Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  animorrl Structured version   Visualization version   GIF version

Theorem animorrl 979
 Description: Conjunction implies disjunction with one common formula (4/4). (Contributed by BJ, 4-Oct-2019.)
Assertion
Ref Expression
animorrl ((𝜑𝜓) → (𝜓𝜒))

Proof of Theorem animorrl
StepHypRef Expression
1 simpr 489 . 2 ((𝜑𝜓) → 𝜓)
21orcd 871 1 ((𝜑𝜓) → (𝜓𝜒))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 400   ∨ wo 845 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846 This theorem is referenced by:  nelpr1  4551  ccatsymb  13976  sadadd2lem2  15842  mreexexlem4d  16969  drngnidl  20063  ppttop  21700  wilthlem2  25746  bcmono  25953  addsqnreup  26119  mideulem2  26620  linds2eq  31089  fnwe2lem3  40362  disjxp1  42069  nnfoctbdjlem  43453
 Copyright terms: Public domain W3C validator