MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  animorrl Structured version   Visualization version   GIF version

Theorem animorrl 982
Description: Conjunction implies disjunction with one common formula (4/4). (Contributed by BJ, 4-Oct-2019.)
Assertion
Ref Expression
animorrl ((𝜑𝜓) → (𝜓𝜒))

Proof of Theorem animorrl
StepHypRef Expression
1 simpr 484 . 2 ((𝜑𝜓) → 𝜓)
21orcd 873 1 ((𝜑𝜓) → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848
This theorem is referenced by:  nelpr1  4659  zzlesq  14242  ccatsymb  14617  sadadd2lem2  16484  mreexexlem4d  17692  drngnidl  21271  ppttop  23030  wilthlem2  27127  bcmono  27336  addsqnreup  27502  mideulem2  28757  linds2eq  33389  weiunso  36449  grpods  42176  fnwe2lem3  43041  fzuntgd  43448  disjxp1  45009  nnfoctbdjlem  46411
  Copyright terms: Public domain W3C validator