![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > animorrl | Structured version Visualization version GIF version |
Description: Conjunction implies disjunction with one common formula (4/4). (Contributed by BJ, 4-Oct-2019.) |
Ref | Expression |
---|---|
animorrl | ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
2 | 1 | orcd 871 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 |
This theorem is referenced by: nelpr1 4656 zzlesq 14169 ccatsymb 14531 sadadd2lem2 16390 mreexexlem4d 17590 drngnidl 20853 ppttop 22509 wilthlem2 26570 bcmono 26777 addsqnreup 26943 mideulem2 27982 linds2eq 32492 fnwe2lem3 41784 fzuntgd 42199 disjxp1 43746 nnfoctbdjlem 45161 |
Copyright terms: Public domain | W3C validator |