Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cyc3genpmlem Structured version   Visualization version   GIF version

Theorem cyc3genpmlem 30853
 Description: Lemma for cyc3genpm 30854. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Hypotheses
Ref Expression
cyc3genpm.t 𝐶 = (𝑀 “ (♯ “ {3}))
cyc3genpm.a 𝐴 = (pmEven‘𝐷)
cyc3genpm.s 𝑆 = (SymGrp‘𝐷)
cyc3genpm.n 𝑁 = (♯‘𝐷)
cyc3genpm.m 𝑀 = (toCyc‘𝐷)
cyc3genpmlem.t · = (+g𝑆)
cyc3genpmlem.i (𝜑𝐼𝐷)
cyc3genpmlem.j (𝜑𝐽𝐷)
cyc3genpmlem.k (𝜑𝐾𝐷)
cyc3genpmlem.l (𝜑𝐿𝐷)
cyc3genpmlem.e (𝜑𝐸 = (𝑀‘⟨“𝐼𝐽”⟩))
cyc3genpmlem.f (𝜑𝐹 = (𝑀‘⟨“𝐾𝐿”⟩))
cyc3genpmlem.d (𝜑𝐷𝑉)
cyc3genpmlem.1 (𝜑𝐼𝐽)
cyc3genpmlem.2 (𝜑𝐾𝐿)
Assertion
Ref Expression
cyc3genpmlem (𝜑 → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐))
Distinct variable groups:   · ,𝑐   𝐶,𝑐   𝐷,𝑐   𝐸,𝑐   𝐹,𝑐   𝐼,𝑐   𝐽,𝑐   𝐾,𝑐   𝐿,𝑐   𝑀,𝑐   𝑆,𝑐   𝜑,𝑐
Allowed substitution hints:   𝐴(𝑐)   𝑁(𝑐)   𝑉(𝑐)

Proof of Theorem cyc3genpmlem
StepHypRef Expression
1 wrd0 13885 . . . . 5 ∅ ∈ Word 𝐶
21a1i 11 . . . 4 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ∅ ∈ Word 𝐶)
3 simpr 488 . . . . . 6 ((((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ∅) → 𝑐 = ∅)
43oveq2d 7152 . . . . 5 ((((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ∅) → (𝑆 Σg 𝑐) = (𝑆 Σg ∅))
54eqeq2d 2809 . . . 4 ((((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ∅) → ((𝐸 · 𝐹) = (𝑆 Σg 𝑐) ↔ (𝐸 · 𝐹) = (𝑆 Σg ∅)))
6 cyc3genpmlem.e . . . . . . . . 9 (𝜑𝐸 = (𝑀‘⟨“𝐼𝐽”⟩))
7 cyc3genpm.m . . . . . . . . . 10 𝑀 = (toCyc‘𝐷)
8 cyc3genpmlem.d . . . . . . . . . 10 (𝜑𝐷𝑉)
9 cyc3genpmlem.i . . . . . . . . . 10 (𝜑𝐼𝐷)
10 cyc3genpmlem.j . . . . . . . . . 10 (𝜑𝐽𝐷)
11 cyc3genpmlem.1 . . . . . . . . . 10 (𝜑𝐼𝐽)
12 cyc3genpm.s . . . . . . . . . 10 𝑆 = (SymGrp‘𝐷)
137, 8, 9, 10, 11, 12cycpm2cl 30822 . . . . . . . . 9 (𝜑 → (𝑀‘⟨“𝐼𝐽”⟩) ∈ (Base‘𝑆))
146, 13eqeltrd 2890 . . . . . . . 8 (𝜑𝐸 ∈ (Base‘𝑆))
15 cyc3genpmlem.f . . . . . . . . 9 (𝜑𝐹 = (𝑀‘⟨“𝐾𝐿”⟩))
16 cyc3genpmlem.k . . . . . . . . . 10 (𝜑𝐾𝐷)
17 cyc3genpmlem.l . . . . . . . . . 10 (𝜑𝐿𝐷)
18 cyc3genpmlem.2 . . . . . . . . . 10 (𝜑𝐾𝐿)
197, 8, 16, 17, 18, 12cycpm2cl 30822 . . . . . . . . 9 (𝜑 → (𝑀‘⟨“𝐾𝐿”⟩) ∈ (Base‘𝑆))
2015, 19eqeltrd 2890 . . . . . . . 8 (𝜑𝐹 ∈ (Base‘𝑆))
21 eqid 2798 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
22 cyc3genpmlem.t . . . . . . . . 9 · = (+g𝑆)
2312, 21, 22symgov 18508 . . . . . . . 8 ((𝐸 ∈ (Base‘𝑆) ∧ 𝐹 ∈ (Base‘𝑆)) → (𝐸 · 𝐹) = (𝐸𝐹))
2414, 20, 23syl2anc 587 . . . . . . 7 (𝜑 → (𝐸 · 𝐹) = (𝐸𝐹))
2524ad2antrr 725 . . . . . 6 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = (𝐸𝐹))
266ad2antrr 725 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐸 = (𝑀‘⟨“𝐼𝐽”⟩))
27 eqid 2798 . . . . . . . . . 10 (pmTrsp‘𝐷) = (pmTrsp‘𝐷)
287, 8, 9, 10, 11, 27cycpm2tr 30821 . . . . . . . . 9 (𝜑 → (𝑀‘⟨“𝐼𝐽”⟩) = ((pmTrsp‘𝐷)‘{𝐼, 𝐽}))
2928ad2antrr 725 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐼𝐽”⟩) = ((pmTrsp‘𝐷)‘{𝐼, 𝐽}))
3026, 29eqtrd 2833 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐸 = ((pmTrsp‘𝐷)‘{𝐼, 𝐽}))
317, 8, 16, 17, 18, 27cycpm2tr 30821 . . . . . . . . 9 (𝜑 → (𝑀‘⟨“𝐾𝐿”⟩) = ((pmTrsp‘𝐷)‘{𝐾, 𝐿}))
3231ad2antrr 725 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐾𝐿”⟩) = ((pmTrsp‘𝐷)‘{𝐾, 𝐿}))
3315ad2antrr 725 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐹 = (𝑀‘⟨“𝐾𝐿”⟩))
349ad2antrr 725 . . . . . . . . . 10 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼𝐷)
3510ad2antrr 725 . . . . . . . . . 10 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽𝐷)
3611ad2antrr 725 . . . . . . . . . 10 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼𝐽)
