MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwxpndom2 Structured version   Visualization version   GIF version

Theorem pwxpndom2 9740
Description: The powerset of a Dedekind-infinite set does not inject into its Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.) (Proof shortened by AV, 18-Jul-2022.)
Assertion
Ref Expression
pwxpndom2 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 +𝑐 (𝐴 × 𝐴)))

Proof of Theorem pwxpndom2
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwfseq 9739 . 2 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴𝑚 𝑛))
2 reldom 8166 . . . . . . 7 Rel ≼
32brrelex2i 5329 . . . . . 6 (ω ≼ 𝐴𝐴 ∈ V)
4 df1o2 7777 . . . . . . . 8 1𝑜 = {∅}
54oveq2i 6853 . . . . . . 7 (𝐴𝑚 1𝑜) = (𝐴𝑚 {∅})
6 id 22 . . . . . . . 8 (𝐴 ∈ V → 𝐴 ∈ V)
7 0ex 4950 . . . . . . . . 9 ∅ ∈ V
87a1i 11 . . . . . . . 8 (𝐴 ∈ V → ∅ ∈ V)
96, 8mapsnend 8239 . . . . . . 7 (𝐴 ∈ V → (𝐴𝑚 {∅}) ≈ 𝐴)
105, 9syl5eqbr 4844 . . . . . 6 (𝐴 ∈ V → (𝐴𝑚 1𝑜) ≈ 𝐴)
11 ensym 8209 . . . . . 6 ((𝐴𝑚 1𝑜) ≈ 𝐴𝐴 ≈ (𝐴𝑚 1𝑜))
123, 10, 113syl 18 . . . . 5 (ω ≼ 𝐴𝐴 ≈ (𝐴𝑚 1𝑜))
13 map2xp 8337 . . . . . 6 (𝐴 ∈ V → (𝐴𝑚 2𝑜) ≈ (𝐴 × 𝐴))
14 ensym 8209 . . . . . 6 ((𝐴𝑚 2𝑜) ≈ (𝐴 × 𝐴) → (𝐴 × 𝐴) ≈ (𝐴𝑚 2𝑜))
153, 13, 143syl 18 . . . . 5 (ω ≼ 𝐴 → (𝐴 × 𝐴) ≈ (𝐴𝑚 2𝑜))
16 elmapi 8082 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝑚 1𝑜) → 𝑥:1𝑜𝐴)
1716fdmd 6232 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝑚 1𝑜) → dom 𝑥 = 1𝑜)
1817adantr 472 . . . . . . . . 9 ((𝑥 ∈ (𝐴𝑚 1𝑜) ∧ 𝑥 ∈ (𝐴𝑚 2𝑜)) → dom 𝑥 = 1𝑜)
19 1oex 7772 . . . . . . . . . . . . 13 1𝑜 ∈ V
2019sucid 5987 . . . . . . . . . . . 12 1𝑜 ∈ suc 1𝑜
21 df-2o 7765 . . . . . . . . . . . 12 2𝑜 = suc 1𝑜
