MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwxpndom2 Structured version   Visualization version   GIF version

Theorem pwxpndom2 10548
Description: The powerset of a Dedekind-infinite set does not inject into its Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.) (Proof shortened by AV, 18-Jul-2022.)
Assertion
Ref Expression
pwxpndom2 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)))

Proof of Theorem pwxpndom2
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwfseq 10547 . 2 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛))
2 reldom 8870 . . . . . . 7 Rel ≼
32brrelex2i 5671 . . . . . 6 (ω ≼ 𝐴𝐴 ∈ V)
4 df1o2 8387 . . . . . . . 8 1o = {∅}
54oveq2i 7352 . . . . . . 7 (𝐴m 1o) = (𝐴m {∅})
6 id 22 . . . . . . . 8 (𝐴 ∈ V → 𝐴 ∈ V)
7 0ex 5243 . . . . . . . . 9 ∅ ∈ V
87a1i 11 . . . . . . . 8 (𝐴 ∈ V → ∅ ∈ V)
96, 8mapsnend 8953 . . . . . . 7 (𝐴 ∈ V → (𝐴m {∅}) ≈ 𝐴)
105, 9eqbrtrid 5124 . . . . . 6 (𝐴 ∈ V → (𝐴m 1o) ≈ 𝐴)
11 ensym 8920 . . . . . 6 ((𝐴m 1o) ≈ 𝐴𝐴 ≈ (𝐴m 1o))
123, 10, 113syl 18 . . . . 5 (ω ≼ 𝐴𝐴 ≈ (𝐴m 1o))
13 map2xp 9055 . . . . . 6 (𝐴 ∈ V → (𝐴m 2o) ≈ (𝐴 × 𝐴))
14 ensym 8920 . . . . . 6 ((𝐴m 2o) ≈ (𝐴 × 𝐴) → (𝐴 × 𝐴) ≈ (𝐴m 2o))
153, 13, 143syl 18 . . . . 5 (ω ≼ 𝐴 → (𝐴 × 𝐴) ≈ (𝐴m 2o))
16 elmapi 8768 . . . . . . . . . . 11 (𝑥 ∈ (𝐴m 1o) → 𝑥:1o𝐴)
1716fdmd 6657 . . . . . . . . . 10 (𝑥 ∈ (𝐴m 1o) → dom 𝑥 = 1o)
1817adantr 480 . . . . . . . . 9 ((𝑥 ∈ (𝐴m 1o) ∧ 𝑥 ∈ (𝐴m 2o)) → dom 𝑥 = 1o)
19 1oex 8390 . . . . . . . . . . . . 13 1o ∈ V
2019sucid 6386 . . . . . . . . . . . 12 1o ∈ suc 1o
21 df-2o 8381 . . . . . . . . . . . 12 2o = suc 1o
2220, 21eleqtrri 2828 . . . . . . . . . . 11 1o ∈ 2o
23 1on 8392 . . . . . . . . . . . 12 1o ∈ On
2423onirri 6416 . . . . . . . . . . 11 ¬ 1o ∈ 1o
25 nelneq2 2854 . . . . . . . . . . 11 ((1o ∈ 2o ∧ ¬ 1o ∈ 1o) → ¬ 2o = 1o)
2622, 24, 25mp2an 692 . . . . . . . . . 10 ¬ 2o = 1o
27 elmapi 8768 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴m 2o) → 𝑥:2o𝐴)
2827fdmd 6657 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴m 2o) → dom 𝑥 = 2o)
2928adantl 481 . . . . . . . . . . 11 ((𝑥 ∈ (𝐴m 1o) ∧ 𝑥 ∈ (𝐴m 2o)) → dom 𝑥 = 2o)
3029eqeq1d 2732 . . . . . . . . . 10 ((𝑥 ∈ (𝐴m 1o) ∧ 𝑥 ∈ (𝐴m 2o)) → (dom 𝑥 = 1o ↔ 2o = 1o))
3126, 30mtbiri 327 . . . . . . . . 9 ((𝑥 ∈ (𝐴m 1o) ∧ 𝑥 ∈ (𝐴m 2o)) → ¬ dom 𝑥 = 1o)
3218, 31pm2.65i 194 . . . . . . . 8 ¬ (𝑥 ∈ (𝐴m 1o) ∧ 𝑥 ∈ (𝐴m 2o))
33 elin 3916 . . . . . . . 8 (𝑥 ∈ ((𝐴m 1o) ∩ (𝐴m 2o)) ↔ (𝑥 ∈ (𝐴m 1o) ∧ 𝑥 ∈ (𝐴m 2o)))
3432, 33mtbir 323 . . . . . . 7 ¬ 𝑥 ∈ ((𝐴m 1o) ∩ (𝐴m 2o))
