MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzneuz Structured version   Visualization version   GIF version

Theorem fzneuz 12675
Description: No finite set of sequential integers equals an upper set of integers. (Contributed by NM, 11-Dec-2005.)
Assertion
Ref Expression
fzneuz ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → ¬ (𝑀...𝑁) = (ℤ𝐾))

Proof of Theorem fzneuz
StepHypRef Expression
1 peano2uz 11985 . . . . 5 (𝑁 ∈ (ℤ𝐾) → (𝑁 + 1) ∈ (ℤ𝐾))
21adantl 474 . . . 4 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝐾)) → (𝑁 + 1) ∈ (ℤ𝐾))
3 eluzelre 11941 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℝ)
4 ltp1 11153 . . . . . . . 8 (𝑁 ∈ ℝ → 𝑁 < (𝑁 + 1))
5 peano2re 10499 . . . . . . . . 9 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
6 ltnle 10407 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ) → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁))
75, 6mpdan 679 . . . . . . . 8 (𝑁 ∈ ℝ → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁))
84, 7mpbid 224 . . . . . . 7 (𝑁 ∈ ℝ → ¬ (𝑁 + 1) ≤ 𝑁)
93, 8syl 17 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ¬ (𝑁 + 1) ≤ 𝑁)
10 elfzle2 12599 . . . . . 6 ((𝑁 + 1) ∈ (𝑀...𝑁) → (𝑁 + 1) ≤ 𝑁)
119, 10nsyl 138 . . . . 5 (𝑁 ∈ (ℤ𝑀) → ¬ (𝑁 + 1) ∈ (𝑀...𝑁))
1211ad2antrr 718 . . . 4 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝐾)) → ¬ (𝑁 + 1) ∈ (𝑀...𝑁))
13 nelneq2 2903 . . . 4 (((𝑁 + 1) ∈ (ℤ𝐾) ∧ ¬ (𝑁 + 1) ∈ (𝑀...𝑁)) → ¬ (ℤ𝐾) = (𝑀...𝑁))
142, 12, 13syl2anc 580 . . 3 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝐾)) → ¬ (ℤ𝐾) = (𝑀...𝑁))
15 eqcom 2806 . . 3 ((ℤ𝐾) = (𝑀...𝑁) ↔ (𝑀...𝑁) = (ℤ𝐾))
1614, 15sylnib 320 . 2 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝐾)) → ¬ (𝑀...𝑁) = (ℤ𝐾))
17 eluzfz2 12603 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
1817ad2antrr 718 . . 3 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) ∧ ¬ 𝑁 ∈ (ℤ𝐾)) → 𝑁 ∈ (𝑀...𝑁))
19 nelneq2 2903 . . 3 ((𝑁 ∈ (𝑀...𝑁) ∧ ¬ 𝑁 ∈ (ℤ𝐾)) → ¬ (𝑀...𝑁) = (ℤ𝐾))
2018, 19sylancom 583 . 2 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) ∧ ¬ 𝑁 ∈ (ℤ𝐾)) → ¬ (𝑀...𝑁) = (ℤ𝐾))
2116, 20pm2.61dan 848 1 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → ¬ (𝑀...𝑁) = (ℤ𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157   class class class wbr 4843  cfv 6101  (class class class)co 6878  cr 10223  1c1 10225   + caddc 10227   < clt 10363  cle 10364  cz 11666  cuz 11930  ...cfz 12580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-n0 11581  df-z 11667  df-uz 11931  df-fz 12581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator