| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | inss2 4237 | . . . . . . . . . 10
⊢ (𝑗 ∩ 𝐴) ⊆ 𝐴 | 
| 2 |  | vex 3483 | . . . . . . . . . . . 12
⊢ 𝑗 ∈ V | 
| 3 | 2 | inex1 5316 | . . . . . . . . . . 11
⊢ (𝑗 ∩ 𝐴) ∈ V | 
| 4 | 3 | elpw 4603 | . . . . . . . . . 10
⊢ ((𝑗 ∩ 𝐴) ∈ 𝒫 𝐴 ↔ (𝑗 ∩ 𝐴) ⊆ 𝐴) | 
| 5 | 1, 4 | mpbir 231 | . . . . . . . . 9
⊢ (𝑗 ∩ 𝐴) ∈ 𝒫 𝐴 | 
| 6 |  | eleq1 2828 | . . . . . . . . 9
⊢ (𝑎 = (𝑗 ∩ 𝐴) → (𝑎 ∈ 𝒫 𝐴 ↔ (𝑗 ∩ 𝐴) ∈ 𝒫 𝐴)) | 
| 7 | 5, 6 | mpbiri 258 | . . . . . . . 8
⊢ (𝑎 = (𝑗 ∩ 𝐴) → 𝑎 ∈ 𝒫 𝐴) | 
| 8 | 7 | adantl 481 | . . . . . . 7
⊢ ((𝑥 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴)) → 𝑎 ∈ 𝒫 𝐴) | 
| 9 | 8 | rexlimivw 3150 | . . . . . 6
⊢
(∃𝑗 ∈
𝐽 (𝑥 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴)) → 𝑎 ∈ 𝒫 𝐴) | 
| 10 | 9 | abssi 4069 | . . . . 5
⊢ {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))} ⊆ 𝒫 𝐴 | 
| 11 |  | haustop 23340 | . . . . . . . . 9
⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) | 
| 12 |  | hauspwpwf1.x | . . . . . . . . . 10
⊢ 𝑋 = ∪
𝐽 | 
| 13 | 12 | topopn 22913 | . . . . . . . . 9
⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) | 
| 14 | 11, 13 | syl 17 | . . . . . . . 8
⊢ (𝐽 ∈ Haus → 𝑋 ∈ 𝐽) | 
| 15 |  | ssexg 5322 | . . . . . . . 8
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐽) → 𝐴 ∈ V) | 
| 16 | 14, 15 | sylan2 593 | . . . . . . 7
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐽 ∈ Haus) → 𝐴 ∈ V) | 
| 17 | 16 | ancoms 458 | . . . . . 6
⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) | 
| 18 |  | pwexg 5377 | . . . . . 6
⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | 
| 19 |  | elpw2g 5332 | . . . . . 6
⊢
(𝒫 𝐴 ∈
V → ({𝑎 ∣
∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))} ∈ 𝒫 𝒫 𝐴 ↔ {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))} ⊆ 𝒫 𝐴)) | 
| 20 | 17, 18, 19 | 3syl 18 | . . . . 5
⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → ({𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))} ∈ 𝒫 𝒫 𝐴 ↔ {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))} ⊆ 𝒫 𝐴)) | 
| 21 | 10, 20 | mpbiri 258 | . . . 4
⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))} ∈ 𝒫 𝒫 𝐴) | 
| 22 | 21 | a1d 25 | . . 3
⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) → {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))} ∈ 𝒫 𝒫 𝐴)) | 
| 23 |  | simplll 774 | . . . . . . . . 9
⊢ ((((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) → 𝐽 ∈ Haus) | 
| 24 | 12 | clsss3 23068 | . . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋) | 
| 25 | 11, 24 | sylan 580 | . . . . . . . . . . 11
⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋) | 
| 26 | 25 | ad2antrr 726 | . . . . . . . . . 10
⊢ ((((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋) | 
| 27 |  | simplrl 776 | . . . . . . . . . 10
⊢ ((((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) → 𝑥 ∈ ((cls‘𝐽)‘𝐴)) | 
| 28 | 26, 27 | sseldd 3983 | . . . . . . . . 9
⊢ ((((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) → 𝑥 ∈ 𝑋) | 
