MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfin4 Structured version   Visualization version   GIF version

Theorem ssfin4 10324
Description: Dedekind finite sets have Dedekind finite subsets. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 6-May-2015.) (Revised by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
ssfin4 ((𝐴 ∈ FinIV𝐵𝐴) → 𝐵 ∈ FinIV)

Proof of Theorem ssfin4
Dummy variables 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . 4 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → 𝐴 ∈ FinIV)
2 pssss 4073 . . . . . . . . 9 (𝑥𝐵𝑥𝐵)
3 simpr 484 . . . . . . . . 9 ((𝐴 ∈ FinIV𝐵𝐴) → 𝐵𝐴)
42, 3sylan9ssr 3973 . . . . . . . 8 (((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) → 𝑥𝐴)
5 difssd 4112 . . . . . . . 8 (((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) → (𝐴𝐵) ⊆ 𝐴)
64, 5unssd 4167 . . . . . . 7 (((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) → (𝑥 ∪ (𝐴𝐵)) ⊆ 𝐴)
7 pssnel 4446 . . . . . . . . 9 (𝑥𝐵 → ∃𝑐(𝑐𝐵 ∧ ¬ 𝑐𝑥))
87adantl 481 . . . . . . . 8 (((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) → ∃𝑐(𝑐𝐵 ∧ ¬ 𝑐𝑥))
9 simpllr 775 . . . . . . . . . . 11 ((((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) ∧ (𝑐𝐵 ∧ ¬ 𝑐𝑥)) → 𝐵𝐴)
10 simprl 770 . . . . . . . . . . 11 ((((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) ∧ (𝑐𝐵 ∧ ¬ 𝑐𝑥)) → 𝑐𝐵)
119, 10sseldd 3959 . . . . . . . . . 10 ((((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) ∧ (𝑐𝐵 ∧ ¬ 𝑐𝑥)) → 𝑐𝐴)
12 simprr 772 . . . . . . . . . . 11 ((((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) ∧ (𝑐𝐵 ∧ ¬ 𝑐𝑥)) → ¬ 𝑐𝑥)
13 elndif 4108 . . . . . . . . . . . 12 (𝑐𝐵 → ¬ 𝑐 ∈ (𝐴𝐵))
1413ad2antrl 728 . . . . . . . . . . 11 ((((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) ∧ (𝑐𝐵 ∧ ¬ 𝑐𝑥)) → ¬ 𝑐 ∈ (𝐴𝐵))
15 ioran 985 . . . . . . . . . . . 12 (¬ (𝑐𝑥𝑐 ∈ (𝐴𝐵)) ↔ (¬ 𝑐𝑥 ∧ ¬ 𝑐 ∈ (𝐴𝐵)))
16 elun 4128 . . . . . . . . . . . 12 (𝑐 ∈ (𝑥 ∪ (𝐴𝐵)) ↔ (𝑐𝑥𝑐 ∈ (𝐴𝐵)))
1715, 16xchnxbir 333 . . . . . . . . . . 11 𝑐 ∈ (𝑥 ∪ (𝐴𝐵)) ↔ (¬ 𝑐𝑥 ∧ ¬ 𝑐 ∈ (𝐴𝐵)))
1812, 14, 17sylanbrc 583 . . . . . . . . . 10 ((((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) ∧ (𝑐𝐵 ∧ ¬ 𝑐𝑥)) → ¬ 𝑐 ∈ (𝑥 ∪ (𝐴𝐵)))
19 nelneq2 2859 . . . . . . . . . 10 ((𝑐𝐴 ∧ ¬ 𝑐 ∈ (𝑥 ∪ (𝐴𝐵))) → ¬ 𝐴 = (𝑥 ∪ (𝐴𝐵)))
2011, 18, 19syl2anc 584 . . . . . . . . 9 ((((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) ∧ (𝑐𝐵 ∧ ¬ 𝑐𝑥)) → ¬ 𝐴 = (𝑥 ∪ (𝐴𝐵)))
21 eqcom 2742 . . . . . . . . 9 (𝐴 = (𝑥 ∪ (𝐴𝐵)) ↔ (𝑥 ∪ (𝐴𝐵)) = 𝐴)
2220, 21sylnib 328 . . . . . . . 8 ((((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) ∧ (𝑐𝐵 ∧ ¬ 𝑐𝑥)) → ¬ (𝑥 ∪ (𝐴𝐵)) = 𝐴)
238, 22exlimddv 1935 . . . . . . 7 (((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) → ¬ (𝑥 ∪ (𝐴𝐵)) = 𝐴)
