| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelneq | Structured version Visualization version GIF version | ||
| Description: A way of showing two classes are not equal. (Contributed by NM, 1-Apr-1997.) |
| Ref | Expression |
|---|---|
| nelneq | ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → ¬ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2819 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
| 2 | 1 | biimpcd 249 | . 2 ⊢ (𝐴 ∈ 𝐶 → (𝐴 = 𝐵 → 𝐵 ∈ 𝐶)) |
| 3 | 2 | con3dimp 408 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → ¬ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2806 |
| This theorem is referenced by: nelne2 3026 onfununi 8261 suc11reg 9509 cantnfp1lem3 9570 oemapvali 9574 mreexmrid 17549 supxrnemnf 32751 elrgspnlem4 33212 elrspunsn 33394 onint1 36493 bj-fvmptunsn2 37302 maxidln0 38084 rencldnfilem 42912 climlimsupcex 45866 icccncfext 45984 |
| Copyright terms: Public domain | W3C validator |