| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelneq | Structured version Visualization version GIF version | ||
| Description: A way of showing two classes are not equal. (Contributed by NM, 1-Apr-1997.) |
| Ref | Expression |
|---|---|
| nelneq | ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → ¬ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2823 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
| 2 | 1 | biimpcd 249 | . 2 ⊢ (𝐴 ∈ 𝐶 → (𝐴 = 𝐵 → 𝐵 ∈ 𝐶)) |
| 3 | 2 | con3dimp 408 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → ¬ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-clel 2810 |
| This theorem is referenced by: nelne2 3031 onfununi 8360 suc11reg 9638 cantnfp1lem3 9699 oemapvali 9703 mreexmrid 17660 supxrnemnf 32750 elrgspnlem4 33245 elrspunsn 33449 onint1 36472 bj-fvmptunsn2 37281 maxidln0 38074 rencldnfilem 42810 climlimsupcex 45765 icccncfext 45883 |
| Copyright terms: Public domain | W3C validator |