Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nelneq | Structured version Visualization version GIF version |
Description: A way of showing two classes are not equal. (Contributed by NM, 1-Apr-1997.) |
Ref | Expression |
---|---|
nelneq | ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → ¬ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
2 | 1 | biimpcd 248 | . 2 ⊢ (𝐴 ∈ 𝐶 → (𝐴 = 𝐵 → 𝐵 ∈ 𝐶)) |
3 | 2 | con3dimp 409 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → ¬ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-clel 2816 |
This theorem is referenced by: nelne2 3042 onfununi 8172 suc11reg 9377 cantnfp1lem3 9438 oemapvali 9442 mreexmrid 17352 supxrnemnf 31091 onint1 34638 bj-fvmptunsn2 35429 maxidln0 36203 rencldnfilem 40642 climlimsupcex 43310 icccncfext 43428 |
Copyright terms: Public domain | W3C validator |