MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfin4 Structured version   Visualization version   GIF version

Theorem ssfin4 10379
Description: Dedekind finite sets have Dedekind finite subsets. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 6-May-2015.) (Revised by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
ssfin4 ((𝐴 ∈ FinIV𝐵𝐴) → 𝐵 ∈ FinIV)

Proof of Theorem ssfin4
Dummy variables 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . 4 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → 𝐴 ∈ FinIV)
2 pssss 4121 . . . . . . . . 9 (𝑥𝐵𝑥𝐵)
3 simpr 484 . . . . . . . . 9 ((𝐴 ∈ FinIV𝐵𝐴) → 𝐵𝐴)
42, 3sylan9ssr 4023 . . . . . . . 8 (((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) → 𝑥𝐴)
5 difssd 4160 . . . . . . . 8 (((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) → (𝐴𝐵) ⊆ 𝐴)
64, 5unssd 4215 . . . . . . 7 (((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) → (𝑥 ∪ (𝐴𝐵)) ⊆ 𝐴)
7 pssnel 4494 . . . . . . . . 9 (𝑥𝐵 → ∃𝑐(𝑐𝐵 ∧ ¬ 𝑐𝑥))
87adantl 481 . . . . . . . 8 (((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) → ∃𝑐(𝑐𝐵 ∧ ¬ 𝑐𝑥))
9 simpllr 775 . . . . . . . . . . 11 ((((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) ∧ (𝑐𝐵 ∧ ¬ 𝑐𝑥)) → 𝐵𝐴)
10 simprl 770 . . . . . . . . . . 11 ((((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) ∧ (𝑐𝐵 ∧ ¬ 𝑐𝑥)) → 𝑐𝐵)
119, 10sseldd 4009 . . . . . . . . . 10 ((((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) ∧ (𝑐𝐵 ∧ ¬ 𝑐𝑥)) → 𝑐𝐴)
12 simprr 772 . . . . . . . . . . 11 ((((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) ∧ (𝑐𝐵 ∧ ¬ 𝑐𝑥)) → ¬ 𝑐𝑥)
13 elndif 4156 . . . . . . . . . . . 12 (𝑐𝐵 → ¬ 𝑐 ∈ (𝐴𝐵))
1413ad2antrl 727 . . . . . . . . . . 11 ((((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) ∧ (𝑐𝐵 ∧ ¬ 𝑐𝑥)) → ¬ 𝑐 ∈ (𝐴𝐵))
15 ioran 984 . . . . . . . . . . . 12 (¬ (𝑐𝑥𝑐 ∈ (𝐴𝐵)) ↔ (¬ 𝑐𝑥 ∧ ¬ 𝑐 ∈ (𝐴𝐵)))
16 elun 4176 . . . . . . . . . . . 12 (𝑐 ∈ (𝑥 ∪ (𝐴𝐵)) ↔ (𝑐𝑥𝑐 ∈ (𝐴𝐵)))
1715, 16xchnxbir 333 . . . . . . . . . . 11 𝑐 ∈ (𝑥 ∪ (𝐴𝐵)) ↔ (¬ 𝑐𝑥 ∧ ¬ 𝑐 ∈ (𝐴𝐵)))
1812, 14, 17sylanbrc 582 . . . . . . . . . 10 ((((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) ∧ (𝑐𝐵 ∧ ¬ 𝑐𝑥)) → ¬ 𝑐 ∈ (𝑥 ∪ (𝐴𝐵)))
19 nelneq2 2869 . . . . . . . . . 10 ((𝑐𝐴 ∧ ¬ 𝑐 ∈ (𝑥 ∪ (𝐴𝐵))) → ¬ 𝐴 = (𝑥 ∪ (𝐴𝐵)))
2011, 18, 19syl2anc 583 . . . . . . . . 9 ((((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) ∧ (𝑐𝐵 ∧ ¬ 𝑐𝑥)) → ¬ 𝐴 = (𝑥 ∪ (𝐴𝐵)))
21 eqcom 2747 . . . . . . . . 9 (𝐴 = (𝑥 ∪ (𝐴𝐵)) ↔ (𝑥 ∪ (𝐴𝐵)) = 𝐴)
2220, 21sylnib 328 . . . . . . . 8 ((((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) ∧ (𝑐𝐵 ∧ ¬ 𝑐𝑥)) → ¬ (𝑥 ∪ (𝐴𝐵)) = 𝐴)
238, 22exlimddv 1934 . . . . . . 7 (((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) → ¬ (𝑥 ∪ (𝐴𝐵)) = 𝐴)