| 29 |  | simplrr 777 | . . . . . . . . . 10
⊢ ((((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) → 𝑦 ∈ ((cls‘𝐽)‘𝐴)) | 
| 30 | 26, 29 | sseldd 3983 | . . . . . . . . 9
⊢ ((((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) → 𝑦 ∈ 𝑋) | 
| 31 |  | simpr 484 | . . . . . . . . 9
⊢ ((((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) → 𝑥 ≠ 𝑦) | 
| 32 | 12 | hausnei 23337 | . . . . . . . . 9
⊢ ((𝐽 ∈ Haus ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ≠ 𝑦)) → ∃𝑘 ∈ 𝐽 ∃𝑙 ∈ 𝐽 (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅)) | 
| 33 | 23, 28, 30, 31, 32 | syl13anc 1373 | . . . . . . . 8
⊢ ((((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) → ∃𝑘 ∈ 𝐽 ∃𝑙 ∈ 𝐽 (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅)) | 
| 34 |  | simprll 778 | . . . . . . . . . . . . 13
⊢
(((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) → 𝑘 ∈ 𝐽) | 
| 35 |  | simprr1 1221 | . . . . . . . . . . . . 13
⊢
(((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) → 𝑥 ∈ 𝑘) | 
| 36 |  | eqidd 2737 | . . . . . . . . . . . . 13
⊢
(((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) → (𝑘 ∩ 𝐴) = (𝑘 ∩ 𝐴)) | 
| 37 |  | elequ2 2122 | . . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑘 → (𝑥 ∈ 𝑗 ↔ 𝑥 ∈ 𝑘)) | 
| 38 |  | ineq1 4212 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑘 → (𝑗 ∩ 𝐴) = (𝑘 ∩ 𝐴)) | 
| 39 | 38 | eqeq2d 2747 | . . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑘 → ((𝑘 ∩ 𝐴) = (𝑗 ∩ 𝐴) ↔ (𝑘 ∩ 𝐴) = (𝑘 ∩ 𝐴))) | 
| 40 | 37, 39 | anbi12d 632 | . . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑘 → ((𝑥 ∈ 𝑗 ∧ (𝑘 ∩ 𝐴) = (𝑗 ∩ 𝐴)) ↔ (𝑥 ∈ 𝑘 ∧ (𝑘 ∩ 𝐴) = (𝑘 ∩ 𝐴)))) | 
| 41 | 40 | rspcev 3621 | . . . . . . . . . . . . 13
⊢ ((𝑘 ∈ 𝐽 ∧ (𝑥 ∈ 𝑘 ∧ (𝑘 ∩ 𝐴) = (𝑘 ∩ 𝐴))) → ∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑗 ∧ (𝑘 ∩ 𝐴) = (𝑗 ∩ 𝐴))) | 
| 42 | 34, 35, 36, 41 | syl12anc 836 | . . . . . . . . . . . 12
⊢
(((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) → ∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑗 ∧ (𝑘 ∩ 𝐴) = (𝑗 ∩ 𝐴))) | 
| 43 |  | vex 3483 | . . . . . . . . . . . . . 14
⊢ 𝑘 ∈ V | 
| 44 | 43 | inex1 5316 | . . . . . . . . . . . . 13
⊢ (𝑘 ∩ 𝐴) ∈ V | 
| 45 |  | eqeq1 2740 | . . . . . . . . . . . . . . 15
⊢ (𝑎 = (𝑘 ∩ 𝐴) → (𝑎 = (𝑗 ∩ 𝐴) ↔ (𝑘 ∩ 𝐴) = (𝑗 ∩ 𝐴))) | 
| 46 | 45 | anbi2d 630 | . . . . . . . . . . . . . 14
⊢ (𝑎 = (𝑘 ∩ 𝐴) → ((𝑥 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴)) ↔ (𝑥 ∈ 𝑗 ∧ (𝑘 ∩ 𝐴) = (𝑗 ∩ 𝐴)))) | 
| 47 | 46 | rexbidv 3178 | . . . . . . . . . . . . 13
⊢ (𝑎 = (𝑘 ∩ 𝐴) → (∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴)) ↔ ∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑗 ∧ (𝑘 ∩ 𝐴) = (𝑗 ∩ 𝐴)))) | 
| 48 | 44, 47 | elab 3678 | . . . . . . . . . . . 12
⊢ ((𝑘 ∩ 𝐴) ∈ {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))} ↔ ∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑗 ∧ (𝑘 ∩ 𝐴) = (𝑗 ∩ 𝐴))) | 
| 49 | 42, 48 | sylibr 234 | . . . . . . . . . . 11
⊢
(((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) → (𝑘 ∩ 𝐴) ∈ {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))}) | 