2220, 21eleqtrri 2843 . . . . . . . . . . 11 1𝑜 ∈ 2𝑜
23 1on 7771 . . . . . . . . . . . 12 1𝑜 ∈ On
2423onirri 6014 . . . . . . . . . . 11 ¬ 1𝑜 ∈ 1𝑜
25 nelneq2 2869 . . . . . . . . . . 11 ((1𝑜 ∈ 2𝑜 ∧ ¬ 1𝑜 ∈ 1𝑜) → ¬ 2𝑜 = 1𝑜)
2622, 24, 25mp2an 683 . . . . . . . . . 10 ¬ 2𝑜 = 1𝑜
27 elmapi 8082 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴𝑚 2𝑜) → 𝑥:2𝑜𝐴)
2827fdmd 6232 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴𝑚 2𝑜) → dom 𝑥 = 2𝑜)
2928adantl 473 . . . . . . . . . . 11 ((𝑥 ∈ (𝐴𝑚 1𝑜) ∧ 𝑥 ∈ (𝐴𝑚 2𝑜)) → dom 𝑥 = 2𝑜)
3029eqeq1d 2767 . . . . . . . . . 10 ((𝑥 ∈ (𝐴𝑚 1𝑜) ∧ 𝑥 ∈ (𝐴𝑚 2𝑜)) → (dom 𝑥 = 1𝑜 ↔ 2𝑜 = 1𝑜))
3126, 30mtbiri 318 . . . . . . . . 9 ((𝑥 ∈ (𝐴𝑚 1𝑜) ∧ 𝑥 ∈ (𝐴𝑚 2𝑜)) → ¬ dom 𝑥 = 1𝑜)
3218, 31pm2.65i 185 . . . . . . . 8 ¬ (𝑥 ∈ (𝐴𝑚 1𝑜) ∧ 𝑥 ∈ (𝐴𝑚 2𝑜))
33 elin 3958 . . . . . . . 8 (𝑥 ∈ ((𝐴𝑚 1𝑜) ∩ (𝐴𝑚 2𝑜)) ↔ (𝑥 ∈ (𝐴𝑚 1𝑜) ∧ 𝑥 ∈ (𝐴𝑚 2𝑜)))
3432, 33mtbir 314 . . . . . . 7 ¬ 𝑥 ∈ ((𝐴𝑚 1𝑜) ∩ (𝐴𝑚 2𝑜))
3534a1i 11 . . . . . 6 (ω ≼ 𝐴 → ¬ 𝑥 ∈ ((𝐴𝑚 1𝑜) ∩ (𝐴𝑚 2𝑜)))
3635eq0rdv 4141 . . . . 5 (ω ≼ 𝐴 → ((𝐴𝑚 1𝑜) ∩ (𝐴𝑚 2𝑜)) = ∅)
37 cdaenun 9249 . . . . 5 ((𝐴 ≈ (𝐴𝑚 1𝑜) ∧ (𝐴 × 𝐴) ≈ (𝐴𝑚 2𝑜) ∧ ((𝐴𝑚 1𝑜) ∩ (𝐴𝑚 2𝑜)) = ∅) → (𝐴 +𝑐 (𝐴 × 𝐴)) ≈ ((𝐴𝑚 1𝑜) ∪ (𝐴𝑚 2𝑜)))
3812, 15, 36, 37syl3anc 1490 . . . 4 (ω ≼ 𝐴 → (𝐴 +𝑐 (𝐴 × 𝐴)) ≈ ((𝐴𝑚 1𝑜) ∪ (𝐴𝑚 2𝑜)))
39 omex 8755 . . . . . 6 ω ∈ V
40 ovex 6874 . . . . . 6 (𝐴𝑚 𝑛) ∈ V
4139, 40iunex 7345 . . . . 5 𝑛 ∈ ω (𝐴𝑚 𝑛) ∈ V
42 1onn 7924 . . . . . . 7 1𝑜 ∈ ω
43 oveq2 6850 . . . . . . . 8 (𝑛 = 1𝑜 → (𝐴𝑚 𝑛) = (𝐴𝑚 1𝑜))
4443ssiun2s 4720 . . . . . . 7 (1𝑜 ∈ ω → (𝐴𝑚 1𝑜) ⊆ 𝑛 ∈ ω (𝐴𝑚 𝑛))
4542, 44ax-mp 5 . . . . . 6 (𝐴𝑚 1𝑜) ⊆ 𝑛 ∈ ω (𝐴𝑚 𝑛)
46 2onn 7925 . . . . . . 7 2𝑜 ∈ ω
47 oveq2 6850 . . . . . . . 8 (𝑛 = 2𝑜 → (𝐴𝑚 𝑛) = (𝐴𝑚 2𝑜))
