![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > animorrl | Structured version Visualization version GIF version |
Description: Conjunction implies disjunction with one common formula (4/4). (Contributed by BJ, 4-Oct-2019.) |
Ref | Expression |
---|---|
animorrl | ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
2 | 1 | orcd 872 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 |
This theorem is referenced by: nelpr1 4676 zzlesq 14255 ccatsymb 14630 sadadd2lem2 16496 mreexexlem4d 17705 drngnidl 21276 ppttop 23035 wilthlem2 27130 bcmono 27339 addsqnreup 27505 mideulem2 28760 linds2eq 33374 weiunso 36432 grpods 42151 fnwe2lem3 43009 fzuntgd 43420 disjxp1 44971 nnfoctbdjlem 46376 |
Copyright terms: Public domain | W3C validator |