MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nelneq Structured version   Visualization version   GIF version

Theorem nelneq 2855
Description: A way of showing two classes are not equal. (Contributed by NM, 1-Apr-1997.)
Assertion
Ref Expression
nelneq ((𝐴𝐶 ∧ ¬ 𝐵𝐶) → ¬ 𝐴 = 𝐵)

Proof of Theorem nelneq
StepHypRef Expression
1 eleq1 2819 . . 3 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
21biimpcd 249 . 2 (𝐴𝐶 → (𝐴 = 𝐵𝐵𝐶))
32con3dimp 408 1 ((𝐴𝐶 ∧ ¬ 𝐵𝐶) → ¬ 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2723  df-clel 2806
This theorem is referenced by:  nelne2  3026  onfununi  8261  suc11reg  9509  cantnfp1lem3  9570  oemapvali  9574  mreexmrid  17549  supxrnemnf  32751  elrgspnlem4  33212  elrspunsn  33394  onint1  36493  bj-fvmptunsn2  37302  maxidln0  38084  rencldnfilem  42912  climlimsupcex  45866  icccncfext  45984
  Copyright terms: Public domain W3C validator