MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  animorrl Structured version   Visualization version   GIF version

Theorem animorrl 982
Description: Conjunction implies disjunction with one common formula (4/4). (Contributed by BJ, 4-Oct-2019.)
Assertion
Ref Expression
animorrl ((𝜑𝜓) → (𝜓𝜒))

Proof of Theorem animorrl
StepHypRef Expression
1 simpr 484 . 2 ((𝜑𝜓) → 𝜓)
21orcd 873 1 ((𝜑𝜓) → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848
This theorem is referenced by:  nelpr1  4607  zzlesq  14110  ccatsymb  14487  sadadd2lem2  16358  mreexexlem4d  17550  drngnidl  21178  ppttop  22920  wilthlem2  27004  bcmono  27213  addsqnreup  27379  mideulem2  28710  linds2eq  33341  weiunso  36499  grpods  42226  fnwe2lem3  43084  fzuntgd  43490  disjxp1  45105  nnfoctbdjlem  46492
  Copyright terms: Public domain W3C validator