37 simplr 768 . . . . . . . . . . 11 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼 ∈ {𝐾, 𝐿})
38 simpr 488 . . . . . . . . . . 11 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽 ∈ {𝐾, 𝐿})
3937, 38prssd 4715 . . . . . . . . . 10 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐼, 𝐽} ⊆ {𝐾, 𝐿})
40 ssprsseq 4718 . . . . . . . . . . 11 ((𝐼𝐷𝐽𝐷𝐼𝐽) → ({𝐼, 𝐽} ⊆ {𝐾, 𝐿} ↔ {𝐼, 𝐽} = {𝐾, 𝐿}))
4140biimpa 480 . . . . . . . . . 10 (((𝐼𝐷𝐽𝐷𝐼𝐽) ∧ {𝐼, 𝐽} ⊆ {𝐾, 𝐿}) → {𝐼, 𝐽} = {𝐾, 𝐿})
4234, 35, 36, 39, 41syl31anc 1370 . . . . . . . . 9 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐼, 𝐽} = {𝐾, 𝐿})
4342fveq2d 6650 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐼, 𝐽}) = ((pmTrsp‘𝐷)‘{𝐾, 𝐿}))
4432, 33, 433eqtr4d 2843 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐹 = ((pmTrsp‘𝐷)‘{𝐼, 𝐽}))
4530, 44coeq12d 5700 . . . . . 6 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸𝐹) = (((pmTrsp‘𝐷)‘{𝐼, 𝐽}) ∘ ((pmTrsp‘𝐷)‘{𝐼, 𝐽})))
468ad2antrr 725 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐷𝑉)
4734, 35prssd 4715 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐼, 𝐽} ⊆ 𝐷)
48 pr2nelem 9418 . . . . . . . . 9 ((𝐼𝐷𝐽𝐷𝐼𝐽) → {𝐼, 𝐽} ≈ 2o)
4934, 35, 36, 48syl3anc 1368 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐼, 𝐽} ≈ 2o)
50 eqid 2798 . . . . . . . . 9 ran (pmTrsp‘𝐷) = ran (pmTrsp‘𝐷)
5127, 50pmtrrn 18581 . . . . . . . 8 ((𝐷𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → ((pmTrsp‘𝐷)‘{𝐼, 𝐽}) ∈ ran (pmTrsp‘𝐷))
5246, 47, 49, 51syl3anc 1368 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐼, 𝐽}) ∈ ran (pmTrsp‘𝐷))
5327, 50pmtrfinv 18585 . . . . . . 7 (((pmTrsp‘𝐷)‘{𝐼, 𝐽}) ∈ ran (pmTrsp‘𝐷) → (((pmTrsp‘𝐷)‘{𝐼, 𝐽}) ∘ ((pmTrsp‘𝐷)‘{𝐼, 𝐽})) = ( I ↾ 𝐷))
5452, 53syl 17 . . . . . 6 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (((pmTrsp‘𝐷)‘{𝐼, 𝐽}) ∘ ((pmTrsp‘𝐷)‘{𝐼, 𝐽})) = ( I ↾ 𝐷))
5525, 45, 543eqtrd 2837 . . . . 5 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = ( I ↾ 𝐷))
5612symgid 18525 . . . . . . 7 (𝐷𝑉 → ( I ↾ 𝐷) = (0g𝑆))
5746, 56syl 17 . . . . . 6 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ( I ↾ 𝐷) = (0g𝑆))
58 eqid 2798 . . . . . . 7 (0g𝑆) = (0g𝑆)
5958gsum0 17889 . . . . . 6 (𝑆 Σg ∅) = (0g𝑆)
6057, 59eqtr4di 2851 . . . . 5 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ( I ↾ 𝐷) = (𝑆 Σg ∅))
6155, 60eqtrd 2833 . . . 4 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = (𝑆 Σg ∅))
622, 5, 61rspcedvd 3574 . . 3 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐))
638ad2antrr 725 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐷𝑉)
649ad2antrr 725 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼𝐷)
6516, 17prssd 4715 . . . . . . . . 9 (𝜑 → {𝐾, 𝐿} ⊆ 𝐷)
6665ad2antrr 725 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → {𝐾, 𝐿} ⊆ 𝐷)
67 simplr 768 . . . . . . . . 9 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼 ∈ {𝐾, 𝐿})
68 pr2nelem 9418 . . . . . . . . . . 11 ((𝐾𝐷𝐿𝐷𝐾𝐿) → {𝐾, 𝐿} ≈ 2o)
6916, 17, 18, 68syl3anc 1368 . . . . . . . . . 10 (𝜑 → {𝐾, 𝐿} ≈ 2o)
7069ad2antrr 725 . . . . . . . . 9 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → {𝐾, 𝐿} ≈ 2o)
71 unidifsnel 30317 . . . . . . . . 9 ((𝐼 ∈ {𝐾, 𝐿} ∧ {𝐾, 𝐿} ≈ 2o) → ({𝐾, 𝐿} ∖ {𝐼}) ∈ {𝐾, 𝐿})
7267, 70, 71syl2anc 587 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ({𝐾, 𝐿} ∖ {𝐼}) ∈ {𝐾, 𝐿})
7366, 72sseldd 3916 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ({𝐾, 𝐿} ∖ {𝐼}) ∈ 𝐷)
7410ad2antrr 725 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽𝐷)
75 unidifsnne 30318 . . . . . . . . 9 ((𝐼 ∈ {𝐾, 𝐿} ∧ {𝐾, 𝐿} ≈ 2o) → ({𝐾, 𝐿} ∖ {𝐼}) ≠ 𝐼)
7667, 70, 75syl2anc 587 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ({𝐾, 𝐿} ∖ {𝐼}) ≠ 𝐼)
