Proof of Theorem clsk1indlem1
Step | Hyp | Ref
| Expression |
1 | | tpex 7575 |
. . . 4
⊢ {∅,
1o, 2o} ∈ V |
2 | | snsstp1 4746 |
. . . 4
⊢ {∅}
⊆ {∅, 1o, 2o} |
3 | 1, 2 | elpwi2 5265 |
. . 3
⊢ {∅}
∈ 𝒫 {∅, 1o, 2o} |
4 | | df3o2 41523 |
. . . 4
⊢
3o = {∅, 1o, 2o} |
5 | 4 | pweqi 4548 |
. . 3
⊢ 𝒫
3o = 𝒫 {∅, 1o,
2o} |
6 | 3, 5 | eleqtrri 2838 |
. 2
⊢ {∅}
∈ 𝒫 3o |
7 | 1 | a1i 11 |
. . . . 5
⊢ (⊤
→ {∅, 1o, 2o} ∈ V) |
8 | 2 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ {∅} ⊆ {∅, 1o,
2o}) |
9 | | 0ex 5226 |
. . . . . . . 8
⊢ ∅
∈ V |
10 | 9 | snss 4716 |
. . . . . . 7
⊢ (∅
∈ {∅, 1o, 2o} ↔ {∅} ⊆
{∅, 1o, 2o}) |
11 | 8, 10 | sylibr 233 |
. . . . . 6
⊢ (⊤
→ ∅ ∈ {∅, 1o, 2o}) |
12 | | snsstp3 4748 |
. . . . . . . 8
⊢
{2o} ⊆ {∅, 1o,
2o} |
13 | 12 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ {2o} ⊆ {∅, 1o,
2o}) |
14 | | 2oex 8284 |
. . . . . . . 8
⊢
2o ∈ V |
15 | 14 | snss 4716 |
. . . . . . 7
⊢
(2o ∈ {∅, 1o, 2o} ↔
{2o} ⊆ {∅, 1o,
2o}) |
16 | 13, 15 | sylibr 233 |
. . . . . 6
⊢ (⊤
→ 2o ∈ {∅, 1o,
2o}) |
17 | 11, 16 | prssd 4752 |
. . . . 5
⊢ (⊤
→ {∅, 2o} ⊆ {∅, 1o,
2o}) |
18 | 7, 17 | sselpwd 5245 |
. . . 4
⊢ (⊤
→ {∅, 2o} ∈ 𝒫 {∅, 1o,
2o}) |
19 | 18 | mptru 1546 |
. . 3
⊢ {∅,
2o} ∈ 𝒫 {∅, 1o,
2o} |
20 | 19, 5 | eleqtrri 2838 |
. 2
⊢ {∅,
2o} ∈ 𝒫 3o |
21 | | simpl 482 |
. . 3
⊢
(({∅} ∈ 𝒫 3o ∧ {∅,
2o} ∈ 𝒫 3o) → {∅} ∈
𝒫 3o) |
22 | | sseq1 3942 |
. . . . . 6
⊢ (𝑠 = {∅} → (𝑠 ⊆ 𝑡 ↔ {∅} ⊆ 𝑡)) |
23 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑠 = {∅} → (𝐾‘𝑠) = (𝐾‘{∅})) |
24 | 23 | sseq1d 3948 |
. . . . . . 7
⊢ (𝑠 = {∅} → ((𝐾‘𝑠) ⊆ (𝐾‘𝑡) ↔ (𝐾‘{∅}) ⊆ (𝐾‘𝑡))) |
25 | 24 | notbid 317 |
. . . . . 6
⊢ (𝑠 = {∅} → (¬
(𝐾‘𝑠) ⊆ (𝐾‘𝑡) ↔ ¬ (𝐾‘{∅}) ⊆ (𝐾‘𝑡))) |
26 | 22, 25 | anbi12d 630 |
. . . . 5
⊢ (𝑠 = {∅} → ((𝑠 ⊆ 𝑡 ∧ ¬ (𝐾‘𝑠) ⊆ (𝐾‘𝑡)) ↔ ({∅} ⊆ 𝑡 ∧ ¬ (𝐾‘{∅}) ⊆ (𝐾‘𝑡)))) |
27 | 26 | rexbidv 3225 |
. . . 4
⊢ (𝑠 = {∅} →
(∃𝑡 ∈ 𝒫
3o(𝑠 ⊆
𝑡 ∧ ¬ (𝐾‘𝑠) ⊆ (𝐾‘𝑡)) ↔ ∃𝑡 ∈ 𝒫 3o({∅}
⊆ 𝑡 ∧ ¬
(𝐾‘{∅}) ⊆
(𝐾‘𝑡)))) |
28 | 27 | adantl 481 |
. . 3
⊢
((({∅} ∈ 𝒫 3o ∧ {∅,
2o} ∈ 𝒫 3o) ∧ 𝑠 = {∅}) → (∃𝑡 ∈ 𝒫
3o(𝑠 ⊆
𝑡 ∧ ¬ (𝐾‘𝑠) ⊆ (𝐾‘𝑡)) ↔ ∃𝑡 ∈ 𝒫 3o({∅}
⊆ 𝑡 ∧ ¬
(𝐾‘{∅}) ⊆
(𝐾‘𝑡)))) |
