MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  animorrl Structured version   Visualization version   GIF version

Theorem animorrl 978
Description: Conjunction implies disjunction with one common formula (4/4). (Contributed by BJ, 4-Oct-2019.)
Assertion
Ref Expression
animorrl ((𝜑𝜓) → (𝜓𝜒))

Proof of Theorem animorrl
StepHypRef Expression
1 simpr 485 . 2 ((𝜑𝜓) → 𝜓)
21orcd 870 1 ((𝜑𝜓) → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845
This theorem is referenced by:  nelpr1  4589  ccatsymb  14287  sadadd2lem2  16157  mreexexlem4d  17356  drngnidl  20500  ppttop  22157  wilthlem2  26218  bcmono  26425  addsqnreup  26591  mideulem2  27095  linds2eq  31575  fnwe2lem3  40877  fzuntgd  41065  disjxp1  42617  nnfoctbdjlem  43993
  Copyright terms: Public domain W3C validator