7776necomd 3042 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼 ({𝐾, 𝐿} ∖ {𝐼}))
78 nelne2 3084 . . . . . . . 8 (( ({𝐾, 𝐿} ∖ {𝐼}) ∈ {𝐾, 𝐿} ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ({𝐾, 𝐿} ∖ {𝐼}) ≠ 𝐽)
7972, 78sylancom 591 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ({𝐾, 𝐿} ∖ {𝐼}) ≠ 𝐽)
8011necomd 3042 . . . . . . . 8 (𝜑𝐽𝐼)
8180ad2antrr 725 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽𝐼)
827, 12, 63, 64, 73, 74, 77, 79, 81cycpm3cl2 30838 . . . . . 6 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩) ∈ (𝑀 “ (♯ “ {3})))
83 cyc3genpm.t . . . . . 6 𝐶 = (𝑀 “ (♯ “ {3}))
8482, 83eleqtrrdi 2901 . . . . 5 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩) ∈ 𝐶)
8584s1cld 13951 . . . 4 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ⟨“(𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩)”⟩ ∈ Word 𝐶)
86 simpr 488 . . . . . 6 ((((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ⟨“(𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩)”⟩) → 𝑐 = ⟨“(𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩)”⟩)
8786oveq2d 7152 . . . . 5 ((((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ⟨“(𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩)”⟩) → (𝑆 Σg 𝑐) = (𝑆 Σg ⟨“(𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩)”⟩))
8887eqeq2d 2809 . . . 4 ((((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ⟨“(𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩)”⟩) → ((𝐸 · 𝐹) = (𝑆 Σg 𝑐) ↔ (𝐸 · 𝐹) = (𝑆 Σg ⟨“(𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩)”⟩)))
897, 12, 63, 64, 73, 74, 77, 79, 81, 22cyc3co2 30842 . . . . 5 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩) = ((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})”⟩)))
907, 12, 63, 64, 73, 74, 77, 79, 81cycpm3cl 30837 . . . . . 6 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩) ∈ (Base‘𝑆))
9121gsumws1 17997 . . . . . 6 ((𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩) ∈ (Base‘𝑆) → (𝑆 Σg ⟨“(𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩)”⟩) = (𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩))
9290, 91syl 17 . . . . 5 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑆 Σg ⟨“(𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩)”⟩) = (𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩))
936ad2antrr 725 . . . . . 6 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐸 = (𝑀‘⟨“𝐼𝐽”⟩))
94 en2eleq 9422 . . . . . . . . 9 ((𝐼 ∈ {𝐾, 𝐿} ∧ {𝐾, 𝐿} ≈ 2o) → {𝐾, 𝐿} = {𝐼, ({𝐾, 𝐿} ∖ {𝐼})})
9567, 70, 94syl2anc 587 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → {𝐾, 𝐿} = {𝐼, ({𝐾, 𝐿} ∖ {𝐼})})
9695fveq2d 6650 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐾, 𝐿}) = ((pmTrsp‘𝐷)‘{𝐼, ({𝐾, 𝐿} ∖ {𝐼})}))
9715, 31eqtrd 2833 . . . . . . . 8 (𝜑𝐹 = ((pmTrsp‘𝐷)‘{𝐾, 𝐿}))
9897ad2antrr 725 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐹 = ((pmTrsp‘𝐷)‘{𝐾, 𝐿}))
997, 63, 64, 73, 77, 27cycpm2tr 30821 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})”⟩) = ((pmTrsp‘𝐷)‘{𝐼, ({𝐾, 𝐿} ∖ {𝐼})}))
10096, 98, 993eqtr4d 2843 . . . . . 6 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐹 = (𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})”⟩))
10193, 100oveq12d 7154 . . . . 5 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = ((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})”⟩)))
10289, 92, 1013eqtr4rd 2844 . . . 4 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = (𝑆 Σg ⟨“(𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩)”⟩))
