MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nelneq Structured version   Visualization version   GIF version

Theorem nelneq 2858
Description: A way of showing two classes are not equal. (Contributed by NM, 1-Apr-1997.)
Assertion
Ref Expression
nelneq ((𝐴𝐶 ∧ ¬ 𝐵𝐶) → ¬ 𝐴 = 𝐵)

Proof of Theorem nelneq
StepHypRef Expression
1 eleq1 2822 . . 3 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
21biimpcd 248 . 2 (𝐴𝐶 → (𝐴 = 𝐵𝐵𝐶))
32con3dimp 410 1 ((𝐴𝐶 ∧ ¬ 𝐵𝐶) → ¬ 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783  df-cleq 2725  df-clel 2811
This theorem is referenced by:  nelne2  3041  onfununi  8341  suc11reg  9614  cantnfp1lem3  9675  oemapvali  9679  mreexmrid  17587  supxrnemnf  31981  elrspunsn  32547  onint1  35334  bj-fvmptunsn2  36139  maxidln0  36913  rencldnfilem  41558  climlimsupcex  44485  icccncfext  44603
  Copyright terms: Public domain W3C validator