| Metamath Proof Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > deg1ldgn | Structured version Visualization version GIF version | ||
| Description: An index at which a polynomial is zero, cannot be its degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) | 
| Ref | Expression | 
|---|---|
| deg1z.d | ⊢ 𝐷 = (deg1‘𝑅) | 
| deg1z.p | ⊢ 𝑃 = (Poly1‘𝑅) | 
| deg1z.z | ⊢ 0 = (0g‘𝑃) | 
| deg1nn0cl.b | ⊢ 𝐵 = (Base‘𝑃) | 
| deg1ldg.y | ⊢ 𝑌 = (0g‘𝑅) | 
| deg1ldg.a | ⊢ 𝐴 = (coe1‘𝐹) | 
| deg1ldgn.r | ⊢ (𝜑 → 𝑅 ∈ Ring) | 
| deg1ldgn.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) | 
| deg1ldgn.x | ⊢ (𝜑 → 𝑋 ∈ ℕ0) | 
| deg1ldgn.e | ⊢ (𝜑 → (𝐴‘𝑋) = 𝑌) | 
| Ref | Expression | 
|---|---|
| deg1ldgn | ⊢ (𝜑 → (𝐷‘𝐹) ≠ 𝑋) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | deg1ldgn.e | . 2 ⊢ (𝜑 → (𝐴‘𝑋) = 𝑌) | |
| 2 | fveq2 6885 | . . . . . 6 ⊢ ((𝐷‘𝐹) = 𝑋 → (𝐴‘(𝐷‘𝐹)) = (𝐴‘𝑋)) | |
| 3 | 2 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝐷‘𝐹) = 𝑋) → (𝐴‘(𝐷‘𝐹)) = (𝐴‘𝑋)) | 
| 4 | deg1ldgn.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐷‘𝐹) = 𝑋) → 𝑅 ∈ Ring) | 
| 6 | deg1ldgn.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐷‘𝐹) = 𝑋) → 𝐹 ∈ 𝐵) | 
| 8 | deg1ldgn.x | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ ℕ0) | |
| 9 | eleq1a 2828 | . . . . . . . . 9 ⊢ (𝑋 ∈ ℕ0 → ((𝐷‘𝐹) = 𝑋 → (𝐷‘𝐹) ∈ ℕ0)) | |
| 10 | 8, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((𝐷‘𝐹) = 𝑋 → (𝐷‘𝐹) ∈ ℕ0)) | 
| 11 | 10 | imp 406 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷‘𝐹) = 𝑋) → (𝐷‘𝐹) ∈ ℕ0) | 
| 12 | deg1z.d | . . . . . . . . . 10 ⊢ 𝐷 = (deg1‘𝑅) | |
| 13 | deg1z.p | . . . . . . . . . 10 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 14 | deg1z.z | . . . . . . . . . 10 ⊢ 0 = (0g‘𝑃) | |
| 15 | deg1nn0cl.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝑃) | |
| 16 | 12, 13, 14, 15 | deg1nn0clb 26064 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → (𝐹 ≠ 0 ↔ (𝐷‘𝐹) ∈ ℕ0)) | 
| 17 | 4, 6, 16 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 ≠ 0 ↔ (𝐷‘𝐹) ∈ ℕ0)) | 
| 18 | 17 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷‘𝐹) = 𝑋) → (𝐹 ≠ 0 ↔ (𝐷‘𝐹) ∈ ℕ0)) | 
| 19 | 11, 18 | mpbird 257 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐷‘𝐹) = 𝑋) → 𝐹 ≠ 0 ) | 
| 20 | deg1ldg.y | . . . . . . 7 ⊢ 𝑌 = (0g‘𝑅) | |
| 21 | deg1ldg.a | . . . . . . 7 ⊢ 𝐴 = (coe1‘𝐹) | |
| 22 | 12, 13, 14, 15, 20, 21 | deg1ldg 26066 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐴‘(𝐷‘𝐹)) ≠ 𝑌) | 
| 23 | 5, 7, 19, 22 | syl3anc 1372 | . . . . 5 ⊢ ((𝜑 ∧ (𝐷‘𝐹) = 𝑋) → (𝐴‘(𝐷‘𝐹)) ≠ 𝑌) | 
| 24 | 3, 23 | eqnetrrd 2999 | . . . 4 ⊢ ((𝜑 ∧ (𝐷‘𝐹) = 𝑋) → (𝐴‘𝑋) ≠ 𝑌) | 
| 25 | 24 | ex 412 | . . 3 ⊢ (𝜑 → ((𝐷‘𝐹) = 𝑋 → (𝐴‘𝑋) ≠ 𝑌)) | 
| 26 | 25 | necon2d 2954 | . 2 ⊢ (𝜑 → ((𝐴‘𝑋) = 𝑌 → (𝐷‘𝐹) ≠ 𝑋)) | 
| 27 | 1, 26 | mpd 15 | 1 ⊢ (𝜑 → (𝐷‘𝐹) ≠ 𝑋) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ‘cfv 6540 ℕ0cn0 12508 Basecbs 17228 0gc0g 17454 Ringcrg 20197 Poly1cpl1 22125 coe1cco1 22126 deg1cdg1 26028 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-addf 11215 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7678 df-om 7869 df-1st 7995 df-2nd 7996 df-supp 8167 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8726 df-map 8849 df-ixp 8919 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-fsupp 9383 df-sup 9463 df-oi 9531 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-2 12310 df-3 12311 df-4 12312 df-5 12313 df-6 12314 df-7 12315 df-8 12316 df-9 12317 df-n0 12509 df-z 12596 df-dec 12716 df-uz 12860 df-fz 13529 df-fzo 13676 df-seq 14024 df-hash 14351 df-struct 17165 df-sets 17182 df-slot 17200 df-ndx 17212 df-base 17229 df-ress 17252 df-plusg 17285 df-mulr 17286 df-starv 17287 df-sca 17288 df-vsca 17289 df-ip 17290 df-tset 17291 df-ple 17292 df-ds 17294 df-unif 17295 df-hom 17296 df-cco 17297 df-0g 17456 df-gsum 17457 df-prds 17462 df-pws 17464 df-mgm 18621 df-sgrp 18700 df-mnd 18716 df-submnd 18765 df-grp 18922 df-minusg 18923 df-mulg 19054 df-subg 19109 df-cntz 19303 df-cmn 19767 df-abl 19768 df-mgp 20105 df-ur 20146 df-ring 20199 df-cring 20200 df-cnfld 21326 df-psr 21882 df-mpl 21884 df-opsr 21886 df-psr1 22128 df-ply1 22130 df-coe1 22131 df-mdeg 26029 df-deg1 26030 | 
| This theorem is referenced by: deg1sublt 26084 | 
| Copyright terms: Public domain | W3C validator |