10385, 88, 102rspcedvd 3574 . . 3 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐))
10462, 103pm2.61dan 812 . 2 ((𝜑𝐼 ∈ {𝐾, 𝐿}) → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐))
1058ad2antrr 725 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐷𝑉)
10610ad2antrr 725 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽𝐷)
10765ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐾, 𝐿} ⊆ 𝐷)
108 simpr 488 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽 ∈ {𝐾, 𝐿})
10969ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐾, 𝐿} ≈ 2o)
110 unidifsnel 30317 . . . . . . . . 9 ((𝐽 ∈ {𝐾, 𝐿} ∧ {𝐾, 𝐿} ≈ 2o) → ({𝐾, 𝐿} ∖ {𝐽}) ∈ {𝐾, 𝐿})
111108, 109, 110syl2anc 587 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ({𝐾, 𝐿} ∖ {𝐽}) ∈ {𝐾, 𝐿})
112107, 111sseldd 3916 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ({𝐾, 𝐿} ∖ {𝐽}) ∈ 𝐷)
1139ad2antrr 725 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼𝐷)
114 unidifsnne 30318 . . . . . . . . 9 ((𝐽 ∈ {𝐾, 𝐿} ∧ {𝐾, 𝐿} ≈ 2o) → ({𝐾, 𝐿} ∖ {𝐽}) ≠ 𝐽)
115108, 109, 114syl2anc 587 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ({𝐾, 𝐿} ∖ {𝐽}) ≠ 𝐽)
116115necomd 3042 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽 ({𝐾, 𝐿} ∖ {𝐽}))
117 simplr 768 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ¬ 𝐼 ∈ {𝐾, 𝐿})
118 nelne2 3084 . . . . . . . 8 (( ({𝐾, 𝐿} ∖ {𝐽}) ∈ {𝐾, 𝐿} ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) → ({𝐾, 𝐿} ∖ {𝐽}) ≠ 𝐼)
119111, 117, 118syl2anc 587 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ({𝐾, 𝐿} ∖ {𝐽}) ≠ 𝐼)
12011ad2antrr 725 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼𝐽)
1217, 12, 105, 106, 112, 113, 116, 119, 120cycpm3cl2 30838 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩) ∈ (𝑀 “ (♯ “ {3})))
122121, 83eleqtrrdi 2901 . . . . 5 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩) ∈ 𝐶)
123122s1cld 13951 . . . 4 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ⟨“(𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩)”⟩ ∈ Word 𝐶)
124 simpr 488 . . . . . 6 ((((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ⟨“(𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩)”⟩) → 𝑐 = ⟨“(𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩)”⟩)
125124oveq2d 7152 . . . . 5 ((((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ⟨“(𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩)”⟩) → (𝑆 Σg 𝑐) = (𝑆 Σg ⟨“(𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩)”⟩))
126125eqeq2d 2809 . . . 4 ((((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ⟨“(𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩)”⟩) → ((𝐸 · 𝐹) = (𝑆 Σg 𝑐) ↔ (𝐸 · 𝐹) = (𝑆 Σg ⟨“(𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩)”⟩)))
1277, 12, 105, 106, 112, 113, 116, 119, 120, 22cyc3co2 30842 . . . . 5 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩) = ((𝑀‘⟨“𝐽𝐼”⟩) · (𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})”⟩)))
1287, 12, 105, 106, 112, 113, 116, 119, 120cycpm3cl 30837 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩) ∈ (Base‘𝑆))
12921gsumws1 17997 . . . . . 6 ((𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩) ∈ (Base‘𝑆) → (𝑆 Σg ⟨“(𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩)”⟩) = (𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩))
130128, 129syl 17 . . . . 5 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑆 Σg ⟨“(𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩)”⟩) = (𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩))
131 prcom 4628 . . . . . . . . . 10 {𝐼, 𝐽} = {𝐽, 𝐼}
132131fveq2i 6649 . . . . . . . . 9 ((pmTrsp‘𝐷)‘{𝐼, 𝐽}) = ((pmTrsp‘𝐷)‘{𝐽, 𝐼})
