Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nelneq | Structured version Visualization version GIF version |
Description: A way of showing two classes are not equal. (Contributed by NM, 1-Apr-1997.) |
Ref | Expression |
---|---|
nelneq | ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → ¬ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2838 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
2 | 1 | biimpcd 252 | . 2 ⊢ (𝐴 ∈ 𝐶 → (𝐴 = 𝐵 → 𝐵 ∈ 𝐶)) |
3 | 2 | con3dimp 413 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → ¬ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-ex 1783 df-cleq 2751 df-clel 2831 |
This theorem is referenced by: nelne2 3046 onfununi 7981 suc11reg 9100 cantnfp1lem3 9161 oemapvali 9165 mreexmrid 16957 supxrnemnf 30600 onint1 34172 bj-fvmptunsn2 34938 maxidln0 35748 rencldnfilem 40119 climlimsupcex 42762 icccncfext 42880 |
Copyright terms: Public domain | W3C validator |