MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1ldgn Structured version   Visualization version   GIF version

Theorem deg1ldgn 25973
Description: An index at which a polynomial is zero, cannot be its degree. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
deg1z.d 𝐷 = ( deg1𝑅)
deg1z.p 𝑃 = (Poly1𝑅)
deg1z.z 0 = (0g𝑃)
deg1nn0cl.b 𝐵 = (Base‘𝑃)
deg1ldg.y 𝑌 = (0g𝑅)
deg1ldg.a 𝐴 = (coe1𝐹)
deg1ldgn.r (𝜑𝑅 ∈ Ring)
deg1ldgn.f (𝜑𝐹𝐵)
deg1ldgn.x (𝜑𝑋 ∈ ℕ0)
deg1ldgn.e (𝜑 → (𝐴𝑋) = 𝑌)
Assertion
Ref Expression
deg1ldgn (𝜑 → (𝐷𝐹) ≠ 𝑋)

Proof of Theorem deg1ldgn
StepHypRef Expression
1 deg1ldgn.e . 2 (𝜑 → (𝐴𝑋) = 𝑌)
2 fveq2 6882 . . . . . 6 ((𝐷𝐹) = 𝑋 → (𝐴‘(𝐷𝐹)) = (𝐴𝑋))
32adantl 481 . . . . 5 ((𝜑 ∧ (𝐷𝐹) = 𝑋) → (𝐴‘(𝐷𝐹)) = (𝐴𝑋))
4 deg1ldgn.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
54adantr 480 . . . . . 6 ((𝜑 ∧ (𝐷𝐹) = 𝑋) → 𝑅 ∈ Ring)
6 deg1ldgn.f . . . . . . 7 (𝜑𝐹𝐵)
76adantr 480 . . . . . 6 ((𝜑 ∧ (𝐷𝐹) = 𝑋) → 𝐹𝐵)
8 deg1ldgn.x . . . . . . . . 9 (𝜑𝑋 ∈ ℕ0)
9 eleq1a 2820 . . . . . . . . 9 (𝑋 ∈ ℕ0 → ((𝐷𝐹) = 𝑋 → (𝐷𝐹) ∈ ℕ0))
108, 9syl 17 . . . . . . . 8 (𝜑 → ((𝐷𝐹) = 𝑋 → (𝐷𝐹) ∈ ℕ0))
1110imp 406 . . . . . . 7 ((𝜑 ∧ (𝐷𝐹) = 𝑋) → (𝐷𝐹) ∈ ℕ0)
12 deg1z.d . . . . . . . . . 10 𝐷 = ( deg1𝑅)
13 deg1z.p . . . . . . . . . 10 𝑃 = (Poly1𝑅)
14 deg1z.z . . . . . . . . . 10 0 = (0g𝑃)
15 deg1nn0cl.b . . . . . . . . . 10 𝐵 = (Base‘𝑃)
1612, 13, 14, 15deg1nn0clb 25970 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵) → (𝐹0 ↔ (𝐷𝐹) ∈ ℕ0))
174, 6, 16syl2anc 583 . . . . . . . 8 (𝜑 → (𝐹0 ↔ (𝐷𝐹) ∈ ℕ0))
1817adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐷𝐹) = 𝑋) → (𝐹0 ↔ (𝐷𝐹) ∈ ℕ0))
1911, 18mpbird 257 . . . . . 6 ((𝜑 ∧ (𝐷𝐹) = 𝑋) → 𝐹0 )
20 deg1ldg.y . . . . . . 7 𝑌 = (0g𝑅)
21 deg1ldg.a . . . . . . 7 𝐴 = (coe1𝐹)
2212, 13, 14, 15, 20, 21deg1ldg 25972 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (𝐴‘(𝐷𝐹)) ≠ 𝑌)
235, 7, 19, 22syl3anc 1368 . . . . 5 ((𝜑 ∧ (𝐷𝐹) = 𝑋) → (𝐴‘(𝐷𝐹)) ≠ 𝑌)
243, 23eqnetrrd 3001 . . . 4 ((𝜑 ∧ (𝐷𝐹) = 𝑋) → (𝐴𝑋) ≠ 𝑌)
2524ex 412 . . 3 (𝜑 → ((𝐷𝐹) = 𝑋 → (𝐴𝑋) ≠ 𝑌))
2625necon2d 2955 . 2 (𝜑 → ((𝐴𝑋) = 𝑌 → (𝐷𝐹) ≠ 𝑋))
271, 26mpd 15 1 (𝜑 → (𝐷𝐹) ≠ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wne 2932  cfv 6534  0cn0 12471  Basecbs 17149  0gc0g 17390  Ringcrg 20134  Poly1cpl1 22040  coe1cco1 22041   deg1 cdg1 25931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-addf 11186  ax-mulf 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-of 7664  df-om 7850  df-1st 7969  df-2nd 7970  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-map 8819  df-ixp 8889  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fsupp 9359  df-sup 9434  df-oi 9502  df-card 9931  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-dec 12677  df-uz 12822  df-fz 13486  df-fzo 13629  df-seq 13968  df-hash 14292  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-starv 17217  df-sca 17218  df-vsca 17219  df-ip 17220  df-tset 17221  df-ple 17222  df-ds 17224  df-unif 17225  df-hom 17226  df-cco 17227  df-0g 17392  df-gsum 17393  df-prds 17398  df-pws 17400  df-mgm 18569  df-sgrp 18648  df-mnd 18664  df-submnd 18710  df-grp 18862  df-minusg 18863  df-mulg 18992  df-subg 19046  df-cntz 19229  df-cmn 19698  df-abl 19699  df-mgp 20036  df-ur 20083  df-ring 20136  df-cring 20137  df-cnfld 21235  df-psr 21792  df-mpl 21794  df-opsr 21796  df-psr1 22043  df-ply1 22045  df-coe1 22046  df-mdeg 25932  df-deg1 25933
This theorem is referenced by:  deg1sublt  25990
  Copyright terms: Public domain W3C validator