4847ssiun2s 4720 . . . . . . 7 (2𝑜 ∈ ω → (𝐴𝑚 2𝑜) ⊆ 𝑛 ∈ ω (𝐴𝑚 𝑛))
4946, 48ax-mp 5 . . . . . 6 (𝐴𝑚 2𝑜) ⊆ 𝑛 ∈ ω (𝐴𝑚 𝑛)
5045, 49unssi 3950 . . . . 5 ((𝐴𝑚 1𝑜) ∪ (𝐴𝑚 2𝑜)) ⊆ 𝑛 ∈ ω (𝐴𝑚 𝑛)
51 ssdomg 8206 . . . . 5 ( 𝑛 ∈ ω (𝐴𝑚 𝑛) ∈ V → (((𝐴𝑚 1𝑜) ∪ (𝐴𝑚 2𝑜)) ⊆ 𝑛 ∈ ω (𝐴𝑚 𝑛) → ((𝐴𝑚 1𝑜) ∪ (𝐴𝑚 2𝑜)) ≼ 𝑛 ∈ ω (𝐴𝑚 𝑛)))
5241, 50, 51mp2 9 . . . 4 ((𝐴𝑚 1𝑜) ∪ (𝐴𝑚 2𝑜)) ≼ 𝑛 ∈ ω (𝐴𝑚 𝑛)
53 endomtr 8218 . . . 4 (((𝐴 +𝑐 (𝐴 × 𝐴)) ≈ ((𝐴𝑚 1𝑜) ∪ (𝐴𝑚 2𝑜)) ∧ ((𝐴𝑚 1𝑜) ∪ (𝐴𝑚 2𝑜)) ≼ 𝑛 ∈ ω (𝐴𝑚 𝑛)) → (𝐴 +𝑐 (𝐴 × 𝐴)) ≼ 𝑛 ∈ ω (𝐴𝑚 𝑛))
5438, 52, 53sylancl 580 . . 3 (ω ≼ 𝐴 → (𝐴 +𝑐 (𝐴 × 𝐴)) ≼ 𝑛 ∈ ω (𝐴𝑚 𝑛))
55 domtr 8213 . . . 4 ((𝒫 𝐴 ≼ (𝐴 +𝑐 (𝐴 × 𝐴)) ∧ (𝐴 +𝑐 (𝐴 × 𝐴)) ≼ 𝑛 ∈ ω (𝐴𝑚 𝑛)) → 𝒫 𝐴 𝑛 ∈ ω (𝐴𝑚 𝑛))
5655expcom 402 . . 3 ((𝐴 +𝑐 (𝐴 × 𝐴)) ≼ 𝑛 ∈ ω (𝐴𝑚 𝑛) → (𝒫 𝐴 ≼ (𝐴 +𝑐 (𝐴 × 𝐴)) → 𝒫 𝐴 𝑛 ∈ ω (𝐴𝑚 𝑛)))
5754, 56syl 17 . 2 (ω ≼ 𝐴 → (𝒫 𝐴 ≼ (𝐴 +𝑐 (𝐴 × 𝐴)) → 𝒫 𝐴 𝑛 ∈ ω (𝐴𝑚 𝑛)))
581, 57mtod 189 1 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 +𝑐 (𝐴 × 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1652  wcel 2155  Vcvv 3350  cun 3730  cin 3731  wss 3732  c0 4079  𝒫 cpw 4315  {csn 4334   ciun 4676   class class class wbr 4809   × cxp 5275  dom cdm 5277  suc csuc 5910  (class class class)co 6842  ωcom 7263  1𝑜c1o 7757  2𝑜c2o 7758  𝑚 cmap 8060  cen 8157  cdom 8158   +𝑐 ccda 9242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-seqom 7747  df-1o 7764  df-2o 7765  df-oadd 7768  df-omul 7769  df-oexp 7770  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-oi 8622  df-har 8670  df-cnf 8774  df-card 9016  df-cda 9243
This theorem is referenced by:  pwxpndom  9741  pwcdandom  9742
  Copyright terms: Public domain W3C validator