MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hauspwpwf1 Structured version   Visualization version   GIF version

Theorem hauspwpwf1 23046
Description: Lemma for hauspwpwdom 23047. Points in the closure of a set in a Hausdorff space are characterized by the open neighborhoods they extend into the generating set. (Contributed by Mario Carneiro, 28-Jul-2015.)
Hypotheses
Ref Expression
hauspwpwf1.x 𝑋 = 𝐽
hauspwpwf1.f 𝐹 = (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑎 ∣ ∃𝑗𝐽 (𝑥𝑗𝑎 = (𝑗𝐴))})
Assertion
Ref Expression
hauspwpwf1 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → 𝐹:((cls‘𝐽)‘𝐴)–1-1→𝒫 𝒫 𝐴)
Distinct variable groups:   𝑗,𝑎,𝑥,𝐴   𝐽,𝑎,𝑗,𝑥   𝑗,𝑋,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑗,𝑎)   𝑋(𝑎)

Proof of Theorem hauspwpwf1
Dummy variables 𝑘 𝑙 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 4160 . . . . . . . . . 10 (𝑗𝐴) ⊆ 𝐴
2 vex 3426 . . . . . . . . . . . 12 𝑗 ∈ V
32inex1 5236 . . . . . . . . . . 11 (𝑗𝐴) ∈ V
43elpw 4534 . . . . . . . . . 10 ((𝑗𝐴) ∈ 𝒫 𝐴 ↔ (𝑗𝐴) ⊆ 𝐴)
51, 4mpbir 230 . . . . . . . . 9 (𝑗𝐴) ∈ 𝒫 𝐴
6 eleq1 2826 . . . . . . . . 9 (𝑎 = (𝑗𝐴) → (𝑎 ∈ 𝒫 𝐴 ↔ (𝑗𝐴) ∈ 𝒫 𝐴))
75, 6mpbiri 257 . . . . . . . 8 (𝑎 = (𝑗𝐴) → 𝑎 ∈ 𝒫 𝐴)
87adantl 481 . . . . . . 7 ((𝑥𝑗𝑎 = (𝑗𝐴)) → 𝑎 ∈ 𝒫 𝐴)
98rexlimivw 3210 . . . . . 6 (∃𝑗𝐽 (𝑥𝑗𝑎 = (𝑗𝐴)) → 𝑎 ∈ 𝒫 𝐴)
109abssi 3999 . . . . 5 {𝑎 ∣ ∃𝑗𝐽 (𝑥𝑗𝑎 = (𝑗𝐴))} ⊆ 𝒫 𝐴
11 haustop 22390 . . . . . . . . 9 (𝐽 ∈ Haus → 𝐽 ∈ Top)
12 hauspwpwf1.x . . . . . . . . . 10 𝑋 = 𝐽
1312topopn 21963 . . . . . . . . 9 (𝐽 ∈ Top → 𝑋𝐽)
1411, 13syl 17 . . . . . . . 8 (𝐽 ∈ Haus → 𝑋𝐽)
15 ssexg 5242 . . . . . . . 8 ((𝐴𝑋𝑋𝐽) → 𝐴 ∈ V)
1614, 15sylan2 592 . . . . . . 7 ((𝐴𝑋𝐽 ∈ Haus) → 𝐴 ∈ V)
1716ancoms 458 . . . . . 6 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → 𝐴 ∈ V)
18 pwexg 5296 . . . . . 6 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
19 elpw2g 5263 . . . . . 6 (𝒫 𝐴 ∈ V → ({𝑎 ∣ ∃𝑗𝐽 (𝑥𝑗𝑎 = (𝑗𝐴))} ∈ 𝒫 𝒫 𝐴 ↔ {𝑎 ∣ ∃𝑗𝐽 (𝑥𝑗𝑎 = (𝑗𝐴))} ⊆ 𝒫 𝐴))
2017, 18, 193syl 18 . . . . 5 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → ({𝑎 ∣ ∃𝑗𝐽 (𝑥𝑗𝑎 = (𝑗𝐴))} ∈ 𝒫 𝒫 𝐴 ↔ {𝑎 ∣ ∃𝑗𝐽 (𝑥𝑗𝑎 = (𝑗𝐴))} ⊆ 𝒫 𝐴))
2110, 20mpbiri 257 . . . 4 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → {𝑎 ∣ ∃𝑗𝐽 (𝑥𝑗𝑎 = (𝑗𝐴))} ∈ 𝒫 𝒫 𝐴)
2221a1d 25 . . 3 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) → {𝑎 ∣ ∃𝑗𝐽 (𝑥𝑗𝑎 = (𝑗𝐴))} ∈ 𝒫 𝒫 𝐴))
