MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  animorrl Structured version   Visualization version   GIF version

Theorem animorrl 982
Description: Conjunction implies disjunction with one common formula (4/4). (Contributed by BJ, 4-Oct-2019.)
Assertion
Ref Expression
animorrl ((𝜑𝜓) → (𝜓𝜒))

Proof of Theorem animorrl
StepHypRef Expression
1 simpr 484 . 2 ((𝜑𝜓) → 𝜓)
21orcd 873 1 ((𝜑𝜓) → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848
This theorem is referenced by:  nelpr1  4618  zzlesq  14171  ccatsymb  14547  sadadd2lem2  16420  mreexexlem4d  17608  drngnidl  21153  ppttop  22894  wilthlem2  26979  bcmono  27188  addsqnreup  27354  mideulem2  28661  linds2eq  33352  weiunso  36454  grpods  42182  fnwe2lem3  43041  fzuntgd  43447  disjxp1  45063  nnfoctbdjlem  46453
  Copyright terms: Public domain W3C validator