![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > animorrl | Structured version Visualization version GIF version |
Description: Conjunction implies disjunction with one common formula (4/4). (Contributed by BJ, 4-Oct-2019.) |
Ref | Expression |
---|---|
animorrl | ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
2 | 1 | orcd 872 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 |
This theorem is referenced by: nelpr1 4657 zzlesq 14201 ccatsymb 14564 sadadd2lem2 16424 mreexexlem4d 17626 drngnidl 21137 ppttop 22909 wilthlem2 27000 bcmono 27209 addsqnreup 27375 mideulem2 28537 linds2eq 33096 fnwe2lem3 42476 fzuntgd 42888 disjxp1 44433 nnfoctbdjlem 45843 |
Copyright terms: Public domain | W3C validator |