23 simplll 771 . . . . . . . . 9 ((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) → 𝐽 ∈ Haus)
2412clsss3 22118 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋)
2511, 24sylan 579 . . . . . . . . . . 11 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋)
2625ad2antrr 722 . . . . . . . . . 10 ((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋)
27 simplrl 773 . . . . . . . . . 10 ((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) → 𝑥 ∈ ((cls‘𝐽)‘𝐴))
2826, 27sseldd 3918 . . . . . . . . 9 ((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) → 𝑥𝑋)
29 simplrr 774 . . . . . . . . . 10 ((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) → 𝑦 ∈ ((cls‘𝐽)‘𝐴))
3026, 29sseldd 3918 . . . . . . . . 9 ((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) → 𝑦𝑋)
31 simpr 484 . . . . . . . . 9 ((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) → 𝑥𝑦)
3212hausnei 22387 . . . . . . . . 9 ((𝐽 ∈ Haus ∧ (𝑥𝑋𝑦𝑋𝑥𝑦)) → ∃𝑘𝐽𝑙𝐽 (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))
3323, 28, 30, 31, 32syl13anc 1370 . . . . . . . 8 ((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) → ∃𝑘𝐽𝑙𝐽 (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))
34 simprll 775 . . . . . . . . . . . . 13 (((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) → 𝑘𝐽)
35 simprr1 1219 . . . . . . . . . . . . 13 (((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) → 𝑥𝑘)
36 eqidd 2739 . . . . . . . . . . . . 13 (((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) → (𝑘𝐴) = (𝑘𝐴))
37 elequ2 2123 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (𝑥𝑗𝑥𝑘))
38 ineq1 4136 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → (𝑗𝐴) = (𝑘𝐴))
3938eqeq2d 2749 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → ((𝑘𝐴) = (𝑗𝐴) ↔ (𝑘𝐴) = (𝑘𝐴)))
4037, 39anbi12d 630 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → ((𝑥𝑗 ∧ (𝑘𝐴) = (𝑗𝐴)) ↔ (𝑥𝑘 ∧ (𝑘𝐴) = (𝑘𝐴))))
4140rspcev 3552 . . . . . . . . . . . . 13 ((𝑘𝐽 ∧ (𝑥𝑘 ∧ (𝑘𝐴) = (𝑘𝐴))) → ∃𝑗𝐽 (𝑥𝑗 ∧ (𝑘𝐴) = (𝑗𝐴)))
4234, 35, 36, 41syl12anc 833 . . . . . . . . . . . 12 (((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) → ∃𝑗𝐽 (𝑥𝑗 ∧ (𝑘𝐴) = (𝑗𝐴)))
43 vex 3426 . . . . . . . . . . . . . 14 𝑘 ∈ V
4443inex1 5236 . . . . . . . . . . . . 13 (𝑘𝐴) ∈ V
45 eqeq1 2742 . . . . . . . . . . . . . . 15 (𝑎 = (𝑘𝐴) → (𝑎 = (𝑗𝐴) ↔ (𝑘𝐴) = (𝑗𝐴)))
4645anbi2d 628 . . . . . . . . . . . . . 14 (𝑎 = (𝑘𝐴) → ((𝑥𝑗𝑎 = (𝑗𝐴)) ↔ (𝑥𝑗 ∧ (𝑘𝐴) = (𝑗𝐴))))
