| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > animorrl | Structured version Visualization version GIF version | ||
| Description: Conjunction implies disjunction with one common formula (4/4). (Contributed by BJ, 4-Oct-2019.) |
| Ref | Expression |
|---|---|
| animorrl | ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∨ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 2 | 1 | orcd 873 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∨ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: nelpr1 4606 zzlesq 14115 ccatsymb 14492 sadadd2lem2 16363 mreexexlem4d 17555 drngnidl 21182 ppttop 22923 wilthlem2 27007 bcmono 27216 addsqnreup 27382 mideulem2 28713 linds2eq 33353 weiunso 36531 grpods 42307 fnwe2lem3 43169 fzuntgd 43575 disjxp1 45190 nnfoctbdjlem 46577 chnerlem2 47005 |
| Copyright terms: Public domain | W3C validator |