| 50 | 11 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) → 𝐽 ∈ Top) | 
| 51 | 50 | ad3antrrr 730 | . . . . . . . . . . . . . . . . . 18
⊢
((((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) ∧ (𝑗 ∈ 𝐽 ∧ 𝑦 ∈ 𝑗)) → 𝐽 ∈ Top) | 
| 52 |  | simplr 768 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) → 𝐴 ⊆ 𝑋) | 
| 53 | 52 | ad3antrrr 730 | . . . . . . . . . . . . . . . . . 18
⊢
((((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) ∧ (𝑗 ∈ 𝐽 ∧ 𝑦 ∈ 𝑗)) → 𝐴 ⊆ 𝑋) | 
| 54 |  | simprr 772 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) → 𝑦 ∈ ((cls‘𝐽)‘𝐴)) | 
| 55 | 54 | ad3antrrr 730 | . . . . . . . . . . . . . . . . . 18
⊢
((((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) ∧ (𝑗 ∈ 𝐽 ∧ 𝑦 ∈ 𝑗)) → 𝑦 ∈ ((cls‘𝐽)‘𝐴)) | 
| 56 |  | simplr 768 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅)) → 𝑙 ∈ 𝐽) | 
| 57 | 56 | ad2antlr 727 | . . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) ∧ (𝑗 ∈ 𝐽 ∧ 𝑦 ∈ 𝑗)) → 𝑙 ∈ 𝐽) | 
| 58 |  | simprl 770 | . . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) ∧ (𝑗 ∈ 𝐽 ∧ 𝑦 ∈ 𝑗)) → 𝑗 ∈ 𝐽) | 
| 59 |  | inopn 22906 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐽 ∈ Top ∧ 𝑙 ∈ 𝐽 ∧ 𝑗 ∈ 𝐽) → (𝑙 ∩ 𝑗) ∈ 𝐽) | 
| 60 | 51, 57, 58, 59 | syl3anc 1372 | . . . . . . . . . . . . . . . . . 18
⊢
((((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) ∧ (𝑗 ∈ 𝐽 ∧ 𝑦 ∈ 𝑗)) → (𝑙 ∩ 𝑗) ∈ 𝐽) | 
| 61 |  | simpr2 1195 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅)) → 𝑦 ∈ 𝑙) | 
| 62 | 61 | ad2antlr 727 | . . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) ∧ (𝑗 ∈ 𝐽 ∧ 𝑦 ∈ 𝑗)) → 𝑦 ∈ 𝑙) | 
| 63 |  | simprr 772 | . . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) ∧ (𝑗 ∈ 𝐽 ∧ 𝑦 ∈ 𝑗)) → 𝑦 ∈ 𝑗) | 
| 64 | 62, 63 | elind 4199 | . . . . . . . . . . . . . . . . . 18
⊢
((((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) ∧ (𝑗 ∈ 𝐽 ∧ 𝑦 ∈ 𝑗)) → 𝑦 ∈ (𝑙 ∩ 𝑗)) | 
| 65 | 12 | clsndisj 23084 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴)) ∧ ((𝑙 ∩ 𝑗) ∈ 𝐽 ∧ 𝑦 ∈ (𝑙 ∩ 𝑗))) → ((𝑙 ∩ 𝑗) ∩ 𝐴) ≠ ∅) | 
| 66 | 51, 53, 55, 60, 64, 65 | syl32anc 1379 | . . . . . . . . . . . . . . . . 17
⊢
((((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) ∧ (𝑗 ∈ 𝐽 ∧ 𝑦 ∈ 𝑗)) → ((𝑙 ∩ 𝑗) ∩ 𝐴) ≠ ∅) | 
| 67 |  | n0 4352 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑙 ∩ 𝑗) ∩ 𝐴) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ ((𝑙 ∩ 𝑗) ∩ 𝐴)) | 
| 68 | 66, 67 | sylib 218 | . . . . . . . . . . . . . . . 16
⊢
((((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) ∧ (𝑗 ∈ 𝐽 ∧ 𝑦 ∈ 𝑗)) → ∃𝑧 𝑧 ∈ ((𝑙 ∩ 𝑗) ∩ 𝐴)) | 
| 69 |  | elin 3966 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ ((𝑙 ∩ 𝑗) ∩ 𝐴) ↔ (𝑧 ∈ (𝑙 ∩ 𝑗) ∧ 𝑧 ∈ 𝐴)) | 
| 70 |  | elin 3966 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ (𝑙 ∩ 𝑗) ↔ (𝑧 ∈ 𝑙 ∧ 𝑧 ∈ 𝑗)) | 
| 71 | 70 | anbi1i 624 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ∈ (𝑙 ∩ 𝑗) ∧ 𝑧 ∈ 𝐴) ↔ ((𝑧 ∈ 𝑙 ∧ 𝑧 ∈ 𝑗) ∧ 𝑧 ∈ 𝐴)) | 
| 72 | 69, 71 | bitri 275 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ ((𝑙 ∩ 𝑗) ∩ 𝐴) ↔ ((𝑧 ∈ 𝑙 ∧ 𝑧 ∈ 𝑗) ∧ 𝑧 ∈ 𝐴)) | 
