝑢, 𝑣⟩ ∣ ∃𝑡𝐵 ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))}
136 simprll 778 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝑓𝑆)
137 simprlr 779 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝑔𝑆)
138 simprr 772 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝑓𝑇𝑔)
139 eqid 2731 . . . . . 6 {𝑐𝐵 ∣ (𝑓𝑐) ∈ (𝑔𝑐)} = {𝑐𝐵 ∣ (𝑓𝑐) ∈ (𝑔𝑐)}
140 eqid 2731 . . . . . 6 OrdIso( E , (𝑔 supp ∅)) = OrdIso( E , (𝑔 supp ∅))
141 eqid 2731 . . . . . 6 seqω((𝑘 ∈ V, 𝑡 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑔 supp ∅))‘𝑘)) ·o (𝑔‘(OrdIso( E , (𝑔 supp ∅))‘𝑘))) +o 𝑡)), ∅) = seqω((𝑘 ∈ V, 𝑡 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑔 supp ∅))‘𝑘)) ·o (𝑔‘(OrdIso( E , (𝑔 supp ∅))‘𝑘))) +o 𝑡)), ∅)
1421, 112, 113, 135, 136, 137, 138, 139, 140, 141cantnflem1 9579 . . . . 5 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → ((𝐴 CNF 𝐵)‘𝑓) ∈ ((𝐴 CNF 𝐵)‘𝑔))
143 fvex 6835 . . . . . 6 ((𝐴 CNF 𝐵)‘𝑔) ∈ V
144143epeli 5516 . . . . 5 (((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔) ↔ ((𝐴 CNF 𝐵)‘𝑓) ∈ ((𝐴 CNF 𝐵)‘𝑔))
145142, 144sylibr 234 . . . 4 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔))
146145expr 456 . . 3 ((𝜑 ∧ (𝑓𝑆𝑔𝑆)) → (𝑓𝑇𝑔 → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔)))
147146ralrimivva 3175 . 2 (𝜑 → ∀𝑓𝑆𝑔𝑆 (𝑓𝑇𝑔 → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔)))
148 soisoi 7262 . 2 (((𝑇 Or 𝑆 ∧ E Po (𝐴o 𝐵)) ∧ ((𝐴 CNF 𝐵):𝑆onto→(𝐴o 𝐵) ∧ ∀𝑓𝑆𝑔𝑆 (𝑓𝑇𝑔 → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔)))) → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴o 𝐵)))
1495, 13, 111, 147, 148syl22anc 838 1 (𝜑 → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  wss 3897  c0 4280  {csn 4573  cop 4579   cuni 4856   cint 4895   class class class wbr 5089  {copab 5151   E cep 5513   Po wpo 5520   Or wor 5521   We wwe 5566   × cxp 5612  dom cdm 5614  ran crn 5615  Ord word 6305  Oncon0 6306  cio 6435   Fn wfn 6476  wf 6477  ontowfo 6479  cfv 6481   Isom wiso 6482  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920   supp csupp 8090  seqωcseqom 8366   +o coa 8382   ·o comu 8383  o coe 8384  cen 8866   finSupp cfsupp 9245  OrdIsocoi 9395   CNF ccnf 9551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-seqom 8367  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-oexp 8391  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-cnf 9552
This theorem is referenced by:  oemapwe  9584  cantnffval2  9585  cantnff1o  9586  cantnfresb  43427
  Copyright terms: Public domain W3C validator