Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > animorrl | Structured version Visualization version GIF version |
Description: Conjunction implies disjunction with one common formula (4/4). (Contributed by BJ, 4-Oct-2019.) |
Ref | Expression |
---|---|
animorrl | ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 489 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
2 | 1 | orcd 871 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 ∨ wo 845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 |
This theorem is referenced by: nelpr1 4551 ccatsymb 13976 sadadd2lem2 15842 mreexexlem4d 16969 drngnidl 20063 ppttop 21700 wilthlem2 25746 bcmono 25953 addsqnreup 26119 mideulem2 26620 linds2eq 31089 fnwe2lem3 40362 disjxp1 42069 nnfoctbdjlem 43453 |
Copyright terms: Public domain | W3C validator |