4746rexbidv 3225 . . . . . . . . . . . . 13 (𝑎 = (𝑘𝐴) → (∃𝑗𝐽 (𝑥𝑗𝑎 = (𝑗𝐴)) ↔ ∃𝑗𝐽 (𝑥𝑗 ∧ (𝑘𝐴) = (𝑗𝐴))))
4844, 47elab 3602 . . . . . . . . . . . 12 ((𝑘𝐴) ∈ {𝑎 ∣ ∃𝑗𝐽 (𝑥𝑗𝑎 = (𝑗𝐴))} ↔ ∃𝑗𝐽 (𝑥𝑗 ∧ (𝑘𝐴) = (𝑗𝐴)))
4942, 48sylibr 233 . . . . . . . . . . 11 (((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) → (𝑘𝐴) ∈ {𝑎 ∣ ∃𝑗𝐽 (𝑥𝑗𝑎 = (𝑗𝐴))})
5011ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) → 𝐽 ∈ Top)
5150ad3antrrr 726 . . . . . . . . . . . . . . . . . 18 ((((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) ∧ (𝑗𝐽𝑦𝑗)) → 𝐽 ∈ Top)
52 simplr 765 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) → 𝐴𝑋)
5352ad3antrrr 726 . . . . . . . . . . . . . . . . . 18 ((((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) ∧ (𝑗𝐽𝑦𝑗)) → 𝐴𝑋)
54 simprr 769 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) → 𝑦 ∈ ((cls‘𝐽)‘𝐴))
5554ad3antrrr 726 . . . . . . . . . . . . . . . . . 18 ((((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) ∧ (𝑗𝐽𝑦𝑗)) → 𝑦 ∈ ((cls‘𝐽)‘𝐴))
56 simplr 765 . . . . . . . . . . . . . . . . . . . 20 (((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅)) → 𝑙𝐽)
5756ad2antlr 723 . . . . . . . . . . . . . . . . . . 19 ((((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) ∧ (𝑗𝐽𝑦𝑗)) → 𝑙𝐽)
58 simprl 767 . . . . . . . . . . . . . . . . . . 19 ((((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) ∧ (𝑗𝐽𝑦𝑗)) → 𝑗𝐽)
59 inopn 21956 . . . . . . . . . . . . . . . . . . 19 ((𝐽 ∈ Top ∧ 𝑙𝐽𝑗𝐽) → (𝑙𝑗) ∈ 𝐽)
6051, 57, 58, 59syl3anc 1369 . . . . . . . . . . . . . . . . . 18 ((((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) ∧ (𝑗𝐽𝑦𝑗)) → (𝑙𝑗) ∈ 𝐽)
61 simpr2 1193 . . . . . . . . . . . . . . . . . . . 20 (((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅)) → 𝑦𝑙)
6261ad2antlr 723 . . . . . . . . . . . . . . . . . . 19 ((((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) ∧ (𝑗𝐽𝑦𝑗)) → 𝑦𝑙)
63 simprr 769 . . . . . . . . . . . . . . . . . . 19 ((((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) ∧ (𝑗𝐽𝑦𝑗)) → 𝑦𝑗)
6462, 63elind 4124 . . . . . . . . . . . . . . . . . 18 ((((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) ∧ (𝑗𝐽𝑦𝑗)) → 𝑦 ∈ (𝑙𝑗))
6512clsndisj 22134 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ Top ∧ 𝐴𝑋𝑦 ∈ ((cls‘𝐽)‘𝐴)) ∧ ((𝑙𝑗) ∈ 𝐽𝑦 ∈ (𝑙𝑗))) → ((𝑙𝑗) ∩ 𝐴) ≠ ∅)
