| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > animorrl | Structured version Visualization version GIF version | ||
| Description: Conjunction implies disjunction with one common formula (4/4). (Contributed by BJ, 4-Oct-2019.) |
| Ref | Expression |
|---|---|
| animorrl | ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∨ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 2 | 1 | orcd 873 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∨ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: nelpr1 4635 zzlesq 14229 ccatsymb 14605 sadadd2lem2 16474 mreexexlem4d 17664 drngnidl 21209 ppttop 22950 wilthlem2 27036 bcmono 27245 addsqnreup 27411 mideulem2 28718 linds2eq 33401 weiunso 36489 grpods 42212 fnwe2lem3 43043 fzuntgd 43449 disjxp1 45060 nnfoctbdjlem 46451 |
| Copyright terms: Public domain | W3C validator |