![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deg1ldgn | Structured version Visualization version GIF version |
Description: An index at which a polynomial is zero, cannot be its degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
Ref | Expression |
---|---|
deg1z.d | ⊢ 𝐷 = (deg1‘𝑅) |
deg1z.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1z.z | ⊢ 0 = (0g‘𝑃) |
deg1nn0cl.b | ⊢ 𝐵 = (Base‘𝑃) |
deg1ldg.y | ⊢ 𝑌 = (0g‘𝑅) |
deg1ldg.a | ⊢ 𝐴 = (coe1‘𝐹) |
deg1ldgn.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
deg1ldgn.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
deg1ldgn.x | ⊢ (𝜑 → 𝑋 ∈ ℕ0) |
deg1ldgn.e | ⊢ (𝜑 → (𝐴‘𝑋) = 𝑌) |
Ref | Expression |
---|---|
deg1ldgn | ⊢ (𝜑 → (𝐷‘𝐹) ≠ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1ldgn.e | . 2 ⊢ (𝜑 → (𝐴‘𝑋) = 𝑌) | |
2 | fveq2 6914 | . . . . . 6 ⊢ ((𝐷‘𝐹) = 𝑋 → (𝐴‘(𝐷‘𝐹)) = (𝐴‘𝑋)) | |
3 | 2 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝐷‘𝐹) = 𝑋) → (𝐴‘(𝐷‘𝐹)) = (𝐴‘𝑋)) |
4 | deg1ldgn.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐷‘𝐹) = 𝑋) → 𝑅 ∈ Ring) |
6 | deg1ldgn.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐷‘𝐹) = 𝑋) → 𝐹 ∈ 𝐵) |
8 | deg1ldgn.x | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ ℕ0) | |
9 | eleq1a 2836 | . . . . . . . . 9 ⊢ (𝑋 ∈ ℕ0 → ((𝐷‘𝐹) = 𝑋 → (𝐷‘𝐹) ∈ ℕ0)) | |
10 | 8, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((𝐷‘𝐹) = 𝑋 → (𝐷‘𝐹) ∈ ℕ0)) |
11 | 10 | imp 406 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷‘𝐹) = 𝑋) → (𝐷‘𝐹) ∈ ℕ0) |
12 | deg1z.d | . . . . . . . . . 10 ⊢ 𝐷 = (deg1‘𝑅) | |
13 | deg1z.p | . . . . . . . . . 10 ⊢ 𝑃 = (Poly1‘𝑅) | |
14 | deg1z.z | . . . . . . . . . 10 ⊢ 0 = (0g‘𝑃) | |
15 | deg1nn0cl.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝑃) | |
16 | 12, 13, 14, 15 | deg1nn0clb 26155 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → (𝐹 ≠ 0 ↔ (𝐷‘𝐹) ∈ ℕ0)) |
17 | 4, 6, 16 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 ≠ 0 ↔ (𝐷‘𝐹) ∈ ℕ0)) |
18 | 17 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷‘𝐹) = 𝑋) → (𝐹 ≠ 0 ↔ (𝐷‘𝐹) ∈ ℕ0)) |
19 | 11, 18 | mpbird 257 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐷‘𝐹) = 𝑋) → 𝐹 ≠ 0 ) |
20 | deg1ldg.y | . . . . . . 7 ⊢ 𝑌 = (0g‘𝑅) | |
21 | deg1ldg.a | . . . . . . 7 ⊢ 𝐴 = (coe1‘𝐹) | |
22 | 12, 13, 14, 15, 20, 21 | deg1ldg 26157 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐴‘(𝐷‘𝐹)) ≠ 𝑌) |
23 | 5, 7, 19, 22 | syl3anc 1372 | . . . . 5 ⊢ ((𝜑 ∧ (𝐷‘𝐹) = 𝑋) → (𝐴‘(𝐷‘𝐹)) ≠ 𝑌) |
24 | 3, 23 | eqnetrrd 3009 | . . . 4 ⊢ ((𝜑 ∧ (𝐷‘𝐹) = 𝑋) → (𝐴‘𝑋) ≠ 𝑌) |
25 | 24 | ex 412 | . . 3 ⊢ (𝜑 → ((𝐷‘𝐹) = 𝑋 → (𝐴‘𝑋) ≠ 𝑌)) |
26 | 25 | necon2d 2963 | . 2 ⊢ (𝜑 → ((𝐴‘𝑋) = 𝑌 → (𝐷‘𝐹) ≠ 𝑋)) |
27 | 1, 26 | mpd 15 | 1 ⊢ (𝜑 → (𝐷‘𝐹) ≠ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 ‘cfv 6569 ℕ0cn0 12533 Basecbs 17254 0gc0g 17495 Ringcrg 20260 Poly1cpl1 22203 coe1cco1 22204 deg1cdg1 26119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-addf 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-se 5646 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-isom 6578 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-of 7704 df-om 7895 df-1st 8022 df-2nd 8023 df-supp 8194 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-er 8753 df-map 8876 df-ixp 8946 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-fsupp 9409 df-sup 9489 df-oi 9557 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-9 12343 df-n0 12534 df-z 12621 df-dec 12741 df-uz 12886 df-fz 13554 df-fzo 13701 df-seq 14049 df-hash 14376 df-struct 17190 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-mulr 17321 df-starv 17322 df-sca 17323 df-vsca 17324 df-ip 17325 df-tset 17326 df-ple 17327 df-ds 17329 df-unif 17330 df-hom 17331 df-cco 17332 df-0g 17497 df-gsum 17498 df-prds 17503 df-pws 17505 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-submnd 18819 df-grp 18976 df-minusg 18977 df-mulg 19108 df-subg 19163 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-ur 20209 df-ring 20262 df-cring 20263 df-cnfld 21392 df-psr 21956 df-mpl 21958 df-opsr 21960 df-psr1 22206 df-ply1 22208 df-coe1 22209 df-mdeg 26120 df-deg1 26121 |
This theorem is referenced by: deg1sublt 26175 |
Copyright terms: Public domain | W3C validator |