6651, 53, 55, 60, 64, 65syl32anc 1376 . . . . . . . . . . . . . . . . 17 ((((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) ∧ (𝑗𝐽𝑦𝑗)) → ((𝑙𝑗) ∩ 𝐴) ≠ ∅)
67 n0 4277 . . . . . . . . . . . . . . . . 17 (((𝑙𝑗) ∩ 𝐴) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ ((𝑙𝑗) ∩ 𝐴))
6866, 67sylib 217 . . . . . . . . . . . . . . . 16 ((((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) ∧ (𝑗𝐽𝑦𝑗)) → ∃𝑧 𝑧 ∈ ((𝑙𝑗) ∩ 𝐴))
69 elin 3899 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ((𝑙𝑗) ∩ 𝐴) ↔ (𝑧 ∈ (𝑙𝑗) ∧ 𝑧𝐴))
70 elin 3899 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (𝑙𝑗) ↔ (𝑧𝑙𝑧𝑗))
7170anbi1i 623 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ (𝑙𝑗) ∧ 𝑧𝐴) ↔ ((𝑧𝑙𝑧𝑗) ∧ 𝑧𝐴))
7269, 71bitri 274 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ((𝑙𝑗) ∩ 𝐴) ↔ ((𝑧𝑙𝑧𝑗) ∧ 𝑧𝐴))
73 elin 3899 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ (𝑗𝐴) ↔ (𝑧𝑗𝑧𝐴))
7473biimpri 227 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧𝑗𝑧𝐴) → 𝑧 ∈ (𝑗𝐴))
7574adantll 710 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧𝑙𝑧𝑗) ∧ 𝑧𝐴) → 𝑧 ∈ (𝑗𝐴))
7675ad2antll 725 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) ∧ ((𝑗𝐽𝑦𝑗) ∧ ((𝑧𝑙𝑧𝑗) ∧ 𝑧𝐴))) → 𝑧 ∈ (𝑗𝐴))
77 simpll 763 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑧𝑙𝑧𝑗) ∧ 𝑧𝐴) → 𝑧𝑙)
7877ad2antll 725 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) ∧ ((𝑗𝐽𝑦𝑗) ∧ ((𝑧𝑙𝑧𝑗) ∧ 𝑧𝐴))) → 𝑧𝑙)
79 simpr3 1194 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅)) → (𝑘𝑙) = ∅)
8079ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) ∧ ((𝑗𝐽𝑦𝑗) ∧ ((𝑧𝑙𝑧𝑗) ∧ 𝑧𝐴))) → (𝑘𝑙) = ∅)
81 minel 4396 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧𝑙 ∧ (𝑘𝑙) = ∅) → ¬ 𝑧𝑘)
82 elinel1 4125 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ (𝑘𝐴) → 𝑧𝑘)
8381, 82nsyl 140 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧𝑙 ∧ (𝑘𝑙) = ∅) → ¬ 𝑧 ∈ (𝑘𝐴))
8478, 80, 83syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) ∧ ((𝑗𝐽𝑦𝑗) ∧ ((𝑧𝑙𝑧𝑗) ∧ 𝑧𝐴))) → ¬ 𝑧 ∈ (𝑘𝐴))
85 nelneq2 2864 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ (𝑗𝐴) ∧ ¬ 𝑧 ∈ (𝑘𝐴)) → ¬ (𝑗𝐴) = (𝑘𝐴))
8676, 84, 85syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) ∧ ((𝑗𝐽𝑦𝑗) ∧ ((𝑧𝑙𝑧𝑗) ∧ 𝑧𝐴))) → ¬ (𝑗𝐴) = (𝑘𝐴))
87 eqcom 2745 . . . . . . . . . . . . . . . . . . . 20 ((𝑗𝐴) = (𝑘𝐴) ↔ (𝑘𝐴) = (𝑗𝐴))
8886, 87sylnib 327 . . . . . . . . . . . . . . . . . . 19 ((((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) ∧ ((𝑗𝐽𝑦𝑗) ∧ ((𝑧𝑙𝑧𝑗) ∧ 𝑧𝐴))) → ¬ (𝑘𝐴) = (𝑗𝐴))