| 73 |  | elin 3966 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧 ∈ (𝑗 ∩ 𝐴) ↔ (𝑧 ∈ 𝑗 ∧ 𝑧 ∈ 𝐴)) | 
| 74 | 73 | biimpri 228 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑧 ∈ 𝑗 ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ (𝑗 ∩ 𝐴)) | 
| 75 | 74 | adantll 714 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑧 ∈ 𝑙 ∧ 𝑧 ∈ 𝑗) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ (𝑗 ∩ 𝐴)) | 
| 76 | 75 | ad2antll 729 | . . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) ∧ ((𝑗 ∈ 𝐽 ∧ 𝑦 ∈ 𝑗) ∧ ((𝑧 ∈ 𝑙 ∧ 𝑧 ∈ 𝑗) ∧ 𝑧 ∈ 𝐴))) → 𝑧 ∈ (𝑗 ∩ 𝐴)) | 
| 77 |  | simpll 766 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑧 ∈ 𝑙 ∧ 𝑧 ∈ 𝑗) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝑙) | 
| 78 | 77 | ad2antll 729 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) ∧ ((𝑗 ∈ 𝐽 ∧ 𝑦 ∈ 𝑗) ∧ ((𝑧 ∈ 𝑙 ∧ 𝑧 ∈ 𝑗) ∧ 𝑧 ∈ 𝐴))) → 𝑧 ∈ 𝑙) | 
| 79 |  | simpr3 1196 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅)) → (𝑘 ∩ 𝑙) = ∅) | 
| 80 | 79 | ad2antlr 727 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) ∧ ((𝑗 ∈ 𝐽 ∧ 𝑦 ∈ 𝑗) ∧ ((𝑧 ∈ 𝑙 ∧ 𝑧 ∈ 𝑗) ∧ 𝑧 ∈ 𝐴))) → (𝑘 ∩ 𝑙) = ∅) | 
| 81 |  | minel 4465 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑧 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅) → ¬ 𝑧 ∈ 𝑘) | 
| 82 |  | elinel1 4200 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 ∈ (𝑘 ∩ 𝐴) → 𝑧 ∈ 𝑘) | 
| 83 | 81, 82 | nsyl 140 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑧 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅) → ¬ 𝑧 ∈ (𝑘 ∩ 𝐴)) | 
| 84 | 78, 80, 83 | syl2anc 584 | . . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) ∧ ((𝑗 ∈ 𝐽 ∧ 𝑦 ∈ 𝑗) ∧ ((𝑧 ∈ 𝑙 ∧ 𝑧 ∈ 𝑗) ∧ 𝑧 ∈ 𝐴))) → ¬ 𝑧 ∈ (𝑘 ∩ 𝐴)) | 
| 85 |  | nelneq2 2865 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑧 ∈ (𝑗 ∩ 𝐴) ∧ ¬ 𝑧 ∈ (𝑘 ∩ 𝐴)) → ¬ (𝑗 ∩ 𝐴) = (𝑘 ∩ 𝐴)) | 
| 86 | 76, 84, 85 | syl2anc 584 | . . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) ∧ ((𝑗 ∈ 𝐽 ∧ 𝑦 ∈ 𝑗) ∧ ((𝑧 ∈ 𝑙 ∧ 𝑧 ∈ 𝑗) ∧ 𝑧 ∈ 𝐴))) → ¬ (𝑗 ∩ 𝐴) = (𝑘 ∩ 𝐴)) | 
| 87 |  | eqcom 2743 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑗 ∩ 𝐴) = (𝑘 ∩ 𝐴) ↔ (𝑘 ∩ 𝐴) = (𝑗 ∩ 𝐴)) | 
| 88 | 86, 87 | sylnib 328 | . . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) ∧ ((𝑗 ∈ 𝐽 ∧ 𝑦 ∈ 𝑗) ∧ ((𝑧 ∈ 𝑙 ∧ 𝑧 ∈ 𝑗) ∧ 𝑧 ∈ 𝐴))) → ¬ (𝑘 ∩ 𝐴) = (𝑗 ∩ 𝐴)) | 
| 89 | 88 | expr 456 | . . . . . . . . . . . . . . . . . 18
⊢
((((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) ∧ (𝑗 ∈ 𝐽 ∧ 𝑦 ∈ 𝑗)) → (((𝑧 ∈ 𝑙 ∧ 𝑧 ∈ 𝑗) ∧ 𝑧 ∈ 𝐴) → ¬ (𝑘 ∩ 𝐴) = (𝑗 ∩ 𝐴))) | 
| 90 | 72, 89 | biimtrid 242 | . . . . . . . . . . . . . . . . 17
⊢
((((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) ∧ (𝑗 ∈ 𝐽 ∧ 𝑦 ∈ 𝑗)) → (𝑧 ∈ ((𝑙 ∩ 𝑗) ∩ 𝐴) → ¬ (𝑘 ∩ 𝐴) = (𝑗 ∩ 𝐴))) | 
| 91 | 90 | exlimdv 1932 | . . . . . . . . . . . . . . . 16
⊢
((((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) ∧ (𝑗 ∈ 𝐽 ∧ 𝑦 ∈ 𝑗)) → (∃𝑧 𝑧 ∈ ((𝑙 ∩ 𝑗) ∩ 𝐴) → ¬ (𝑘 ∩ 𝐴) = (𝑗 ∩ 𝐴))) | 
| 92 | 68, 91 | mpd 15 | . . . . . . . . . . . . . . 15
⊢
((((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) ∧ (𝑗 ∈ 𝐽 ∧ 𝑦 ∈ 𝑗)) → ¬ (𝑘 ∩ 𝐴) = (𝑗 ∩ 𝐴)) | 
