MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  animorrl Structured version   Visualization version   GIF version

Theorem animorrl 982
Description: Conjunction implies disjunction with one common formula (4/4). (Contributed by BJ, 4-Oct-2019.)
Assertion
Ref Expression
animorrl ((𝜑𝜓) → (𝜓𝜒))

Proof of Theorem animorrl
StepHypRef Expression
1 simpr 484 . 2 ((𝜑𝜓) → 𝜓)
21orcd 873 1 ((𝜑𝜓) → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848
This theorem is referenced by:  nelpr1  4630  zzlesq  14222  ccatsymb  14598  sadadd2lem2  16467  mreexexlem4d  17657  drngnidl  21202  ppttop  22943  wilthlem2  27029  bcmono  27238  addsqnreup  27404  mideulem2  28659  linds2eq  33342  weiunso  36430  grpods  42153  fnwe2lem3  43023  fzuntgd  43429  disjxp1  45041  nnfoctbdjlem  46432
  Copyright terms: Public domain W3C validator