MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwxpndom2 Structured version   Visualization version   GIF version

Theorem pwxpndom2 10601
Description: The powerset of a Dedekind-infinite set does not inject into its Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.) (Proof shortened by AV, 18-Jul-2022.)
Assertion
Ref Expression
pwxpndom2 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)))

Proof of Theorem pwxpndom2
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwfseq 10600 . 2 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛))
2 reldom 8889 . . . . . . 7 Rel ≼
32brrelex2i 5689 . . . . . 6 (ω ≼ 𝐴𝐴 ∈ V)
4 df1o2 8419 . . . . . . . 8 1o = {∅}
54oveq2i 7368 . . . . . . 7 (𝐴m 1o) = (𝐴m {∅})
6 id 22 . . . . . . . 8 (𝐴 ∈ V → 𝐴 ∈ V)
7 0ex 5264 . . . . . . . . 9 ∅ ∈ V
87a1i 11 . . . . . . . 8 (𝐴 ∈ V → ∅ ∈ V)
96, 8mapsnend 8980 . . . . . . 7 (𝐴 ∈ V → (𝐴m {∅}) ≈ 𝐴)
105, 9eqbrtrid 5140 . . . . . 6 (𝐴 ∈ V → (𝐴m 1o) ≈ 𝐴)
11 ensym 8943 . . . . . 6 ((𝐴m 1o) ≈ 𝐴𝐴 ≈ (𝐴m 1o))
123, 10, 113syl 18 . . . . 5 (ω ≼ 𝐴𝐴 ≈ (𝐴m 1o))
13 map2xp 9091 . . . . . 6 (𝐴 ∈ V → (𝐴m 2o) ≈ (𝐴 × 𝐴))
14 ensym 8943 . . . . . 6 ((𝐴m 2o) ≈ (𝐴 × 𝐴) → (𝐴 × 𝐴) ≈ (𝐴m 2o))
153, 13, 143syl 18 . . . . 5 (ω ≼ 𝐴 → (𝐴 × 𝐴) ≈ (𝐴m 2o))
16 elmapi 8787 . . . . . . . . . . 11 (𝑥 ∈ (𝐴m 1o) → 𝑥:1o𝐴)
1716fdmd 6679 . . . . . . . . . 10 (𝑥 ∈ (𝐴m 1o) → dom 𝑥 = 1o)
1817adantr 481 . . . . . . . . 9 ((𝑥 ∈ (𝐴m 1o) ∧ 𝑥 ∈ (𝐴m 2o)) → dom 𝑥 = 1o)
19 1oex 8422 . . . . . . . . . . . . 13 1o ∈ V
2019sucid 6399 . . . . . . . . . . . 12 1o ∈ suc 1o
21 df-2o 8413 . . . . . . . . . . . 12 2o = suc 1o
2220, 21eleqtrri 2837 . . . . . . . . . . 11 1o ∈ 2o
23 1on 8424 . . . . . . . . . . . 12 1o ∈ On
2423onirri 6430 . . . . . . . . . . 11 ¬ 1o ∈ 1o
25 nelneq2 2862 . . . . . . . . . . 11 ((1o ∈ 2o ∧ ¬ 1o ∈ 1o) → ¬ 2o = 1o)
2622, 24, 25mp2an 690 . . . . . . . . . 10 ¬ 2o = 1o
27 elmapi 8787 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴m 2o) → 𝑥:2o𝐴)
2827fdmd 6679 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴m 2o) → dom 𝑥 = 2o)
2928adantl 482 . . . . . . . . . . 11 ((𝑥 ∈ (𝐴m 1o) ∧ 𝑥 ∈ (𝐴m 2o)) → dom 𝑥 = 2o)
3029eqeq1d 2738 . . . . . . . . . 10 ((𝑥 ∈ (𝐴m 1o) ∧ 𝑥 ∈ (𝐴m 2o)) → (dom 𝑥 = 1o ↔ 2o = 1o))
3126, 30mtbiri 326 . . . . . . . . 9 ((𝑥 ∈ (𝐴m 1o) ∧ 𝑥 ∈ (𝐴m 2o)) → ¬ dom 𝑥 = 1o)
3218, 31pm2.65i 193 . . . . . . . 8 ¬ (𝑥 ∈ (𝐴m 1o) ∧ 𝑥 ∈ (𝐴m 2o))
33 elin 3926 . . . . . . . 8 (𝑥 ∈ ((𝐴m 1o) ∩ (𝐴m 2o)) ↔ (𝑥 ∈ (𝐴m 1o) ∧ 𝑥 ∈ (𝐴m 2o)))
3432, 33mtbir 322 . . . . . . 7 ¬ 𝑥 ∈ ((𝐴m 1o) ∩ (𝐴m 2o))
