MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  animorrl Structured version   Visualization version   GIF version

Theorem animorrl 982
Description: Conjunction implies disjunction with one common formula (4/4). (Contributed by BJ, 4-Oct-2019.)
Assertion
Ref Expression
animorrl ((𝜑𝜓) → (𝜓𝜒))

Proof of Theorem animorrl
StepHypRef Expression
1 simpr 484 . 2 ((𝜑𝜓) → 𝜓)
21orcd 873 1 ((𝜑𝜓) → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848
This theorem is referenced by:  nelpr1  4608  zzlesq  14131  ccatsymb  14507  sadadd2lem2  16379  mreexexlem4d  17571  drngnidl  21168  ppttop  22910  wilthlem2  26995  bcmono  27204  addsqnreup  27370  mideulem2  28697  linds2eq  33328  weiunso  36439  grpods  42167  fnwe2lem3  43025  fzuntgd  43431  disjxp1  45047  nnfoctbdjlem  46437
  Copyright terms: Public domain W3C validator