29 | | simpr 484 |
. . . 4
⊢
(({∅} ∈ 𝒫 3o ∧ {∅,
2o} ∈ 𝒫 3o) → {∅, 2o}
∈ 𝒫 3o) |
30 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑡 = {∅, 2o}
→ (𝐾‘𝑡) = (𝐾‘{∅,
2o})) |
31 | 30 | sseq2d 3949 |
. . . . . . 7
⊢ (𝑡 = {∅, 2o}
→ ((𝐾‘{∅})
⊆ (𝐾‘𝑡) ↔ (𝐾‘{∅}) ⊆ (𝐾‘{∅,
2o}))) |
32 | 31 | notbid 317 |
. . . . . 6
⊢ (𝑡 = {∅, 2o}
→ (¬ (𝐾‘{∅}) ⊆ (𝐾‘𝑡) ↔ ¬ (𝐾‘{∅}) ⊆ (𝐾‘{∅,
2o}))) |
33 | 32 | cleq2lem 41105 |
. . . . 5
⊢ (𝑡 = {∅, 2o}
→ (({∅} ⊆ 𝑡 ∧ ¬ (𝐾‘{∅}) ⊆ (𝐾‘𝑡)) ↔ ({∅} ⊆ {∅,
2o} ∧ ¬ (𝐾‘{∅}) ⊆ (𝐾‘{∅,
2o})))) |
34 | 33 | adantl 481 |
. . . 4
⊢
((({∅} ∈ 𝒫 3o ∧ {∅,
2o} ∈ 𝒫 3o) ∧ 𝑡 = {∅, 2o}) →
(({∅} ⊆ 𝑡 ∧
¬ (𝐾‘{∅})
⊆ (𝐾‘𝑡)) ↔ ({∅} ⊆
{∅, 2o} ∧ ¬ (𝐾‘{∅}) ⊆ (𝐾‘{∅,
2o})))) |
35 | | 1oex 8280 |
. . . . . . . 8
⊢
1o ∈ V |
36 | 35 | prid2 4696 |
. . . . . . 7
⊢
1o ∈ {∅, 1o} |
37 | | iftrue 4462 |
. . . . . . . . 9
⊢ (𝑟 = {∅} → if(𝑟 = {∅}, {∅,
1o}, 𝑟) =
{∅, 1o}) |
38 | | clsk1indlem.k |
. . . . . . . . 9
⊢ 𝐾 = (𝑟 ∈ 𝒫 3o ↦
if(𝑟 = {∅}, {∅,
1o}, 𝑟)) |
39 | | prex 5350 |
. . . . . . . . 9
⊢ {∅,
1o} ∈ V |
40 | 37, 38, 39 | fvmpt 6857 |
. . . . . . . 8
⊢
({∅} ∈ 𝒫 3o → (𝐾‘{∅}) = {∅,
1o}) |
41 | 40 | adantr 480 |
. . . . . . 7
⊢
(({∅} ∈ 𝒫 3o ∧ {∅,
2o} ∈ 𝒫 3o) → (𝐾‘{∅}) = {∅,
1o}) |
42 | 36, 41 | eleqtrrid 2846 |
. . . . . 6
⊢
(({∅} ∈ 𝒫 3o ∧ {∅,
2o} ∈ 𝒫 3o) → 1o ∈
(𝐾‘{∅})) |
43 | | 1n0 8286 |
. . . . . . . . . . 11
⊢
1o ≠ ∅ |
44 | 43 | neii 2944 |
. . . . . . . . . 10
⊢ ¬
1o = ∅ |
45 | | eqcom 2745 |
. . . . . . . . . . . 12
⊢
(1o = 2o ↔ 2o =
1o) |
46 | | df-2o 8268 |
. . . . . . . . . . . . 13
⊢
2o = suc 1o |
47 | | df-1o 8267 |
. . . . . . . . . . . . 13
⊢
1o = suc ∅ |
48 | 46, 47 | eqeq12i 2756 |
. . . . . . . . . . . 12
⊢
(2o = 1o ↔ suc 1o = suc
∅) |
49 | | suc11reg 9307 |
. . . . . . . . . . . 12
⊢ (suc
1o = suc ∅ ↔ 1o = ∅) |
50 | 45, 48, 49 | 3bitri 296 |
. . . . . . . . . . 11
⊢
(1o = 2o ↔ 1o =
∅) |
51 | 43, 50 | nemtbir 3039 |
. . . . . . . . . 10
⊢ ¬
1o = 2o |
52 | 44, 51 | pm3.2ni 877 |
. . . . . . . . 9
⊢ ¬
(1o = ∅ ∨ 1o = 2o) |
53 | | elpri 4580 |
. . . . . . . . 9
⊢
(1o ∈ {∅, 2o} → (1o =
∅ ∨ 1o = 2o)) |
54 | 52, 53 | mto 196 |
. . . . . . . 8
⊢ ¬
