MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1ldgn Structured version   Visualization version   GIF version

Theorem deg1ldgn 26042
Description: An index at which a polynomial is zero, cannot be its degree. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
deg1z.d 𝐷 = ( deg1𝑅)
deg1z.p 𝑃 = (Poly1𝑅)
deg1z.z 0 = (0g𝑃)
deg1nn0cl.b 𝐵 = (Base‘𝑃)
deg1ldg.y 𝑌 = (0g𝑅)
deg1ldg.a 𝐴 = (coe1𝐹)
deg1ldgn.r (𝜑𝑅 ∈ Ring)
deg1ldgn.f (𝜑𝐹𝐵)
deg1ldgn.x (𝜑𝑋 ∈ ℕ0)
deg1ldgn.e (𝜑 → (𝐴𝑋) = 𝑌)
Assertion
Ref Expression
deg1ldgn (𝜑 → (𝐷𝐹) ≠ 𝑋)

Proof of Theorem deg1ldgn
StepHypRef Expression
1 deg1ldgn.e . 2 (𝜑 → (𝐴𝑋) = 𝑌)
2 fveq2 6897 . . . . . 6 ((𝐷𝐹) = 𝑋 → (𝐴‘(𝐷𝐹)) = (𝐴𝑋))
32adantl 481 . . . . 5 ((𝜑 ∧ (𝐷𝐹) = 𝑋) → (𝐴‘(𝐷𝐹)) = (𝐴𝑋))
4 deg1ldgn.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
54adantr 480 . . . . . 6 ((𝜑 ∧ (𝐷𝐹) = 𝑋) → 𝑅 ∈ Ring)
6 deg1ldgn.f . . . . . . 7 (𝜑𝐹𝐵)
76adantr 480 . . . . . 6 ((𝜑 ∧ (𝐷𝐹) = 𝑋) → 𝐹𝐵)
8 deg1ldgn.x . . . . . . . . 9 (𝜑𝑋 ∈ ℕ0)
9 eleq1a 2824 . . . . . . . . 9 (𝑋 ∈ ℕ0 → ((𝐷𝐹) = 𝑋 → (𝐷𝐹) ∈ ℕ0))
108, 9syl 17 . . . . . . . 8 (𝜑 → ((𝐷𝐹) = 𝑋 → (𝐷𝐹) ∈ ℕ0))
1110imp 406 . . . . . . 7 ((𝜑 ∧ (𝐷𝐹) = 𝑋) → (𝐷𝐹) ∈ ℕ0)
12 deg1z.d . . . . . . . . . 10 𝐷 = ( deg1𝑅)
13 deg1z.p . . . . . . . . . 10 𝑃 = (Poly1𝑅)
14 deg1z.z . . . . . . . . . 10 0 = (0g𝑃)
15 deg1nn0cl.b . . . . . . . . . 10 𝐵 = (Base‘𝑃)
1612, 13, 14, 15deg1nn0clb 26039 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵) → (𝐹0 ↔ (𝐷𝐹) ∈ ℕ0))
174, 6, 16syl2anc 583 . . . . . . . 8 (𝜑 → (𝐹0 ↔ (𝐷𝐹) ∈ ℕ0))
1817adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐷𝐹) = 𝑋) → (𝐹0 ↔ (𝐷𝐹) ∈ ℕ0))
1911, 18mpbird 257 . . . . . 6 ((𝜑 ∧ (𝐷𝐹) = 𝑋) → 𝐹0 )
20 deg1ldg.y . . . . . . 7 𝑌 = (0g𝑅)
21 deg1ldg.a . . . . . . 7 𝐴 = (coe1𝐹)
2212, 13, 14, 15, 20, 21deg1ldg 26041 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (𝐴‘(𝐷𝐹)) ≠ 𝑌)
235, 7, 19, 22syl3anc 1369 . . . . 5 ((𝜑 ∧ (𝐷𝐹) = 𝑋) → (𝐴‘(𝐷𝐹)) ≠ 𝑌)
243, 23eqnetrrd 3006 . . . 4 ((𝜑 ∧ (𝐷𝐹) = 𝑋) → (𝐴𝑋) ≠ 𝑌)
2524ex 412 . . 3 (𝜑 → ((𝐷𝐹) = 𝑋 → (𝐴𝑋) ≠ 𝑌))
2625necon2d 2960 . 2 (𝜑 → ((𝐴𝑋) = 𝑌 → (𝐷𝐹) ≠ 𝑋))
271, 26mpd 15 1 (𝜑 → (𝐷𝐹) ≠ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wne 2937  cfv 6548  0cn0 12503  Basecbs 17180  0gc0g 17421  Ringcrg 20173  Poly1cpl1 22096  coe1cco1 22097   deg1 cdg1 26000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-addf 11218
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-of 7685  df-om 7871  df-1st 7993  df-2nd 7994  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9387  df-sup 9466  df-oi 9534  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-7 12311  df-8 12312  df-9 12313  df-n0 12504  df-z 12590  df-dec 12709  df-uz 12854  df-fz 13518  df-fzo 13661  df-seq 14000  df-hash 14323  df-struct 17116  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-mulr 17247  df-starv 17248  df-sca 17249  df-vsca 17250  df-ip 17251  df-tset 17252  df-ple 17253  df-ds 17255  df-unif 17256  df-hom 17257  df-cco 17258  df-0g 17423  df-gsum 17424  df-prds 17429  df-pws 17431  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-submnd 18741  df-grp 18893  df-minusg 18894  df-mulg 19024  df-subg 19078  df-cntz 19268  df-cmn 19737  df-abl 19738  df-mgp 20075  df-ur 20122  df-ring 20175  df-cring 20176  df-cnfld 21280  df-psr 21842  df-mpl 21844  df-opsr 21846  df-psr1 22099  df-ply1 22101  df-coe1 22102  df-mdeg 26001  df-deg1 26002
This theorem is referenced by:  deg1sublt  26059
  Copyright terms: Public domain W3C validator