8988expr 456 . . . . . . . . . . . . . . . . . 18 ((((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) ∧ (𝑗𝐽𝑦𝑗)) → (((𝑧𝑙𝑧𝑗) ∧ 𝑧𝐴) → ¬ (𝑘𝐴) = (𝑗𝐴)))
9072, 89syl5bi 241 . . . . . . . . . . . . . . . . 17 ((((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) ∧ (𝑗𝐽𝑦𝑗)) → (𝑧 ∈ ((𝑙𝑗) ∩ 𝐴) → ¬ (𝑘𝐴) = (𝑗𝐴)))
9190exlimdv 1937 . . . . . . . . . . . . . . . 16 ((((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) ∧ (𝑗𝐽𝑦𝑗)) → (∃𝑧 𝑧 ∈ ((𝑙𝑗) ∩ 𝐴) → ¬ (𝑘𝐴) = (𝑗𝐴)))
9268, 91mpd 15 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) ∧ (𝑗𝐽𝑦𝑗)) → ¬ (𝑘𝐴) = (𝑗𝐴))
9392anassrs 467 . . . . . . . . . . . . . 14 (((((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) ∧ 𝑗𝐽) ∧ 𝑦𝑗) → ¬ (𝑘𝐴) = (𝑗𝐴))
94 nan 826 . . . . . . . . . . . . . 14 (((((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) ∧ 𝑗𝐽) → ¬ (𝑦𝑗 ∧ (𝑘𝐴) = (𝑗𝐴))) ↔ (((((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) ∧ 𝑗𝐽) ∧ 𝑦𝑗) → ¬ (𝑘𝐴) = (𝑗𝐴)))
9593, 94mpbir 230 . . . . . . . . . . . . 13 ((((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) ∧ 𝑗𝐽) → ¬ (𝑦𝑗 ∧ (𝑘𝐴) = (𝑗𝐴)))
9695nrexdv 3197 . . . . . . . . . . . 12 (((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) → ¬ ∃𝑗𝐽 (𝑦𝑗 ∧ (𝑘𝐴) = (𝑗𝐴)))
9745anbi2d 628 . . . . . . . . . . . . . 14 (𝑎 = (𝑘𝐴) → ((𝑦𝑗𝑎 = (𝑗𝐴)) ↔ (𝑦𝑗 ∧ (𝑘𝐴) = (𝑗𝐴))))
9897rexbidv 3225 . . . . . . . . . . . . 13 (𝑎 = (𝑘𝐴) → (∃𝑗𝐽 (𝑦𝑗𝑎 = (𝑗𝐴)) ↔ ∃𝑗𝐽 (𝑦𝑗 ∧ (𝑘𝐴) = (𝑗𝐴))))
9944, 98elab 3602 . . . . . . . . . . . 12 ((𝑘𝐴) ∈ {𝑎 ∣ ∃𝑗𝐽 (𝑦𝑗𝑎 = (𝑗𝐴))} ↔ ∃𝑗𝐽 (𝑦𝑗 ∧ (𝑘𝐴) = (𝑗𝐴)))
10096, 99sylnibr 328 . . . . . . . . . . 11 (((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) → ¬ (𝑘𝐴) ∈ {𝑎 ∣ ∃𝑗𝐽 (𝑦𝑗𝑎 = (𝑗𝐴))})
101 nelne1 3040 . . . . . . . . . . 11 (((𝑘𝐴) ∈ {𝑎 ∣ ∃𝑗𝐽 (𝑥𝑗𝑎 = (𝑗𝐴))} ∧ ¬ (𝑘𝐴) ∈ {𝑎 ∣ ∃𝑗𝐽 (𝑦𝑗𝑎 = (𝑗𝐴))}) → {𝑎 ∣ ∃𝑗𝐽 (𝑥𝑗𝑎 = (𝑗𝐴))} ≠ {𝑎 ∣ ∃𝑗𝐽 (𝑦𝑗𝑎 = (𝑗𝐴))})
10249, 100, 101syl2anc 583 . . . . . . . . . 10 (((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ ((𝑘𝐽𝑙𝐽) ∧ (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅))) → {𝑎 ∣ ∃𝑗𝐽 (𝑥𝑗𝑎 = (𝑗𝐴))} ≠ {𝑎 ∣ ∃𝑗𝐽 (𝑦𝑗𝑎 = (𝑗𝐴))})
103102expr 456 . . . . . . . . 9 (((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) ∧ (𝑘𝐽𝑙𝐽)) → ((𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅) → {𝑎 ∣ ∃𝑗𝐽 (𝑥𝑗𝑎 = (𝑗𝐴))} ≠ {𝑎 ∣ ∃𝑗𝐽 (𝑦𝑗𝑎 = (𝑗𝐴))}))
