| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelneq | Structured version Visualization version GIF version | ||
| Description: A way of showing two classes are not equal. (Contributed by NM, 1-Apr-1997.) |
| Ref | Expression |
|---|---|
| nelneq | ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → ¬ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2816 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
| 2 | 1 | biimpcd 249 | . 2 ⊢ (𝐴 ∈ 𝐶 → (𝐴 = 𝐵 → 𝐵 ∈ 𝐶)) |
| 3 | 2 | con3dimp 408 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → ¬ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: nelne2 3023 onfununi 8310 suc11reg 9572 cantnfp1lem3 9633 oemapvali 9637 mreexmrid 17604 supxrnemnf 32691 elrgspnlem4 33196 elrspunsn 33400 onint1 36437 bj-fvmptunsn2 37246 maxidln0 38039 rencldnfilem 42808 climlimsupcex 45767 icccncfext 45885 |
| Copyright terms: Public domain | W3C validator |