24 dfpss2 4111 . . . . . . 7 ((𝑥 ∪ (𝐴𝐵)) ⊊ 𝐴 ↔ ((𝑥 ∪ (𝐴𝐵)) ⊆ 𝐴 ∧ ¬ (𝑥 ∪ (𝐴𝐵)) = 𝐴))
256, 23, 24sylanbrc 582 . . . . . 6 (((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) → (𝑥 ∪ (𝐴𝐵)) ⊊ 𝐴)
2625adantrr 716 . . . . 5 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → (𝑥 ∪ (𝐴𝐵)) ⊊ 𝐴)
27 simprr 772 . . . . . . 7 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → 𝑥𝐵)
28 difexg 5347 . . . . . . . 8 (𝐴 ∈ FinIV → (𝐴𝐵) ∈ V)
29 enrefg 9044 . . . . . . . 8 ((𝐴𝐵) ∈ V → (𝐴𝐵) ≈ (𝐴𝐵))
301, 28, 293syl 18 . . . . . . 7 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → (𝐴𝐵) ≈ (𝐴𝐵))
312ad2antrl 727 . . . . . . . . . 10 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → 𝑥𝐵)
32 ssinss1 4267 . . . . . . . . . 10 (𝑥𝐵 → (𝑥𝐴) ⊆ 𝐵)
3331, 32syl 17 . . . . . . . . 9 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → (𝑥𝐴) ⊆ 𝐵)
34 inssdif0 4397 . . . . . . . . 9 ((𝑥𝐴) ⊆ 𝐵 ↔ (𝑥 ∩ (𝐴𝐵)) = ∅)
3533, 34sylib 218 . . . . . . . 8 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → (𝑥 ∩ (𝐴𝐵)) = ∅)
36 disjdif 4495 . . . . . . . 8 (𝐵 ∩ (𝐴𝐵)) = ∅
3735, 36jctir 520 . . . . . . 7 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → ((𝑥 ∩ (𝐴𝐵)) = ∅ ∧ (𝐵 ∩ (𝐴𝐵)) = ∅))
38 unen 9112 . . . . . . 7 (((𝑥𝐵 ∧ (𝐴𝐵) ≈ (𝐴𝐵)) ∧ ((𝑥 ∩ (𝐴𝐵)) = ∅ ∧ (𝐵 ∩ (𝐴𝐵)) = ∅)) → (𝑥 ∪ (𝐴𝐵)) ≈ (𝐵 ∪ (𝐴𝐵)))
3927, 30, 37, 38syl21anc 837 . . . . . 6 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → (𝑥 ∪ (𝐴𝐵)) ≈ (𝐵 ∪ (𝐴𝐵)))
40 simplr 768 . . . . . . 7 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → 𝐵𝐴)
41 undif 4505 . . . . . . 7 (𝐵𝐴 ↔ (𝐵 ∪ (𝐴𝐵)) = 𝐴)
4240, 41sylib 218 . . . . . 6 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → (𝐵 ∪ (𝐴𝐵)) = 𝐴)
4339, 42breqtrd 5192 . . . . 5 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → (𝑥 ∪ (𝐴𝐵)) ≈ 𝐴)
44 fin4i 10367 . . . . 5 (((𝑥 ∪ (𝐴𝐵)) ⊊ 𝐴 ∧ (𝑥 ∪ (𝐴𝐵)) ≈ 𝐴) → ¬ 𝐴 ∈ FinIV)
4526, 43, 44syl2anc 583 . . . 4 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → ¬ 𝐴 ∈ FinIV)
461, 45pm2.65da 816 . . 3 ((𝐴 ∈ FinIV𝐵𝐴) → ¬ (𝑥𝐵𝑥𝐵))
4746nexdv 1935 . 2 ((𝐴 ∈ FinIV𝐵𝐴) → ¬ ∃𝑥(𝑥𝐵𝑥𝐵))
48 ssexg 5341 . . . 4 ((𝐵𝐴𝐴 ∈ FinIV) → 𝐵 ∈ V)
4948ancoms 458 . . 3 ((𝐴 ∈ FinIV𝐵𝐴) → 𝐵 ∈ V)
50 isfin4 10366 . . 3 (𝐵 ∈ V → (𝐵 ∈ FinIV ↔ ¬ ∃𝑥(𝑥𝐵𝑥𝐵)))
5149, 50syl 17 . 2 ((𝐴 ∈ FinIV𝐵𝐴) → (𝐵 ∈ FinIV ↔ ¬ ∃𝑥(𝑥𝐵𝑥𝐵)))
5247, 51mpbird 257 1 ((𝐴 ∈ FinIV𝐵𝐴) → 𝐵 ∈ FinIV)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488  cdif 3973  cun 3974  cin 3975  wss 3976  wpss 3977  c0 4352   class class class wbr 5166  cen 9000  FinIVcfin4 10349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-en 9004  df-fin4 10356
This theorem is referenced by:  domfin4  10380
  Copyright terms: Public domain W3C validator