104103rexlimdvva 3222 . . . . . . . 8 ((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) → (∃𝑘𝐽𝑙𝐽 (𝑥𝑘𝑦𝑙 ∧ (𝑘𝑙) = ∅) → {𝑎 ∣ ∃𝑗𝐽 (𝑥𝑗𝑎 = (𝑗𝐴))} ≠ {𝑎 ∣ ∃𝑗𝐽 (𝑦𝑗𝑎 = (𝑗𝐴))}))
10533, 104mpd 15 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) ∧ 𝑥𝑦) → {𝑎 ∣ ∃𝑗𝐽 (𝑥𝑗𝑎 = (𝑗𝐴))} ≠ {𝑎 ∣ ∃𝑗𝐽 (𝑦𝑗𝑎 = (𝑗𝐴))})
106105ex 412 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) → (𝑥𝑦 → {𝑎 ∣ ∃𝑗𝐽 (𝑥𝑗𝑎 = (𝑗𝐴))} ≠ {𝑎 ∣ ∃𝑗𝐽 (𝑦𝑗𝑎 = (𝑗𝐴))}))
107106necon4d 2966 . . . . 5 (((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) → ({𝑎 ∣ ∃𝑗𝐽 (𝑥𝑗𝑎 = (𝑗𝐴))} = {𝑎 ∣ ∃𝑗𝐽 (𝑦𝑗𝑎 = (𝑗𝐴))} → 𝑥 = 𝑦))
108 eleq1 2826 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝑗𝑦𝑗))
109108anbi1d 629 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥𝑗𝑎 = (𝑗𝐴)) ↔ (𝑦𝑗𝑎 = (𝑗𝐴))))
110109rexbidv 3225 . . . . . 6 (𝑥 = 𝑦 → (∃𝑗𝐽 (𝑥𝑗𝑎 = (𝑗𝐴)) ↔ ∃𝑗𝐽 (𝑦𝑗𝑎 = (𝑗𝐴))))
111110abbidv 2808 . . . . 5 (𝑥 = 𝑦 → {𝑎 ∣ ∃𝑗𝐽 (𝑥𝑗𝑎 = (𝑗𝐴))} = {𝑎 ∣ ∃𝑗𝐽 (𝑦𝑗𝑎 = (𝑗𝐴))})
112107, 111impbid1 224 . . . 4 (((𝐽 ∈ Haus ∧ 𝐴𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴))) → ({𝑎 ∣ ∃𝑗𝐽 (𝑥𝑗𝑎 = (𝑗𝐴))} = {𝑎 ∣ ∃𝑗𝐽 (𝑦𝑗𝑎 = (𝑗𝐴))} ↔ 𝑥 = 𝑦))
113112ex 412 . . 3 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → ((𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝐴)) → ({𝑎 ∣ ∃𝑗𝐽 (𝑥𝑗𝑎 = (𝑗𝐴))} = {𝑎 ∣ ∃𝑗𝐽 (𝑦𝑗𝑎 = (𝑗𝐴))} ↔ 𝑥 = 𝑦)))
11422, 113dom2lem 8735 . 2 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑎 ∣ ∃𝑗𝐽 (𝑥𝑗𝑎 = (𝑗𝐴))}):((cls‘𝐽)‘𝐴)–1-1→𝒫 𝒫 𝐴)
115 hauspwpwf1.f . . 3 𝐹 = (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑎 ∣ ∃𝑗𝐽 (𝑥𝑗𝑎 = (𝑗𝐴))})
116 f1eq1 6649 . . 3 (𝐹 = (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑎 ∣ ∃𝑗𝐽 (𝑥𝑗𝑎 = (𝑗𝐴))}) → (𝐹:((cls‘𝐽)‘𝐴)–1-1→𝒫 𝒫 𝐴 ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑎 ∣ ∃𝑗𝐽 (𝑥𝑗𝑎 = (𝑗𝐴))}):((cls‘𝐽)‘𝐴)–1-1→𝒫 𝒫 𝐴))
117115, 116ax-mp 5 . 2 (𝐹:((cls‘𝐽)‘𝐴)–1-1→𝒫 𝒫 𝐴 ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑎 ∣ ∃𝑗𝐽 (𝑥𝑗𝑎 = (𝑗𝐴))}):((cls‘𝐽)‘𝐴)–1-1→𝒫 𝒫 𝐴)
118114, 117sylibr 233 1 ((𝐽 ∈ Haus ∧ 𝐴𝑋) → 𝐹:((cls‘𝐽)‘𝐴)–1-1→𝒫 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wne 2942  wrex 3064  Vcvv 3422  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530   cuni 4836  cmpt 5153  1-1wf1 6415  cfv 6418  Topctop 21950  clsccl 22077  Hauscha 22367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-top 21951  df-cld 22078  df-ntr 22079  df-cls 22080  df-haus 22374
This theorem is referenced by:  hauspwpwdom  23047
  Copyright terms: Public domain W3C validator