| 93 | 92 | anassrs 467 | . . . . . . . . . . . . . 14
⊢
(((((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) ∧ 𝑗 ∈ 𝐽) ∧ 𝑦 ∈ 𝑗) → ¬ (𝑘 ∩ 𝐴) = (𝑗 ∩ 𝐴)) | 
| 94 |  | nan 829 | . . . . . . . . . . . . . 14
⊢
(((((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) ∧ 𝑗 ∈ 𝐽) → ¬ (𝑦 ∈ 𝑗 ∧ (𝑘 ∩ 𝐴) = (𝑗 ∩ 𝐴))) ↔ (((((((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) ∧ 𝑗 ∈ 𝐽) ∧ 𝑦 ∈ 𝑗) → ¬ (𝑘 ∩ 𝐴) = (𝑗 ∩ 𝐴))) | 
| 95 | 93, 94 | mpbir 231 | . . . . . . . . . . . . 13
⊢
((((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) ∧ 𝑗 ∈ 𝐽) → ¬ (𝑦 ∈ 𝑗 ∧ (𝑘 ∩ 𝐴) = (𝑗 ∩ 𝐴))) | 
| 96 | 95 | nrexdv 3148 | . . . . . . . . . . . 12
⊢
(((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) → ¬ ∃𝑗 ∈ 𝐽 (𝑦 ∈ 𝑗 ∧ (𝑘 ∩ 𝐴) = (𝑗 ∩ 𝐴))) | 
| 97 | 45 | anbi2d 630 | . . . . . . . . . . . . . 14
⊢ (𝑎 = (𝑘 ∩ 𝐴) → ((𝑦 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴)) ↔ (𝑦 ∈ 𝑗 ∧ (𝑘 ∩ 𝐴) = (𝑗 ∩ 𝐴)))) | 
| 98 | 97 | rexbidv 3178 | . . . . . . . . . . . . 13
⊢ (𝑎 = (𝑘 ∩ 𝐴) → (∃𝑗 ∈ 𝐽 (𝑦 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴)) ↔ ∃𝑗 ∈ 𝐽 (𝑦 ∈ 𝑗 ∧ (𝑘 ∩ 𝐴) = (𝑗 ∩ 𝐴)))) | 
| 99 | 44, 98 | elab 3678 | . . . . . . . . . . . 12
⊢ ((𝑘 ∩ 𝐴) ∈ {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑦 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))} ↔ ∃𝑗 ∈ 𝐽 (𝑦 ∈ 𝑗 ∧ (𝑘 ∩ 𝐴) = (𝑗 ∩ 𝐴))) | 
| 100 | 96, 99 | sylnibr 329 | . . . . . . . . . . 11
⊢
(((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) → ¬ (𝑘 ∩ 𝐴) ∈ {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑦 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))}) | 
| 101 |  | nelne1 3038 | . . . . . . . . . . 11
⊢ (((𝑘 ∩ 𝐴) ∈ {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))} ∧ ¬ (𝑘 ∩ 𝐴) ∈ {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑦 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))}) → {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))} ≠ {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑦 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))}) | 
| 102 | 49, 100, 101 | syl2anc 584 | . . . . . . . . . 10
⊢
(((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ ((𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽) ∧ (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅))) → {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))} ≠ {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑦 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))}) | 
| 103 | 102 | expr 456 | . . . . . . . . 9
⊢
(((((𝐽 ∈ Haus
∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) ∧ (𝑘 ∈ 𝐽 ∧ 𝑙 ∈ 𝐽)) → ((𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅) → {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))} ≠ {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑦 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))})) | 
| 104 | 103 | rexlimdvva 3212 | . . . . . . . 8
⊢ ((((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) → (∃𝑘 ∈ 𝐽 ∃𝑙 ∈ 𝐽 (𝑥 ∈ 𝑘 ∧ 𝑦 ∈ 𝑙 ∧ (𝑘 ∩ 𝑙) = ∅) → {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))} ≠ {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑦 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))})) | 