1o ∈ {∅, 2o} |
55 | 54 | a1i 11 |
. . . . . . 7
⊢
(({∅} ∈ 𝒫 3o ∧ {∅,
2o} ∈ 𝒫 3o) → ¬ 1o
∈ {∅, 2o}) |
56 | | eqeq1 2742 |
. . . . . . . . . . 11
⊢ (𝑟 = {∅, 2o}
→ (𝑟 = {∅}
↔ {∅, 2o} = {∅})) |
57 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑟 = {∅, 2o}
→ 𝑟 = {∅,
2o}) |
58 | 56, 57 | ifbieq2d 4482 |
. . . . . . . . . 10
⊢ (𝑟 = {∅, 2o}
→ if(𝑟 = {∅},
{∅, 1o}, 𝑟) = if({∅, 2o} = {∅},
{∅, 1o}, {∅, 2o})) |
59 | 14 | prid2 4696 |
. . . . . . . . . . . 12
⊢
2o ∈ {∅, 2o} |
60 | | 2on0 8276 |
. . . . . . . . . . . . 13
⊢
2o ≠ ∅ |
61 | | nelsn 4598 |
. . . . . . . . . . . . 13
⊢
(2o ≠ ∅ → ¬ 2o ∈
{∅}) |
62 | 60, 61 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ¬
2o ∈ {∅} |
63 | | nelneq2 2864 |
. . . . . . . . . . . 12
⊢
((2o ∈ {∅, 2o} ∧ ¬
2o ∈ {∅}) → ¬ {∅, 2o} =
{∅}) |
64 | 59, 62, 63 | mp2an 688 |
. . . . . . . . . . 11
⊢ ¬
{∅, 2o} = {∅} |
65 | 64 | iffalsei 4466 |
. . . . . . . . . 10
⊢
if({∅, 2o} = {∅}, {∅, 1o},
{∅, 2o}) = {∅, 2o} |
66 | 58, 65 | eqtrdi 2795 |
. . . . . . . . 9
⊢ (𝑟 = {∅, 2o}
→ if(𝑟 = {∅},
{∅, 1o}, 𝑟) = {∅,
2o}) |
67 | | prex 5350 |
. . . . . . . . 9
⊢ {∅,
2o} ∈ V |
68 | 66, 38, 67 | fvmpt 6857 |
. . . . . . . 8
⊢
({∅, 2o} ∈ 𝒫 3o → (𝐾‘{∅, 2o})
= {∅, 2o}) |
69 | 68 | adantl 481 |
. . . . . . 7
⊢
(({∅} ∈ 𝒫 3o ∧ {∅,
2o} ∈ 𝒫 3o) → (𝐾‘{∅, 2o}) = {∅,
2o}) |
70 | 55, 69 | neleqtrrd 2861 |
. . . . . 6
⊢
(({∅} ∈ 𝒫 3o ∧ {∅,
2o} ∈ 𝒫 3o) → ¬ 1o
∈ (𝐾‘{∅,
2o})) |
71 | | nelss 3980 |
. . . . . 6
⊢
((1o ∈ (𝐾‘{∅}) ∧ ¬ 1o
∈ (𝐾‘{∅,
2o})) → ¬ (𝐾‘{∅}) ⊆ (𝐾‘{∅,
2o})) |
72 | 42, 70, 71 | syl2anc 583 |
. . . . 5
⊢
(({∅} ∈ 𝒫 3o ∧ {∅,
2o} ∈ 𝒫 3o) → ¬ (𝐾‘{∅}) ⊆ (𝐾‘{∅,
2o})) |
73 | | snsspr1 4744 |
. . . . 5
⊢ {∅}
⊆ {∅, 2o} |
74 | 72, 73 | jctil 519 |
. . . 4
⊢
(({∅} ∈ 𝒫 3o ∧ {∅,
2o} ∈ 𝒫 3o) → ({∅} ⊆
{∅, 2o} ∧ ¬ (𝐾‘{∅}) ⊆ (𝐾‘{∅,
2o}))) |
75 | 29, 34, 74 | rspcedvd 3555 |
. . 3
⊢
(({∅} ∈ 𝒫 3o ∧ {∅,
2o} ∈ 𝒫 3o) → ∃𝑡 ∈ 𝒫 3o({∅}
⊆ 𝑡 ∧ ¬
(𝐾‘{∅}) ⊆
(𝐾‘𝑡))) |
76 | 21, 28, 75 | rspcedvd 3555 |
. 2
⊢
(({∅} ∈ 𝒫 3o ∧ {∅,
2o} ∈ 𝒫 3o) → ∃𝑠 ∈ 𝒫 3o∃𝑡 ∈ 𝒫
3o(𝑠 ⊆
𝑡 ∧ ¬ (𝐾‘𝑠) ⊆ (𝐾‘𝑡))) |
77 | 6, 20, 76 | mp2an 688 |
1
⊢
∃𝑠 ∈
𝒫 3o∃𝑡 ∈ 𝒫 3o(𝑠 ⊆ 𝑡 ∧ ¬ (𝐾‘𝑠) ⊆ (𝐾‘𝑡)) |