MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  animorrl Structured version   Visualization version   GIF version

Theorem animorrl 982
Description: Conjunction implies disjunction with one common formula (4/4). (Contributed by BJ, 4-Oct-2019.)
Assertion
Ref Expression
animorrl ((𝜑𝜓) → (𝜓𝜒))

Proof of Theorem animorrl
StepHypRef Expression
1 simpr 484 . 2 ((𝜑𝜓) → 𝜓)
21orcd 873 1 ((𝜑𝜓) → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848
This theorem is referenced by:  nelpr1  4621  zzlesq  14178  ccatsymb  14554  sadadd2lem2  16427  mreexexlem4d  17615  drngnidl  21160  ppttop  22901  wilthlem2  26986  bcmono  27195  addsqnreup  27361  mideulem2  28668  linds2eq  33359  weiunso  36461  grpods  42189  fnwe2lem3  43048  fzuntgd  43454  disjxp1  45070  nnfoctbdjlem  46460
  Copyright terms: Public domain W3C validator