24 dfpss2 4063 . . . . . . 7 ((𝑥 ∪ (𝐴𝐵)) ⊊ 𝐴 ↔ ((𝑥 ∪ (𝐴𝐵)) ⊆ 𝐴 ∧ ¬ (𝑥 ∪ (𝐴𝐵)) = 𝐴))
256, 23, 24sylanbrc 583 . . . . . 6 (((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) → (𝑥 ∪ (𝐴𝐵)) ⊊ 𝐴)
2625adantrr 717 . . . . 5 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → (𝑥 ∪ (𝐴𝐵)) ⊊ 𝐴)
27 simprr 772 . . . . . . 7 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → 𝑥𝐵)
28 difexg 5299 . . . . . . . 8 (𝐴 ∈ FinIV → (𝐴𝐵) ∈ V)
29 enrefg 8998 . . . . . . . 8 ((𝐴𝐵) ∈ V → (𝐴𝐵) ≈ (𝐴𝐵))
301, 28, 293syl 18 . . . . . . 7 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → (𝐴𝐵) ≈ (𝐴𝐵))
312ad2antrl 728 . . . . . . . . . 10 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → 𝑥𝐵)
32 ssinss1 4221 . . . . . . . . . 10 (𝑥𝐵 → (𝑥𝐴) ⊆ 𝐵)
3331, 32syl 17 . . . . . . . . 9 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → (𝑥𝐴) ⊆ 𝐵)
34 inssdif0 4349 . . . . . . . . 9 ((𝑥𝐴) ⊆ 𝐵 ↔ (𝑥 ∩ (𝐴𝐵)) = ∅)
3533, 34sylib 218 . . . . . . . 8 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → (𝑥 ∩ (𝐴𝐵)) = ∅)
36 disjdif 4447 . . . . . . . 8 (𝐵 ∩ (𝐴𝐵)) = ∅
3735, 36jctir 520 . . . . . . 7 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → ((𝑥 ∩ (𝐴𝐵)) = ∅ ∧ (𝐵 ∩ (𝐴𝐵)) = ∅))
38 unen 9060 . . . . . . 7 (((𝑥𝐵 ∧ (𝐴𝐵) ≈ (𝐴𝐵)) ∧ ((𝑥 ∩ (𝐴𝐵)) = ∅ ∧ (𝐵 ∩ (𝐴𝐵)) = ∅)) → (𝑥 ∪ (𝐴𝐵)) ≈ (𝐵 ∪ (𝐴𝐵)))
3927, 30, 37, 38syl21anc 837 . . . . . 6 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → (𝑥 ∪ (𝐴𝐵)) ≈ (𝐵 ∪ (𝐴𝐵)))
40 simplr 768 . . . . . . 7 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → 𝐵𝐴)
41 undif 4457 . . . . . . 7 (𝐵𝐴 ↔ (𝐵 ∪ (𝐴𝐵)) = 𝐴)
4240, 41sylib 218 . . . . . 6 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → (𝐵 ∪ (𝐴𝐵)) = 𝐴)
4339, 42breqtrd 5145 . . . . 5 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → (𝑥 ∪ (𝐴𝐵)) ≈ 𝐴)
44 fin4i 10312 . . . . 5 (((𝑥 ∪ (𝐴𝐵)) ⊊ 𝐴 ∧ (𝑥 ∪ (𝐴𝐵)) ≈ 𝐴) → ¬ 𝐴 ∈ FinIV)
4526, 43, 44syl2anc 584 . . . 4 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → ¬ 𝐴 ∈ FinIV)
461, 45pm2.65da 816 . . 3 ((𝐴 ∈ FinIV𝐵𝐴) → ¬ (𝑥𝐵𝑥𝐵))
4746nexdv 1936 . 2 ((𝐴 ∈ FinIV𝐵𝐴) → ¬ ∃𝑥(𝑥𝐵𝑥𝐵))
48 ssexg 5293 . . . 4 ((𝐵𝐴𝐴 ∈ FinIV) → 𝐵 ∈ V)
4948ancoms 458 . . 3 ((𝐴 ∈ FinIV𝐵𝐴) → 𝐵 ∈ V)
50 isfin4 10311 . . 3 (𝐵 ∈ V → (𝐵 ∈ FinIV ↔ ¬ ∃𝑥(𝑥𝐵𝑥𝐵)))
5149, 50syl 17 . 2 ((𝐴 ∈ FinIV𝐵𝐴) → (𝐵 ∈ FinIV ↔ ¬ ∃𝑥(𝑥𝐵𝑥𝐵)))
5247, 51mpbird 257 1 ((𝐴 ∈ FinIV𝐵𝐴) → 𝐵 ∈ FinIV)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2108  Vcvv 3459  cdif 3923  cun 3924  cin 3925  wss 3926  wpss 3927  c0 4308   class class class wbr 5119  cen 8956  FinIVcfin4 10294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-en 8960  df-fin4 10301
This theorem is referenced by:  domfin4  10325
  Copyright terms: Public domain W3C validator