MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfin4 Structured version   Visualization version   GIF version

Theorem ssfin4 9997
Description: Dedekind finite sets have Dedekind finite subsets. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 6-May-2015.) (Revised by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
ssfin4 ((𝐴 ∈ FinIV𝐵𝐴) → 𝐵 ∈ FinIV)

Proof of Theorem ssfin4
Dummy variables 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 763 . . . 4 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → 𝐴 ∈ FinIV)
2 pssss 4026 . . . . . . . . 9 (𝑥𝐵𝑥𝐵)
3 simpr 484 . . . . . . . . 9 ((𝐴 ∈ FinIV𝐵𝐴) → 𝐵𝐴)
42, 3sylan9ssr 3931 . . . . . . . 8 (((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) → 𝑥𝐴)
5 difssd 4063 . . . . . . . 8 (((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) → (𝐴𝐵) ⊆ 𝐴)
64, 5unssd 4116 . . . . . . 7 (((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) → (𝑥 ∪ (𝐴𝐵)) ⊆ 𝐴)
7 pssnel 4401 . . . . . . . . 9 (𝑥𝐵 → ∃𝑐(𝑐𝐵 ∧ ¬ 𝑐𝑥))
87adantl 481 . . . . . . . 8 (((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) → ∃𝑐(𝑐𝐵 ∧ ¬ 𝑐𝑥))
9 simpllr 772 . . . . . . . . . . 11 ((((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) ∧ (𝑐𝐵 ∧ ¬ 𝑐𝑥)) → 𝐵𝐴)
10 simprl 767 . . . . . . . . . . 11 ((((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) ∧ (𝑐𝐵 ∧ ¬ 𝑐𝑥)) → 𝑐𝐵)
119, 10sseldd 3918 . . . . . . . . . 10 ((((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) ∧ (𝑐𝐵 ∧ ¬ 𝑐𝑥)) → 𝑐𝐴)
12 simprr 769 . . . . . . . . . . 11 ((((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) ∧ (𝑐𝐵 ∧ ¬ 𝑐𝑥)) → ¬ 𝑐𝑥)
13 elndif 4059 . . . . . . . . . . . 12 (𝑐𝐵 → ¬ 𝑐 ∈ (𝐴𝐵))
1413ad2antrl 724 . . . . . . . . . . 11 ((((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) ∧ (𝑐𝐵 ∧ ¬ 𝑐𝑥)) → ¬ 𝑐 ∈ (𝐴𝐵))
15 ioran 980 . . . . . . . . . . . 12 (¬ (𝑐𝑥𝑐 ∈ (𝐴𝐵)) ↔ (¬ 𝑐𝑥 ∧ ¬ 𝑐 ∈ (𝐴𝐵)))
16 elun 4079 . . . . . . . . . . . 12 (𝑐 ∈ (𝑥 ∪ (𝐴𝐵)) ↔ (𝑐𝑥𝑐 ∈ (𝐴𝐵)))
1715, 16xchnxbir 332 . . . . . . . . . . 11 𝑐 ∈ (𝑥 ∪ (𝐴𝐵)) ↔ (¬ 𝑐𝑥 ∧ ¬ 𝑐 ∈ (𝐴𝐵)))
1812, 14, 17sylanbrc 582 . . . . . . . . . 10 ((((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) ∧ (𝑐𝐵 ∧ ¬ 𝑐𝑥)) → ¬ 𝑐 ∈ (𝑥 ∪ (𝐴𝐵)))
19 nelneq2 2864 . . . . . . . . . 10 ((𝑐𝐴 ∧ ¬ 𝑐 ∈ (𝑥 ∪ (𝐴𝐵))) → ¬ 𝐴 = (𝑥 ∪ (𝐴𝐵)))
2011, 18, 19syl2anc 583 . . . . . . . . 9 ((((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) ∧ (𝑐𝐵 ∧ ¬ 𝑐𝑥)) → ¬ 𝐴 = (𝑥 ∪ (𝐴𝐵)))
21 eqcom 2745 . . . . . . . . 9 (𝐴 = (𝑥 ∪ (𝐴𝐵)) ↔ (𝑥 ∪ (𝐴𝐵)) = 𝐴)
2220, 21sylnib 327 . . . . . . . 8 ((((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) ∧ (𝑐𝐵 ∧ ¬ 𝑐𝑥)) → ¬ (𝑥 ∪ (𝐴𝐵)) = 𝐴)
238, 22exlimddv 1939 . . . . . . 7 (((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) → ¬ (𝑥 ∪ (𝐴𝐵)) = 𝐴)