1337, 8, 10, 9, 80, 27cycpm2tr 30821 . . . . . . . . 9 (𝜑 → (𝑀‘⟨“𝐽𝐼”⟩) = ((pmTrsp‘𝐷)‘{𝐽, 𝐼}))
134132, 28, 1333eqtr4a 2859 . . . . . . . 8 (𝜑 → (𝑀‘⟨“𝐼𝐽”⟩) = (𝑀‘⟨“𝐽𝐼”⟩))
1356, 134eqtrd 2833 . . . . . . 7 (𝜑𝐸 = (𝑀‘⟨“𝐽𝐼”⟩))
136135ad2antrr 725 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐸 = (𝑀‘⟨“𝐽𝐼”⟩))
137 en2eleq 9422 . . . . . . . . 9 ((𝐽 ∈ {𝐾, 𝐿} ∧ {𝐾, 𝐿} ≈ 2o) → {𝐾, 𝐿} = {𝐽, ({𝐾, 𝐿} ∖ {𝐽})})
138108, 109, 137syl2anc 587 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐾, 𝐿} = {𝐽, ({𝐾, 𝐿} ∖ {𝐽})})
139138fveq2d 6650 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐾, 𝐿}) = ((pmTrsp‘𝐷)‘{𝐽, ({𝐾, 𝐿} ∖ {𝐽})}))
14097ad2antrr 725 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐹 = ((pmTrsp‘𝐷)‘{𝐾, 𝐿}))
1417, 105, 106, 112, 116, 27cycpm2tr 30821 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})”⟩) = ((pmTrsp‘𝐷)‘{𝐽, ({𝐾, 𝐿} ∖ {𝐽})}))
142139, 140, 1413eqtr4d 2843 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐹 = (𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})”⟩))
143136, 142oveq12d 7154 . . . . 5 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = ((𝑀‘⟨“𝐽𝐼”⟩) · (𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})”⟩)))
144127, 130, 1433eqtr4rd 2844 . . . 4 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = (𝑆 Σg ⟨“(𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩)”⟩))
145123, 126, 144rspcedvd 3574 . . 3 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐))
1468ad2antrr 725 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐷𝑉)
14710ad2antrr 725 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽𝐷)
14816ad2antrr 725 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐾𝐷)
1499ad2antrr 725 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼𝐷)
150 simpr 488 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ¬ 𝐽 ∈ {𝐾, 𝐿})
151147, 150nelpr1 4553 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽𝐾)
152 prid1g 4656 . . . . . . . . . 10 (𝐾𝐷𝐾 ∈ {𝐾, 𝐿})
15316, 152syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ {𝐾, 𝐿})
154153ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐾 ∈ {𝐾, 𝐿})
155 simplr 768 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ¬ 𝐼 ∈ {𝐾, 𝐿})
156 nelne2 3084 . . . . . . . 8 ((𝐾 ∈ {𝐾, 𝐿} ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) → 𝐾𝐼)
157154, 155, 156syl2anc 587 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐾𝐼)
15811ad2antrr 725 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼𝐽)
1597, 12, 146, 147, 148, 149, 151, 157, 158cycpm3cl2 30838 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽𝐾𝐼”⟩) ∈ (𝑀 “ (♯ “ {3})))
160159, 83eleqtrrdi 2901 . . . . 5 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽𝐾𝐼”⟩) ∈ 𝐶)
16117ad2antrr 725 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐿𝐷)
16218ad2antrr 725 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐾𝐿)
163 prid2g 4657 . . . . . . . . 9 (𝐿𝐷𝐿 ∈ {𝐾, 𝐿})
164161, 163syl 17 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐿 ∈ {𝐾, 𝐿})
165 nelne2 3084 . . . . . . . 8 ((𝐿 ∈ {𝐾, 𝐿} ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐿𝐽)
166164, 165sylancom 591 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐿𝐽)
1677, 12, 146, 148, 161, 147, 162, 166, 151cycpm3cl2 30838 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐾𝐿𝐽”⟩) ∈ (𝑀 “ (♯ “ {3})))
168167, 83eleqtrrdi 2901 . . . . 5 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐾𝐿𝐽”⟩) ∈ 𝐶)
169160, 168s2cld 14227 . . . 4 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ⟨“(𝑀‘⟨“𝐽𝐾𝐼”⟩)(𝑀‘⟨“𝐾𝐿𝐽”⟩)”⟩ ∈ Word 𝐶)
