MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  animorrl Structured version   Visualization version   GIF version

Theorem animorrl 979
Description: Conjunction implies disjunction with one common formula (4/4). (Contributed by BJ, 4-Oct-2019.)
Assertion
Ref Expression
animorrl ((𝜑𝜓) → (𝜓𝜒))

Proof of Theorem animorrl
StepHypRef Expression
1 simpr 484 . 2 ((𝜑𝜓) → 𝜓)
21orcd 872 1 ((𝜑𝜓) → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847
This theorem is referenced by:  nelpr1  4657  zzlesq  14201  ccatsymb  14564  sadadd2lem2  16424  mreexexlem4d  17626  drngnidl  21137  ppttop  22909  wilthlem2  27000  bcmono  27209  addsqnreup  27375  mideulem2  28537  linds2eq  33096  fnwe2lem3  42476  fzuntgd  42888  disjxp1  44433  nnfoctbdjlem  45843
  Copyright terms: Public domain W3C validator