| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > animorrl | Structured version Visualization version GIF version | ||
| Description: Conjunction implies disjunction with one common formula (4/4). (Contributed by BJ, 4-Oct-2019.) |
| Ref | Expression |
|---|---|
| animorrl | ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∨ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 2 | 1 | orcd 873 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∨ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: nelpr1 4608 zzlesq 14131 ccatsymb 14507 sadadd2lem2 16379 mreexexlem4d 17571 drngnidl 21168 ppttop 22910 wilthlem2 26995 bcmono 27204 addsqnreup 27370 mideulem2 28697 linds2eq 33328 weiunso 36439 grpods 42167 fnwe2lem3 43025 fzuntgd 43431 disjxp1 45047 nnfoctbdjlem 46437 |
| Copyright terms: Public domain | W3C validator |