| 105 | 33, 104 | mpd 15 | . . . . . . 7
⊢ ((((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥 ≠ 𝑦) → {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))} ≠ {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑦 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))}) | 
| 106 | 105 | ex 412 | . . . . . 6
⊢ (((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) → (𝑥 ≠ 𝑦 → {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))} ≠ {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑦 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))})) | 
| 107 | 106 | necon4d 2963 | . . . . 5
⊢ (((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) → ({𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))} = {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑦 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))} → 𝑥 = 𝑦)) | 
| 108 |  | eleq1 2828 | . . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑗 ↔ 𝑦 ∈ 𝑗)) | 
| 109 | 108 | anbi1d 631 | . . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴)) ↔ (𝑦 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴)))) | 
| 110 | 109 | rexbidv 3178 | . . . . . 6
⊢ (𝑥 = 𝑦 → (∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴)) ↔ ∃𝑗 ∈ 𝐽 (𝑦 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴)))) | 
| 111 | 110 | abbidv 2807 | . . . . 5
⊢ (𝑥 = 𝑦 → {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))} = {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑦 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))}) | 
| 112 | 107, 111 | impbid1 225 | . . . 4
⊢ (((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) → ({𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))} = {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑦 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))} ↔ 𝑥 = 𝑦)) | 
| 113 | 112 | ex 412 | . . 3
⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → ((𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴)) → ({𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))} = {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑦 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))} ↔ 𝑥 = 𝑦))) | 
| 114 | 22, 113 | dom2lem 9033 | . 2
⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))}):((cls‘𝐽)‘𝐴)–1-1→𝒫 𝒫 𝐴) | 
| 115 |  | hauspwpwf1.f | . . 3
⊢ 𝐹 = (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))}) | 
| 116 |  | f1eq1 6798 | . . 3
⊢ (𝐹 = (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))}) → (𝐹:((cls‘𝐽)‘𝐴)–1-1→𝒫 𝒫 𝐴 ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))}):((cls‘𝐽)‘𝐴)–1-1→𝒫 𝒫 𝐴)) | 
| 117 | 115, 116 | ax-mp 5 | . 2
⊢ (𝐹:((cls‘𝐽)‘𝐴)–1-1→𝒫 𝒫 𝐴 ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))}):((cls‘𝐽)‘𝐴)–1-1→𝒫 𝒫 𝐴) | 
| 118 | 114, 117 | sylibr 234 | 1
⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → 𝐹:((cls‘𝐽)‘𝐴)–1-1→𝒫 𝒫 𝐴) |