| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > animorrl | Structured version Visualization version GIF version | ||
| Description: Conjunction implies disjunction with one common formula (4/4). (Contributed by BJ, 4-Oct-2019.) |
| Ref | Expression |
|---|---|
| animorrl | ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∨ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 2 | 1 | orcd 873 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∨ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: nelpr1 4621 zzlesq 14178 ccatsymb 14554 sadadd2lem2 16427 mreexexlem4d 17615 drngnidl 21160 ppttop 22901 wilthlem2 26986 bcmono 27195 addsqnreup 27361 mideulem2 28668 linds2eq 33359 weiunso 36461 grpods 42189 fnwe2lem3 43048 fzuntgd 43454 disjxp1 45070 nnfoctbdjlem 46460 |
| Copyright terms: Public domain | W3C validator |