![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > animorrl | Structured version Visualization version GIF version |
Description: Conjunction implies disjunction with one common formula (4/4). (Contributed by BJ, 4-Oct-2019.) |
Ref | Expression |
---|---|
animorrl | ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
2 | 1 | orcd 873 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
This theorem is referenced by: nelpr1 4659 zzlesq 14242 ccatsymb 14617 sadadd2lem2 16484 mreexexlem4d 17692 drngnidl 21271 ppttop 23030 wilthlem2 27127 bcmono 27336 addsqnreup 27502 mideulem2 28757 linds2eq 33389 weiunso 36449 grpods 42176 fnwe2lem3 43041 fzuntgd 43448 disjxp1 45009 nnfoctbdjlem 46411 |
Copyright terms: Public domain | W3C validator |