MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nelneq Structured version   Visualization version   GIF version

Theorem nelneq 2868
Description: A way of showing two classes are not equal. (Contributed by NM, 1-Apr-1997.)
Assertion
Ref Expression
nelneq ((𝐴𝐶 ∧ ¬ 𝐵𝐶) → ¬ 𝐴 = 𝐵)

Proof of Theorem nelneq
StepHypRef Expression
1 eleq1 2832 . . 3 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
21biimpcd 249 . 2 (𝐴𝐶 → (𝐴 = 𝐵𝐵𝐶))
32con3dimp 408 1 ((𝐴𝐶 ∧ ¬ 𝐵𝐶) → ¬ 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732  df-clel 2819
This theorem is referenced by:  nelne2  3046  onfununi  8397  suc11reg  9688  cantnfp1lem3  9749  oemapvali  9753  mreexmrid  17701  supxrnemnf  32775  elrspunsn  33422  onint1  36415  bj-fvmptunsn2  37224  maxidln0  38005  rencldnfilem  42776  climlimsupcex  45690  icccncfext  45808
  Copyright terms: Public domain W3C validator