3534a1i 11 . . . . . 6 (ω ≼ 𝐴 → ¬ 𝑥 ∈ ((𝐴m 1o) ∩ (𝐴m 2o)))
3635eq0rdv 4364 . . . . 5 (ω ≼ 𝐴 → ((𝐴m 1o) ∩ (𝐴m 2o)) = ∅)
37 djuenun 10106 . . . . 5 ((𝐴 ≈ (𝐴m 1o) ∧ (𝐴 × 𝐴) ≈ (𝐴m 2o) ∧ ((𝐴m 1o) ∩ (𝐴m 2o)) = ∅) → (𝐴 ⊔ (𝐴 × 𝐴)) ≈ ((𝐴m 1o) ∪ (𝐴m 2o)))
3812, 15, 36, 37syl3anc 1371 . . . 4 (ω ≼ 𝐴 → (𝐴 ⊔ (𝐴 × 𝐴)) ≈ ((𝐴m 1o) ∪ (𝐴m 2o)))
39 omex 9579 . . . . . 6 ω ∈ V
40 ovex 7390 . . . . . 6 (𝐴m 𝑛) ∈ V
4139, 40iunex 7901 . . . . 5 𝑛 ∈ ω (𝐴m 𝑛) ∈ V
42 1onn 8586 . . . . . . 7 1o ∈ ω
43 oveq2 7365 . . . . . . . 8 (𝑛 = 1o → (𝐴m 𝑛) = (𝐴m 1o))
4443ssiun2s 5008 . . . . . . 7 (1o ∈ ω → (𝐴m 1o) ⊆ 𝑛 ∈ ω (𝐴m 𝑛))
4542, 44ax-mp 5 . . . . . 6 (𝐴m 1o) ⊆ 𝑛 ∈ ω (𝐴m 𝑛)
46 2onn 8588 . . . . . . 7 2o ∈ ω
47 oveq2 7365 . . . . . . . 8 (𝑛 = 2o → (𝐴m 𝑛) = (𝐴m 2o))
4847ssiun2s 5008 . . . . . . 7 (2o ∈ ω → (𝐴m 2o) ⊆ 𝑛 ∈ ω (𝐴m 𝑛))
4946, 48ax-mp 5 . . . . . 6 (𝐴m 2o) ⊆ 𝑛 ∈ ω (𝐴m 𝑛)
5045, 49unssi 4145 . . . . 5 ((𝐴m 1o) ∪ (𝐴m 2o)) ⊆ 𝑛 ∈ ω (𝐴m 𝑛)
51 ssdomg 8940 . . . . 5 ( 𝑛 ∈ ω (𝐴m 𝑛) ∈ V → (((𝐴m 1o) ∪ (𝐴m 2o)) ⊆ 𝑛 ∈ ω (𝐴m 𝑛) → ((𝐴m 1o) ∪ (𝐴m 2o)) ≼ 𝑛 ∈ ω (𝐴m 𝑛)))
5241, 50, 51mp2 9 . . . 4 ((𝐴m 1o) ∪ (𝐴m 2o)) ≼ 𝑛 ∈ ω (𝐴m 𝑛)
53 endomtr 8952 . . . 4 (((𝐴 ⊔ (𝐴 × 𝐴)) ≈ ((𝐴m 1o) ∪ (𝐴m 2o)) ∧ ((𝐴m 1o) ∪ (𝐴m 2o)) ≼ 𝑛 ∈ ω (𝐴m 𝑛)) → (𝐴 ⊔ (𝐴 × 𝐴)) ≼ 𝑛 ∈ ω (𝐴m 𝑛))
5438, 52, 53sylancl 586 . . 3 (ω ≼ 𝐴 → (𝐴 ⊔ (𝐴 × 𝐴)) ≼ 𝑛 ∈ ω (𝐴m 𝑛))
55 domtr 8947 . . . 4 ((𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)) ∧ (𝐴 ⊔ (𝐴 × 𝐴)) ≼ 𝑛 ∈ ω (𝐴m 𝑛)) → 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛))
5655expcom 414 . . 3 ((𝐴 ⊔ (𝐴 × 𝐴)) ≼ 𝑛 ∈ ω (𝐴m 𝑛) → (𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)) → 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛)))
5754, 56syl 17 . 2 (ω ≼ 𝐴 → (𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)) → 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛)))
581, 57mtod 197 1 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3445  cun 3908  cin 3909  wss 3910  c0 4282  𝒫 cpw 4560  {csn 4586   ciun 4954   class class class wbr 5105   × cxp 5631  dom cdm 5633  suc csuc 6319  (class class class)co 7357  ωcom 7802  1oc1o 8405  2oc2o 8406  m cmap 8765  cen 8880  cdom 8881  cdju 9834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-seqom 8394  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-oexp 8418  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-oi 9446  df-har 9493  df-cnf 9598  df-dju 9837  df-card 9875
This theorem is referenced by:  pwxpndom  10602  pwdjundom  10603
  Copyright terms: Public domain W3C validator