MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1ldgn Structured version   Visualization version   GIF version

Theorem deg1ldgn 26049
Description: An index at which a polynomial is zero, cannot be its degree. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
deg1z.d 𝐷 = ( deg1𝑅)
deg1z.p 𝑃 = (Poly1𝑅)
deg1z.z 0 = (0g𝑃)
deg1nn0cl.b 𝐵 = (Base‘𝑃)
deg1ldg.y 𝑌 = (0g𝑅)
deg1ldg.a 𝐴 = (coe1𝐹)
deg1ldgn.r (𝜑𝑅 ∈ Ring)
deg1ldgn.f (𝜑𝐹𝐵)
deg1ldgn.x (𝜑𝑋 ∈ ℕ0)
deg1ldgn.e (𝜑 → (𝐴𝑋) = 𝑌)
Assertion
Ref Expression
deg1ldgn (𝜑 → (𝐷𝐹) ≠ 𝑋)

Proof of Theorem deg1ldgn
StepHypRef Expression
1 deg1ldgn.e . 2 (𝜑 → (𝐴𝑋) = 𝑌)
2 fveq2 6902 . . . . . 6 ((𝐷𝐹) = 𝑋 → (𝐴‘(𝐷𝐹)) = (𝐴𝑋))
32adantl 480 . . . . 5 ((𝜑 ∧ (𝐷𝐹) = 𝑋) → (𝐴‘(𝐷𝐹)) = (𝐴𝑋))
4 deg1ldgn.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
54adantr 479 . . . . . 6 ((𝜑 ∧ (𝐷𝐹) = 𝑋) → 𝑅 ∈ Ring)
6 deg1ldgn.f . . . . . . 7 (𝜑𝐹𝐵)
76adantr 479 . . . . . 6 ((𝜑 ∧ (𝐷𝐹) = 𝑋) → 𝐹𝐵)
8 deg1ldgn.x . . . . . . . . 9 (𝜑𝑋 ∈ ℕ0)
9 eleq1a 2824 . . . . . . . . 9 (𝑋 ∈ ℕ0 → ((𝐷𝐹) = 𝑋 → (𝐷𝐹) ∈ ℕ0))
108, 9syl 17 . . . . . . . 8 (𝜑 → ((𝐷𝐹) = 𝑋 → (𝐷𝐹) ∈ ℕ0))
1110imp 405 . . . . . . 7 ((𝜑 ∧ (𝐷𝐹) = 𝑋) → (𝐷𝐹) ∈ ℕ0)
12 deg1z.d . . . . . . . . . 10 𝐷 = ( deg1𝑅)
13 deg1z.p . . . . . . . . . 10 𝑃 = (Poly1𝑅)
14 deg1z.z . . . . . . . . . 10 0 = (0g𝑃)
15 deg1nn0cl.b . . . . . . . . . 10 𝐵 = (Base‘𝑃)
1612, 13, 14, 15deg1nn0clb 26046 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵) → (𝐹0 ↔ (𝐷𝐹) ∈ ℕ0))
174, 6, 16syl2anc 582 . . . . . . . 8 (𝜑 → (𝐹0 ↔ (𝐷𝐹) ∈ ℕ0))
1817adantr 479 . . . . . . 7 ((𝜑 ∧ (𝐷𝐹) = 𝑋) → (𝐹0 ↔ (𝐷𝐹) ∈ ℕ0))
1911, 18mpbird 256 . . . . . 6 ((𝜑 ∧ (𝐷𝐹) = 𝑋) → 𝐹0 )
20 deg1ldg.y . . . . . . 7 𝑌 = (0g𝑅)
21 deg1ldg.a . . . . . . 7 𝐴 = (coe1𝐹)
2212, 13, 14, 15, 20, 21deg1ldg 26048 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (𝐴‘(𝐷𝐹)) ≠ 𝑌)
235, 7, 19, 22syl3anc 1368 . . . . 5 ((𝜑 ∧ (𝐷𝐹) = 𝑋) → (𝐴‘(𝐷𝐹)) ≠ 𝑌)
243, 23eqnetrrd 3006 . . . 4 ((𝜑 ∧ (𝐷𝐹) = 𝑋) → (𝐴𝑋) ≠ 𝑌)
2524ex 411 . . 3 (𝜑 → ((𝐷𝐹) = 𝑋 → (𝐴𝑋) ≠ 𝑌))
2625necon2d 2960 . 2 (𝜑 → ((𝐴𝑋) = 𝑌 → (𝐷𝐹) ≠ 𝑋))
271, 26mpd 15 1 (𝜑 → (𝐷𝐹) ≠ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2937  cfv 6553  0cn0 12510  Basecbs 17187  0gc0g 17428  Ringcrg 20180  Poly1cpl1 22103  coe1cco1 22104   deg1 cdg1 26007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-addf 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7691  df-om 7877  df-1st 7999  df-2nd 8000  df-supp 8172  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-ixp 8923  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fsupp 9394  df-sup 9473  df-oi 9541  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-fz 13525  df-fzo 13668  df-seq 14007  df-hash 14330  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-mulr 17254  df-starv 17255  df-sca 17256  df-vsca 17257  df-ip 17258  df-tset 17259  df-ple 17260  df-ds 17262  df-unif 17263  df-hom 17264  df-cco 17265  df-0g 17430  df-gsum 17431  df-prds 17436  df-pws 17438  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-submnd 18748  df-grp 18900  df-minusg 18901  df-mulg 19031  df-subg 19085  df-cntz 19275  df-cmn 19744  df-abl 19745  df-mgp 20082  df-ur 20129  df-ring 20182  df-cring 20183  df-cnfld 21287  df-psr 21849  df-mpl 21851  df-opsr 21853  df-psr1 22106  df-ply1 22108  df-coe1 22109  df-mdeg 26008  df-deg1 26009
This theorem is referenced by:  deg1sublt  26066
  Copyright terms: Public domain W3C validator