170 simpr 488 . . . . . 6 ((((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ⟨“(𝑀‘⟨“𝐽𝐾𝐼”⟩)(𝑀‘⟨“𝐾𝐿𝐽”⟩)”⟩) → 𝑐 = ⟨“(𝑀‘⟨“𝐽𝐾𝐼”⟩)(𝑀‘⟨“𝐾𝐿𝐽”⟩)”⟩)
171170oveq2d 7152 . . . . 5 ((((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ⟨“(𝑀‘⟨“𝐽𝐾𝐼”⟩)(𝑀‘⟨“𝐾𝐿𝐽”⟩)”⟩) → (𝑆 Σg 𝑐) = (𝑆 Σg ⟨“(𝑀‘⟨“𝐽𝐾𝐼”⟩)(𝑀‘⟨“𝐾𝐿𝐽”⟩)”⟩))
172171eqeq2d 2809 . . . 4 ((((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ⟨“(𝑀‘⟨“𝐽𝐾𝐼”⟩)(𝑀‘⟨“𝐾𝐿𝐽”⟩)”⟩) → ((𝐸 · 𝐹) = (𝑆 Σg 𝑐) ↔ (𝐸 · 𝐹) = (𝑆 Σg ⟨“(𝑀‘⟨“𝐽𝐾𝐼”⟩)(𝑀‘⟨“𝐾𝐿𝐽”⟩)”⟩)))
173146, 56syl 17 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ( I ↾ 𝐷) = (0g𝑆))
174173oveq1d 7151 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (( I ↾ 𝐷) · (𝑀‘⟨“𝐾𝐿”⟩)) = ((0g𝑆) · (𝑀‘⟨“𝐾𝐿”⟩)))
17512symggrp 18524 . . . . . . . . . . . 12 (𝐷𝑉𝑆 ∈ Grp)
1768, 175syl 17 . . . . . . . . . . 11 (𝜑𝑆 ∈ Grp)
177176ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝑆 ∈ Grp)
17819ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐾𝐿”⟩) ∈ (Base‘𝑆))
17921, 22, 58grplid 18129 . . . . . . . . . 10 ((𝑆 ∈ Grp ∧ (𝑀‘⟨“𝐾𝐿”⟩) ∈ (Base‘𝑆)) → ((0g𝑆) · (𝑀‘⟨“𝐾𝐿”⟩)) = (𝑀‘⟨“𝐾𝐿”⟩))
180177, 178, 179syl2anc 587 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((0g𝑆) · (𝑀‘⟨“𝐾𝐿”⟩)) = (𝑀‘⟨“𝐾𝐿”⟩))
181174, 180eqtrd 2833 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (( I ↾ 𝐷) · (𝑀‘⟨“𝐾𝐿”⟩)) = (𝑀‘⟨“𝐾𝐿”⟩))
182181oveq2d 7152 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘⟨“𝐼𝐽”⟩) · (( I ↾ 𝐷) · (𝑀‘⟨“𝐾𝐿”⟩))) = ((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)))
18313ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐼𝐽”⟩) ∈ (Base‘𝑆))
1847, 146, 147, 148, 151, 27cycpm2tr 30821 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽𝐾”⟩) = ((pmTrsp‘𝐷)‘{𝐽, 𝐾}))
18550, 12, 21symgtrf 18593 . . . . . . . . . . 11 ran (pmTrsp‘𝐷) ⊆ (Base‘𝑆)
18610, 16prssd 4715 . . . . . . . . . . . . 13 (𝜑 → {𝐽, 𝐾} ⊆ 𝐷)
187186ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → {𝐽, 𝐾} ⊆ 𝐷)
188 pr2nelem 9418 . . . . . . . . . . . . 13 ((𝐽𝐷𝐾𝐷𝐽𝐾) → {𝐽, 𝐾} ≈ 2o)
189147, 148, 151, 188syl3anc 1368 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → {𝐽, 𝐾} ≈ 2o)
19027, 50pmtrrn 18581 . . . . . . . . . . . 12 ((𝐷𝑉 ∧ {𝐽, 𝐾} ⊆ 𝐷 ∧ {𝐽, 𝐾} ≈ 2o) → ((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∈ ran (pmTrsp‘𝐷))
191146, 187, 189, 190syl3anc 1368 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∈ ran (pmTrsp‘𝐷))
192185, 191sseldi 3913 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∈ (Base‘𝑆))
193184, 192eqeltrd 2890 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽𝐾”⟩) ∈ (Base‘𝑆))
194151necomd 3042 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐾𝐽)
1957, 146, 148, 147, 194, 27cycpm2tr 30821 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐾𝐽”⟩) = ((pmTrsp‘𝐷)‘{𝐾, 𝐽}))
196 prcom 4628 . . . . . . . . . . . . . 14 {𝐽, 𝐾} = {𝐾, 𝐽}
197196a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → {𝐽, 𝐾} = {𝐾, 𝐽})
198197fveq2d 6650 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐽, 𝐾}) = ((pmTrsp‘𝐷)‘{𝐾, 𝐽}))
199195, 198eqtr4d 2836 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐾𝐽”⟩) = ((pmTrsp‘𝐷)‘{𝐽, 𝐾}))
200199, 192eqeltrd 2890 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐾𝐽”⟩) ∈ (Base‘𝑆))
20121, 22grpcl 18106 . . . . . . . . . 10 ((𝑆 ∈ Grp ∧ (𝑀‘⟨“𝐾𝐽”⟩) ∈ (Base‘𝑆) ∧ (𝑀‘⟨“𝐾𝐿”⟩) ∈ (Base‘𝑆)) → ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)) ∈ (Base‘𝑆))
202177, 200, 178, 201syl3anc 1368 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)) ∈ (Base‘𝑆))
