![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > animorrl | Structured version Visualization version GIF version |
Description: Conjunction implies disjunction with one common formula (4/4). (Contributed by BJ, 4-Oct-2019.) |
Ref | Expression |
---|---|
animorrl | ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
2 | 1 | orcd 871 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 |
This theorem is referenced by: nelpr1 4656 zzlesq 14172 ccatsymb 14534 sadadd2lem2 16393 mreexexlem4d 17593 drngnidl 20860 ppttop 22517 wilthlem2 26580 bcmono 26787 addsqnreup 26953 mideulem2 28023 linds2eq 32542 fnwe2lem3 41876 fzuntgd 42291 disjxp1 43838 nnfoctbdjlem 45250 |
Copyright terms: Public domain | W3C validator |