MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nelneq Structured version   Visualization version   GIF version

Theorem nelneq 2853
Description: A way of showing two classes are not equal. (Contributed by NM, 1-Apr-1997.)
Assertion
Ref Expression
nelneq ((𝐴𝐶 ∧ ¬ 𝐵𝐶) → ¬ 𝐴 = 𝐵)

Proof of Theorem nelneq
StepHypRef Expression
1 eleq1 2817 . . 3 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
21biimpcd 249 . 2 (𝐴𝐶 → (𝐴 = 𝐵𝐵𝐶))
32con3dimp 408 1 ((𝐴𝐶 ∧ ¬ 𝐵𝐶) → ¬ 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2722  df-clel 2804
This theorem is referenced by:  nelne2  3024  onfununi  8313  suc11reg  9579  cantnfp1lem3  9640  oemapvali  9644  mreexmrid  17611  supxrnemnf  32698  elrgspnlem4  33203  elrspunsn  33407  onint1  36444  bj-fvmptunsn2  37253  maxidln0  38046  rencldnfilem  42815  climlimsupcex  45774  icccncfext  45892
  Copyright terms: Public domain W3C validator