24 dfpss2 4016 . . . . . . 7 ((𝑥 ∪ (𝐴𝐵)) ⊊ 𝐴 ↔ ((𝑥 ∪ (𝐴𝐵)) ⊆ 𝐴 ∧ ¬ (𝑥 ∪ (𝐴𝐵)) = 𝐴))
256, 23, 24sylanbrc 582 . . . . . 6 (((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) → (𝑥 ∪ (𝐴𝐵)) ⊊ 𝐴)
2625adantrr 713 . . . . 5 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → (𝑥 ∪ (𝐴𝐵)) ⊊ 𝐴)
27 simprr 769 . . . . . . 7 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → 𝑥𝐵)
28 difexg 5246 . . . . . . . 8 (𝐴 ∈ FinIV → (𝐴𝐵) ∈ V)
29 enrefg 8727 . . . . . . . 8 ((𝐴𝐵) ∈ V → (𝐴𝐵) ≈ (𝐴𝐵))
301, 28, 293syl 18 . . . . . . 7 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → (𝐴𝐵) ≈ (𝐴𝐵))
312ad2antrl 724 . . . . . . . . . 10 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → 𝑥𝐵)
32 ssinss1 4168 . . . . . . . . . 10 (𝑥𝐵 → (𝑥𝐴) ⊆ 𝐵)
3331, 32syl 17 . . . . . . . . 9 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → (𝑥𝐴) ⊆ 𝐵)
34 inssdif0 4300 . . . . . . . . 9 ((𝑥𝐴) ⊆ 𝐵 ↔ (𝑥 ∩ (𝐴𝐵)) = ∅)
3533, 34sylib 217 . . . . . . . 8 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → (𝑥 ∩ (𝐴𝐵)) = ∅)
36 disjdif 4402 . . . . . . . 8 (𝐵 ∩ (𝐴𝐵)) = ∅
3735, 36jctir 520 . . . . . . 7 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → ((𝑥 ∩ (𝐴𝐵)) = ∅ ∧ (𝐵 ∩ (𝐴𝐵)) = ∅))
38 unen 8790 . . . . . . 7 (((𝑥𝐵 ∧ (𝐴𝐵) ≈ (𝐴𝐵)) ∧ ((𝑥 ∩ (𝐴𝐵)) = ∅ ∧ (𝐵 ∩ (𝐴𝐵)) = ∅)) → (𝑥 ∪ (𝐴𝐵)) ≈ (𝐵 ∪ (𝐴𝐵)))
3927, 30, 37, 38syl21anc 834 . . . . . 6 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → (𝑥 ∪ (𝐴𝐵)) ≈ (𝐵 ∪ (𝐴𝐵)))
40 simplr 765 . . . . . . 7 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → 𝐵𝐴)
41 undif 4412 . . . . . . 7 (𝐵𝐴 ↔ (𝐵 ∪ (𝐴𝐵)) = 𝐴)
4240, 41sylib 217 . . . . . 6 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → (𝐵 ∪ (𝐴𝐵)) = 𝐴)
4339, 42breqtrd 5096 . . . . 5 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → (𝑥 ∪ (𝐴𝐵)) ≈ 𝐴)
44 fin4i 9985 . . . . 5 (((𝑥 ∪ (𝐴𝐵)) ⊊ 𝐴 ∧ (𝑥 ∪ (𝐴𝐵)) ≈ 𝐴) → ¬ 𝐴 ∈ FinIV)
4526, 43, 44syl2anc 583 . . . 4 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → ¬ 𝐴 ∈ FinIV)
461, 45pm2.65da 813 . . 3 ((𝐴 ∈ FinIV𝐵𝐴) → ¬ (𝑥𝐵𝑥𝐵))
4746nexdv 1940 . 2 ((𝐴 ∈ FinIV𝐵𝐴) → ¬ ∃𝑥(𝑥𝐵𝑥𝐵))
48 ssexg 5242 . . . 4 ((𝐵𝐴𝐴 ∈ FinIV) → 𝐵 ∈ V)
4948ancoms 458 . . 3 ((𝐴 ∈ FinIV𝐵𝐴) → 𝐵 ∈ V)
50 isfin4 9984 . . 3 (𝐵 ∈ V → (𝐵 ∈ FinIV ↔ ¬ ∃𝑥(𝑥𝐵𝑥𝐵)))
5149, 50syl 17 . 2 ((𝐴 ∈ FinIV𝐵𝐴) → (𝐵 ∈ FinIV ↔ ¬ ∃𝑥(𝑥𝐵𝑥𝐵)))
5247, 51mpbird 256 1 ((𝐴 ∈ FinIV𝐵𝐴) → 𝐵 ∈ FinIV)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  wpss 3884  c0 4253   class class class wbr 5070  cen 8688  FinIVcfin4 9967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-en 8692  df-fin4 9974
This theorem is referenced by:  domfin4  9998
  Copyright terms: Public domain W3C validator