3534a1i 11 . . . . . 6 (ω ≼ 𝐴 → ¬ 𝑥 ∈ ((𝐴m 1o) ∩ (𝐴m 2o)))
3635eq0rdv 4355 . . . . 5 (ω ≼ 𝐴 → ((𝐴m 1o) ∩ (𝐴m 2o)) = ∅)
37 djuenun 10054 . . . . 5 ((𝐴 ≈ (𝐴m 1o) ∧ (𝐴 × 𝐴) ≈ (𝐴m 2o) ∧ ((𝐴m 1o) ∩ (𝐴m 2o)) = ∅) → (𝐴 ⊔ (𝐴 × 𝐴)) ≈ ((𝐴m 1o) ∪ (𝐴m 2o)))
3812, 15, 36, 37syl3anc 1373 . . . 4 (ω ≼ 𝐴 → (𝐴 ⊔ (𝐴 × 𝐴)) ≈ ((𝐴m 1o) ∪ (𝐴m 2o)))
39 omex 9528 . . . . . 6 ω ∈ V
40 ovex 7374 . . . . . 6 (𝐴m 𝑛) ∈ V
4139, 40iunex 7895 . . . . 5 𝑛 ∈ ω (𝐴m 𝑛) ∈ V
42 1onn 8550 . . . . . . 7 1o ∈ ω
43 oveq2 7349 . . . . . . . 8 (𝑛 = 1o → (𝐴m 𝑛) = (𝐴m 1o))
4443ssiun2s 4995 . . . . . . 7 (1o ∈ ω → (𝐴m 1o) ⊆ 𝑛 ∈ ω (𝐴m 𝑛))
4542, 44ax-mp 5 . . . . . 6 (𝐴m 1o) ⊆ 𝑛 ∈ ω (𝐴m 𝑛)
46 2onn 8552 . . . . . . 7 2o ∈ ω
47 oveq2 7349 . . . . . . . 8 (𝑛 = 2o → (𝐴m 𝑛) = (𝐴m 2o))
4847ssiun2s 4995 . . . . . . 7 (2o ∈ ω → (𝐴m 2o) ⊆ 𝑛 ∈ ω (𝐴m 𝑛))
4946, 48ax-mp 5 . . . . . 6 (𝐴m 2o) ⊆ 𝑛 ∈ ω (𝐴m 𝑛)
5045, 49unssi 4139 . . . . 5 ((𝐴m 1o) ∪ (𝐴m 2o)) ⊆ 𝑛 ∈ ω (𝐴m 𝑛)
51 ssdomg 8917 . . . . 5 ( 𝑛 ∈ ω (𝐴m 𝑛) ∈ V → (((𝐴m 1o) ∪ (𝐴m 2o)) ⊆ 𝑛 ∈ ω (𝐴m 𝑛) → ((𝐴m 1o) ∪ (𝐴m 2o)) ≼ 𝑛 ∈ ω (𝐴m 𝑛)))
5241, 50, 51mp2 9 . . . 4 ((𝐴m 1o) ∪ (𝐴m 2o)) ≼ 𝑛 ∈ ω (𝐴m 𝑛)
53 endomtr 8929 . . . 4 (((𝐴 ⊔ (𝐴 × 𝐴)) ≈ ((𝐴m 1o) ∪ (𝐴m 2o)) ∧ ((𝐴m 1o) ∪ (𝐴m 2o)) ≼ 𝑛 ∈ ω (𝐴m 𝑛)) → (𝐴 ⊔ (𝐴 × 𝐴)) ≼ 𝑛 ∈ ω (𝐴m 𝑛))
5438, 52, 53sylancl 586 . . 3 (ω ≼ 𝐴 → (𝐴 ⊔ (𝐴 × 𝐴)) ≼ 𝑛 ∈ ω (𝐴m 𝑛))
55 domtr 8924 . . . 4 ((𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)) ∧ (𝐴 ⊔ (𝐴 × 𝐴)) ≼ 𝑛 ∈ ω (𝐴m 𝑛)) → 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛))
5655expcom 413 . . 3 ((𝐴 ⊔ (𝐴 × 𝐴)) ≼ 𝑛 ∈ ω (𝐴m 𝑛) → (𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)) → 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛)))
5754, 56syl 17 . 2 (ω ≼ 𝐴 → (𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)) → 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛)))
581, 57mtod 198 1 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2110  Vcvv 3434  cun 3898  cin 3899  wss 3900  c0 4281  𝒫 cpw 4548  {csn 4574   ciun 4939   class class class wbr 5089   × cxp 5612  dom cdm 5614  suc csuc 6304  (class class class)co 7341  ωcom 7791  1oc1o 8373  2oc2o 8374  m cmap 8745  cen 8861  cdom 8862  cdju 9783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-seqom 8362  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-oexp 8386  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-oi 9391  df-har 9438  df-cnf 9547  df-dju 9786  df-card 9824
This theorem is referenced by:  pwxpndom  10549  pwdjundom  10550
  Copyright terms: Public domain W3C validator