| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > animorrl | Structured version Visualization version GIF version | ||
| Description: Conjunction implies disjunction with one common formula (4/4). (Contributed by BJ, 4-Oct-2019.) |
| Ref | Expression |
|---|---|
| animorrl | ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∨ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 2 | 1 | orcd 873 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∨ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: nelpr1 4618 zzlesq 14171 ccatsymb 14547 sadadd2lem2 16420 mreexexlem4d 17608 drngnidl 21153 ppttop 22894 wilthlem2 26979 bcmono 27188 addsqnreup 27354 mideulem2 28661 linds2eq 33352 weiunso 36454 grpods 42182 fnwe2lem3 43041 fzuntgd 43447 disjxp1 45063 nnfoctbdjlem 46453 |
| Copyright terms: Public domain | W3C validator |