![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelneq | Structured version Visualization version GIF version |
Description: A way of showing two classes are not equal. (Contributed by NM, 1-Apr-1997.) |
Ref | Expression |
---|---|
nelneq | ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → ¬ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2838 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
2 | 1 | biimpcd 239 | . 2 ⊢ (𝐴 ∈ 𝐶 → (𝐴 = 𝐵 → 𝐵 ∈ 𝐶)) |
3 | 2 | con3dimp 395 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → ¬ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-ex 1853 df-cleq 2764 df-clel 2767 |
This theorem is referenced by: onfununi 7591 suc11reg 8680 cantnfp1lem3 8741 oemapvali 8745 xrge0neqmnfOLD 12483 mreexmrid 16511 supxrnemnf 29874 onint1 32785 maxidln0 34176 rencldnfilem 37910 climlimsupcex 40519 icccncfext 40618 |
Copyright terms: Public domain | W3C validator |