20321, 22grpass 18107 . . . . . . . . 9 ((𝑆 ∈ Grp ∧ ((𝑀‘⟨“𝐼𝐽”⟩) ∈ (Base‘𝑆) ∧ (𝑀‘⟨“𝐽𝐾”⟩) ∈ (Base‘𝑆) ∧ ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)) ∈ (Base‘𝑆))) → (((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)) · ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩))) = ((𝑀‘⟨“𝐼𝐽”⟩) · ((𝑀‘⟨“𝐽𝐾”⟩) · ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)))))
204177, 183, 193, 202, 203syl13anc 1369 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)) · ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩))) = ((𝑀‘⟨“𝐼𝐽”⟩) · ((𝑀‘⟨“𝐽𝐾”⟩) · ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)))))
20521, 22grpass 18107 . . . . . . . . . 10 ((𝑆 ∈ Grp ∧ ((𝑀‘⟨“𝐽𝐾”⟩) ∈ (Base‘𝑆) ∧ (𝑀‘⟨“𝐾𝐽”⟩) ∈ (Base‘𝑆) ∧ (𝑀‘⟨“𝐾𝐿”⟩) ∈ (Base‘𝑆))) → (((𝑀‘⟨“𝐽𝐾”⟩) · (𝑀‘⟨“𝐾𝐽”⟩)) · (𝑀‘⟨“𝐾𝐿”⟩)) = ((𝑀‘⟨“𝐽𝐾”⟩) · ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩))))
206177, 193, 200, 178, 205syl13anc 1369 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (((𝑀‘⟨“𝐽𝐾”⟩) · (𝑀‘⟨“𝐾𝐽”⟩)) · (𝑀‘⟨“𝐾𝐿”⟩)) = ((𝑀‘⟨“𝐽𝐾”⟩) · ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩))))
207206oveq2d 7152 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘⟨“𝐼𝐽”⟩) · (((𝑀‘⟨“𝐽𝐾”⟩) · (𝑀‘⟨“𝐾𝐽”⟩)) · (𝑀‘⟨“𝐾𝐿”⟩))) = ((𝑀‘⟨“𝐼𝐽”⟩) · ((𝑀‘⟨“𝐽𝐾”⟩) · ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)))))
208184, 199oveq12d 7154 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘⟨“𝐽𝐾”⟩) · (𝑀‘⟨“𝐾𝐽”⟩)) = (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) · ((pmTrsp‘𝐷)‘{𝐽, 𝐾})))
20912, 21, 22symgov 18508 . . . . . . . . . . . 12 ((((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∈ (Base‘𝑆) ∧ ((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∈ (Base‘𝑆)) → (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) · ((pmTrsp‘𝐷)‘{𝐽, 𝐾})) = (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∘ ((pmTrsp‘𝐷)‘{𝐽, 𝐾})))
210192, 192, 209syl2anc 587 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) · ((pmTrsp‘𝐷)‘{𝐽, 𝐾})) = (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∘ ((pmTrsp‘𝐷)‘{𝐽, 𝐾})))
21127, 50pmtrfinv 18585 . . . . . . . . . . . 12 (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∈ ran (pmTrsp‘𝐷) → (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∘ ((pmTrsp‘𝐷)‘{𝐽, 𝐾})) = ( I ↾ 𝐷))
212191, 211syl 17 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∘ ((pmTrsp‘𝐷)‘{𝐽, 𝐾})) = ( I ↾ 𝐷))
213208, 210, 2123eqtrd 2837 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘⟨“𝐽𝐾”⟩) · (𝑀‘⟨“𝐾𝐽”⟩)) = ( I ↾ 𝐷))
214213oveq1d 7151 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (((𝑀‘⟨“𝐽𝐾”⟩) · (𝑀‘⟨“𝐾𝐽”⟩)) · (𝑀‘⟨“𝐾𝐿”⟩)) = (( I ↾ 𝐷) · (𝑀‘⟨“𝐾𝐿”⟩)))
215214oveq2d 7152 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘⟨“𝐼𝐽”⟩) · (((𝑀‘⟨“𝐽𝐾”⟩) · (𝑀‘⟨“𝐾𝐽”⟩)) · (𝑀‘⟨“𝐾𝐿”⟩))) = ((𝑀‘⟨“𝐼𝐽”⟩) · (( I ↾ 𝐷) · (𝑀‘⟨“𝐾𝐿”⟩))))
216204, 207, 2153eqtr2rd 2840 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘⟨“𝐼𝐽”⟩) · (( I ↾ 𝐷) · (𝑀‘⟨“𝐾𝐿”⟩))) = (((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)) · ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩))))
217182, 216eqtr3d 2835 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)) = (((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)) · ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩))))
2186, 15oveq12d 7154 . . . . . . 7 (𝜑 → (𝐸 · 𝐹) = ((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)))
219218ad2antrr 725 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = ((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)))
2207, 12, 146, 147, 148, 149, 151, 157, 158, 22cyc3co2 30842 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽𝐾𝐼”⟩) = ((𝑀‘⟨“𝐽𝐼”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)))
221134oveq1d 7151 . . . . . . . . 9 (𝜑 → ((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)) = ((𝑀‘⟨“𝐽𝐼”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)))
