MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  animorrl Structured version   Visualization version   GIF version

Theorem animorrl 976
Description: Conjunction implies disjunction with one common formula (4/4). (Contributed by BJ, 4-Oct-2019.)
Assertion
Ref Expression
animorrl ((𝜑𝜓) → (𝜓𝜒))

Proof of Theorem animorrl
StepHypRef Expression
1 simpr 485 . 2 ((𝜑𝜓) → 𝜓)
21orcd 871 1 ((𝜑𝜓) → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844
This theorem is referenced by:  nelpr1  4590  ccatsymb  13931  sadadd2lem2  15794  mreexexlem4d  16913  drngnidl  19937  ppttop  21550  wilthlem2  25579  bcmono  25786  addsqnreup  25952  mideulem2  26453  linds2eq  30874  fnwe2lem3  39536  disjxp1  41215  nnfoctbdjlem  42622
  Copyright terms: Public domain W3C validator