MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwxpndom2 Structured version   Visualization version   GIF version

Theorem pwxpndom2 10566
Description: The powerset of a Dedekind-infinite set does not inject into its Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.) (Proof shortened by AV, 18-Jul-2022.)
Assertion
Ref Expression
pwxpndom2 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)))

Proof of Theorem pwxpndom2
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwfseq 10565 . 2 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛))
2 reldom 8884 . . . . . . 7 Rel ≼
32brrelex2i 5678 . . . . . 6 (ω ≼ 𝐴𝐴 ∈ V)
4 df1o2 8401 . . . . . . . 8 1o = {∅}
54oveq2i 7366 . . . . . . 7 (𝐴m 1o) = (𝐴m {∅})
6 id 22 . . . . . . . 8 (𝐴 ∈ V → 𝐴 ∈ V)
7 0ex 5249 . . . . . . . . 9 ∅ ∈ V
87a1i 11 . . . . . . . 8 (𝐴 ∈ V → ∅ ∈ V)
96, 8mapsnend 8968 . . . . . . 7 (𝐴 ∈ V → (𝐴m {∅}) ≈ 𝐴)
105, 9eqbrtrid 5130 . . . . . 6 (𝐴 ∈ V → (𝐴m 1o) ≈ 𝐴)
11 ensym 8935 . . . . . 6 ((𝐴m 1o) ≈ 𝐴𝐴 ≈ (𝐴m 1o))
123, 10, 113syl 18 . . . . 5 (ω ≼ 𝐴𝐴 ≈ (𝐴m 1o))
13 map2xp 9070 . . . . . 6 (𝐴 ∈ V → (𝐴m 2o) ≈ (𝐴 × 𝐴))
14 ensym 8935 . . . . . 6 ((𝐴m 2o) ≈ (𝐴 × 𝐴) → (𝐴 × 𝐴) ≈ (𝐴m 2o))
153, 13, 143syl 18 . . . . 5 (ω ≼ 𝐴 → (𝐴 × 𝐴) ≈ (𝐴m 2o))
16 elmapi 8782 . . . . . . . . . . 11 (𝑥 ∈ (𝐴m 1o) → 𝑥:1o𝐴)
1716fdmd 6669 . . . . . . . . . 10 (𝑥 ∈ (𝐴m 1o) → dom 𝑥 = 1o)
1817adantr 480 . . . . . . . . 9 ((𝑥 ∈ (𝐴m 1o) ∧ 𝑥 ∈ (𝐴m 2o)) → dom 𝑥 = 1o)
19 1oex 8404 . . . . . . . . . . . . 13 1o ∈ V
2019sucid 6398 . . . . . . . . . . . 12 1o ∈ suc 1o
21 df-2o 8395 . . . . . . . . . . . 12 2o = suc 1o
2220, 21eleqtrri 2832 . . . . . . . . . . 11 1o ∈ 2o
23 1on 8406 . . . . . . . . . . . 12 1o ∈ On
2423onirri 6428 . . . . . . . . . . 11 ¬ 1o ∈ 1o
25 nelneq2 2858 . . . . . . . . . . 11 ((1o ∈ 2o ∧ ¬ 1o ∈ 1o) → ¬ 2o = 1o)
2622, 24, 25mp2an 692 . . . . . . . . . 10 ¬ 2o = 1o
27 elmapi 8782 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴m 2o) → 𝑥:2o𝐴)
2827fdmd 6669 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴m 2o) → dom 𝑥 = 2o)
2928adantl 481 . . . . . . . . . . 11 ((𝑥 ∈ (𝐴m 1o) ∧ 𝑥 ∈ (𝐴m 2o)) → dom 𝑥 = 2o)
3029eqeq1d 2735 . . . . . . . . . 10 ((𝑥 ∈ (𝐴m 1o) ∧ 𝑥 ∈ (𝐴m 2o)) → (dom 𝑥 = 1o ↔ 2o = 1o))
3126, 30mtbiri 327 . . . . . . . . 9 ((𝑥 ∈ (𝐴m 1o) ∧ 𝑥 ∈ (𝐴m 2o)) → ¬ dom 𝑥 = 1o)
3218, 31pm2.65i 194 . . . . . . . 8 ¬ (𝑥 ∈ (𝐴m 1o) ∧ 𝑥 ∈ (𝐴m 2o))
33 elin 3915 . . . . . . . 8 (𝑥 ∈ ((𝐴m 1o) ∩ (𝐴m 2o)) ↔ (𝑥 ∈ (𝐴m 1o) ∧ 𝑥 ∈ (𝐴m 2o)))
3432, 33mtbir 323 . . . . . . 7 ¬ 𝑥 ∈ ((𝐴m 1o) ∩ (𝐴m 2o))