222221ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)) = ((𝑀‘⟨“𝐽𝐼”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)))
223220, 222eqtr4d 2836 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽𝐾𝐼”⟩) = ((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)))
2247, 12, 146, 148, 161, 147, 162, 166, 151, 22cyc3co2 30842 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐾𝐿𝐽”⟩) = ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)))
225223, 224oveq12d 7154 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘⟨“𝐽𝐾𝐼”⟩) · (𝑀‘⟨“𝐾𝐿𝐽”⟩)) = (((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)) · ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩))))
226217, 219, 2253eqtr4d 2843 . . . . 5 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = ((𝑀‘⟨“𝐽𝐾𝐼”⟩) · (𝑀‘⟨“𝐾𝐿𝐽”⟩)))
227 grpmnd 18105 . . . . . . . 8 (𝑆 ∈ Grp → 𝑆 ∈ Mnd)
228176, 227syl 17 . . . . . . 7 (𝜑𝑆 ∈ Mnd)
229228ad2antrr 725 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝑆 ∈ Mnd)
2307, 12, 146, 147, 148, 149, 151, 157, 158cycpm3cl 30837 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽𝐾𝐼”⟩) ∈ (Base‘𝑆))
231224, 202eqeltrd 2890 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐾𝐿𝐽”⟩) ∈ (Base‘𝑆))
23221, 22gsumws2 18002 . . . . . 6 ((𝑆 ∈ Mnd ∧ (𝑀‘⟨“𝐽𝐾𝐼”⟩) ∈ (Base‘𝑆) ∧ (𝑀‘⟨“𝐾𝐿𝐽”⟩) ∈ (Base‘𝑆)) → (𝑆 Σg ⟨“(𝑀‘⟨“𝐽𝐾𝐼”⟩)(𝑀‘⟨“𝐾𝐿𝐽”⟩)”⟩) = ((𝑀‘⟨“𝐽𝐾𝐼”⟩) · (𝑀‘⟨“𝐾𝐿𝐽”⟩)))
233229, 230, 231, 232syl3anc 1368 . . . . 5 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑆 Σg ⟨“(𝑀‘⟨“𝐽𝐾𝐼”⟩)(𝑀‘⟨“𝐾𝐿𝐽”⟩)”⟩) = ((𝑀‘⟨“𝐽𝐾𝐼”⟩) · (𝑀‘⟨“𝐾𝐿𝐽”⟩)))
234226, 233eqtr4d 2836 . . . 4 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = (𝑆 Σg ⟨“(𝑀‘⟨“𝐽𝐾𝐼”⟩)(𝑀‘⟨“𝐾𝐿𝐽”⟩)”⟩))
235169, 172, 234rspcedvd 3574 . . 3 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐))
236145, 235pm2.61dan 812 . 2 ((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐))
237104, 236pm2.61dan 812 1 (𝜑 → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∃wrex 3107   ∖ cdif 3878   ⊆ wss 3881  ∅c0 4243  {csn 4525  {cpr 4527  ∪ cuni 4801   class class class wbr 5031   I cid 5425  ◡ccnv 5519  ran crn 5521   ↾ cres 5522   “ cima 5523   ∘ ccom 5524  ‘cfv 6325  (class class class)co 7136  2oc2o 8082   ≈ cen 8492  3c3 11684  ♯chash 13689  Word cword 13860  ⟨“cs1 13943  ⟨“cs2 14197  ⟨“cs3 14198  Basecbs 16478  +gcplusg 16560  0gc0g 16708   Σg cgsu 16709  Mndcmnd 17906  Grpcgrp 18098  SymGrpcsymg 18491  pmTrspcpmtr 18565  pmEvencevpm 18614  toCycctocyc 30808 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-reg 9043  ax-ac2 9877  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-isom 6334  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-2o 8089  df-oadd 8092  df-er 8275  df-map 8394  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-sup 8893  df-inf 8894  df-card 9355  df-ac 9530  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11629  df-2 11691  df-3 11692  df-4 11693  df-5 11694  df-6 11695  df-7 11696  df-8 11697  df-9 11698  df-n0 11889  df-xnn0 11959  df-z 11973  df-uz 12235  df-rp 12381  df-fz 12889  df-fzo 13032  df-fl 13160  df-mod 13236  df-seq 13368  df-hash 13690  df-word 13861  df-concat 13917  df-s1 13944  df-substr 13997  df-pfx 14027  df-csh 14145  df-s2 14204  df-s3 14205  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-tset 16579  df-0g 16710  df-gsum 16711  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-efmnd 18029  df-grp 18101  df-symg 18492  df-pmtr 18566  df-tocyc 30809 This theorem is referenced by:  cyc3genpm  30854
 Copyright terms: Public domain W3C validator