3534a1i 11 . . . . . 6 (ω ≼ 𝐴 → ¬ 𝑥 ∈ ((𝐴m 1o) ∩ (𝐴m 2o)))
3635eq0rdv 4358 . . . . 5 (ω ≼ 𝐴 → ((𝐴m 1o) ∩ (𝐴m 2o)) = ∅)
37 djuenun 10072 . . . . 5 ((𝐴 ≈ (𝐴m 1o) ∧ (𝐴 × 𝐴) ≈ (𝐴m 2o) ∧ ((𝐴m 1o) ∩ (𝐴m 2o)) = ∅) → (𝐴 ⊔ (𝐴 × 𝐴)) ≈ ((𝐴m 1o) ∪ (𝐴m 2o)))
3812, 15, 36, 37syl3anc 1373 . . . 4 (ω ≼ 𝐴 → (𝐴 ⊔ (𝐴 × 𝐴)) ≈ ((𝐴m 1o) ∪ (𝐴m 2o)))
39 omex 9543 . . . . . 6 ω ∈ V
40 ovex 7388 . . . . . 6 (𝐴m 𝑛) ∈ V
4139, 40iunex 7909 . . . . 5 𝑛 ∈ ω (𝐴m 𝑛) ∈ V
42 1onn 8564 . . . . . . 7 1o ∈ ω
43 oveq2 7363 . . . . . . . 8 (𝑛 = 1o → (𝐴m 𝑛) = (𝐴m 1o))
4443ssiun2s 5001 . . . . . . 7 (1o ∈ ω → (𝐴m 1o) ⊆ 𝑛 ∈ ω (𝐴m 𝑛))
4542, 44ax-mp 5 . . . . . 6 (𝐴m 1o) ⊆ 𝑛 ∈ ω (𝐴m 𝑛)
46 2onn 8566 . . . . . . 7 2o ∈ ω
47 oveq2 7363 . . . . . . . 8 (𝑛 = 2o → (𝐴m 𝑛) = (𝐴m 2o))
4847ssiun2s 5001 . . . . . . 7 (2o ∈ ω → (𝐴m 2o) ⊆ 𝑛 ∈ ω (𝐴m 𝑛))
4946, 48ax-mp 5 . . . . . 6 (𝐴m 2o) ⊆ 𝑛 ∈ ω (𝐴m 𝑛)
5045, 49unssi 4142 . . . . 5 ((𝐴m 1o) ∪ (𝐴m 2o)) ⊆ 𝑛 ∈ ω (𝐴m 𝑛)
51 ssdomg 8932 . . . . 5 ( 𝑛 ∈ ω (𝐴m 𝑛) ∈ V → (((𝐴m 1o) ∪ (𝐴m 2o)) ⊆ 𝑛 ∈ ω (𝐴m 𝑛) → ((𝐴m 1o) ∪ (𝐴m 2o)) ≼ 𝑛 ∈ ω (𝐴m 𝑛)))
5241, 50, 51mp2 9 . . . 4 ((𝐴m 1o) ∪ (𝐴m 2o)) ≼ 𝑛 ∈ ω (𝐴m 𝑛)
53 endomtr 8944 . . . 4 (((𝐴 ⊔ (𝐴 × 𝐴)) ≈ ((𝐴m 1o) ∪ (𝐴m 2o)) ∧ ((𝐴m 1o) ∪ (𝐴m 2o)) ≼ 𝑛 ∈ ω (𝐴m 𝑛)) → (𝐴 ⊔ (𝐴 × 𝐴)) ≼ 𝑛 ∈ ω (𝐴m 𝑛))
5438, 52, 53sylancl 586 . . 3 (ω ≼ 𝐴 → (𝐴 ⊔ (𝐴 × 𝐴)) ≼ 𝑛 ∈ ω (𝐴m 𝑛))
55 domtr 8939 . . . 4 ((𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)) ∧ (𝐴 ⊔ (𝐴 × 𝐴)) ≼ 𝑛 ∈ ω (𝐴m 𝑛)) → 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛))
5655expcom 413 . . 3 ((𝐴 ⊔ (𝐴 × 𝐴)) ≼ 𝑛 ∈ ω (𝐴m 𝑛) → (𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)) → 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛)))
5754, 56syl 17 . 2 (ω ≼ 𝐴 → (𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)) → 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛)))
581, 57mtod 198 1 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3438  cun 3897  cin 3898  wss 3899  c0 4284  𝒫 cpw 4551  {csn 4577   ciun 4943   class class class wbr 5095   × cxp 5619  dom cdm 5621  suc csuc 6316  (class class class)co 7355  ωcom 7805  1oc1o 8387  2oc2o 8388  m cmap 8759  cen 8875  cdom 8876  cdju 9801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-seqom 8376  df-1o 8394  df-2o 8395  df-oadd 8398  df-omul 8399  df-oexp 8400  df-er 8631  df-map 8761  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-fsupp 9256  df-oi 9406  df-har 9453  df-cnf 9562  df-dju 9804  df-card 9842
This theorem is referenced by:  pwxpndom  10567  pwdjundom  10568
  Copyright terms: Public domain W3C validator