Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cyc3genpmlem Structured version   Visualization version   GIF version

Theorem cyc3genpmlem 33081
Description: Lemma for cyc3genpm 33082. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Hypotheses
Ref Expression
cyc3genpm.t 𝐶 = (𝑀 “ (♯ “ {3}))
cyc3genpm.a 𝐴 = (pmEven‘𝐷)
cyc3genpm.s 𝑆 = (SymGrp‘𝐷)
cyc3genpm.n 𝑁 = (♯‘𝐷)
cyc3genpm.m 𝑀 = (toCyc‘𝐷)
cyc3genpmlem.t · = (+g𝑆)
cyc3genpmlem.i (𝜑𝐼𝐷)
cyc3genpmlem.j (𝜑𝐽𝐷)
cyc3genpmlem.k (𝜑𝐾𝐷)
cyc3genpmlem.l (𝜑𝐿𝐷)
cyc3genpmlem.e (𝜑𝐸 = (𝑀‘⟨“𝐼𝐽”⟩))
cyc3genpmlem.f (𝜑𝐹 = (𝑀‘⟨“𝐾𝐿”⟩))
cyc3genpmlem.d (𝜑𝐷𝑉)
cyc3genpmlem.1 (𝜑𝐼𝐽)
cyc3genpmlem.2 (𝜑𝐾𝐿)
Assertion
Ref Expression
cyc3genpmlem (𝜑 → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐))
Distinct variable groups:   · ,𝑐   𝐶,𝑐   𝐷,𝑐   𝐸,𝑐   𝐹,𝑐   𝐼,𝑐   𝐽,𝑐   𝐾,𝑐   𝐿,𝑐   𝑀,𝑐   𝑆,𝑐   𝜑,𝑐
Allowed substitution hints:   𝐴(𝑐)   𝑁(𝑐)   𝑉(𝑐)

Proof of Theorem cyc3genpmlem
StepHypRef Expression
1 wrd0 14480 . . . . 5 ∅ ∈ Word 𝐶
21a1i 11 . . . 4 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ∅ ∈ Word 𝐶)
3 simpr 484 . . . . . 6 ((((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ∅) → 𝑐 = ∅)
43oveq2d 7385 . . . . 5 ((((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ∅) → (𝑆 Σg 𝑐) = (𝑆 Σg ∅))
54eqeq2d 2740 . . . 4 ((((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ∅) → ((𝐸 · 𝐹) = (𝑆 Σg 𝑐) ↔ (𝐸 · 𝐹) = (𝑆 Σg ∅)))
6 cyc3genpmlem.e . . . . . . . . 9 (𝜑𝐸 = (𝑀‘⟨“𝐼𝐽”⟩))
7 cyc3genpm.m . . . . . . . . . 10 𝑀 = (toCyc‘𝐷)
8 cyc3genpmlem.d . . . . . . . . . 10 (𝜑𝐷𝑉)
9 cyc3genpmlem.i . . . . . . . . . 10 (𝜑𝐼𝐷)
10 cyc3genpmlem.j . . . . . . . . . 10 (𝜑𝐽𝐷)
11 cyc3genpmlem.1 . . . . . . . . . 10 (𝜑𝐼𝐽)
12 cyc3genpm.s . . . . . . . . . 10 𝑆 = (SymGrp‘𝐷)
137, 8, 9, 10, 11, 12cycpm2cl 33050 . . . . . . . . 9 (𝜑 → (𝑀‘⟨“𝐼𝐽”⟩) ∈ (Base‘𝑆))
146, 13eqeltrd 2828 . . . . . . . 8 (𝜑𝐸 ∈ (Base‘𝑆))
15 cyc3genpmlem.f . . . . . . . . 9 (𝜑𝐹 = (𝑀‘⟨“𝐾𝐿”⟩))
16 cyc3genpmlem.k . . . . . . . . . 10 (𝜑𝐾𝐷)
17 cyc3genpmlem.l . . . . . . . . . 10 (𝜑𝐿𝐷)
18 cyc3genpmlem.2 . . . . . . . . . 10 (𝜑𝐾𝐿)
197, 8, 16, 17, 18, 12cycpm2cl 33050 . . . . . . . . 9 (𝜑 → (𝑀‘⟨“𝐾𝐿”⟩) ∈ (Base‘𝑆))
2015, 19eqeltrd 2828 . . . . . . . 8 (𝜑𝐹 ∈ (Base‘𝑆))
21 eqid 2729 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
22 cyc3genpmlem.t . . . . . . . . 9 · = (+g𝑆)
2312, 21, 22symgov 19290 . . . . . . . 8 ((𝐸 ∈ (Base‘𝑆) ∧ 𝐹 ∈ (Base‘𝑆)) → (𝐸 · 𝐹) = (𝐸𝐹))
2414, 20, 23syl2anc 584 . . . . . . 7 (𝜑 → (𝐸 · 𝐹) = (𝐸𝐹))
2524ad2antrr 726 . . . . . 6 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = (𝐸𝐹))
266ad2antrr 726 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐸 = (𝑀‘⟨“𝐼𝐽”⟩))
27 eqid 2729 . . . . . . . . . 10 (pmTrsp‘𝐷) = (pmTrsp‘𝐷)
287, 8, 9, 10, 11, 27cycpm2tr 33049 . . . . . . . . 9 (𝜑 → (𝑀‘⟨“𝐼𝐽”⟩) = ((pmTrsp‘𝐷)‘{𝐼, 𝐽}))
2928ad2antrr 726 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐼𝐽”⟩) = ((pmTrsp‘𝐷)‘{𝐼, 𝐽}))
3026, 29eqtrd 2764 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐸 = ((pmTrsp‘𝐷)‘{𝐼, 𝐽}))
317, 8, 16, 17, 18, 27cycpm2tr 33049 . . . . . . . . 9 (𝜑 → (𝑀‘⟨“𝐾𝐿”⟩) = ((pmTrsp‘𝐷)‘{𝐾, 𝐿}))
3231ad2antrr 726 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐾𝐿”⟩) = ((pmTrsp‘𝐷)‘{𝐾, 𝐿}))
3315ad2antrr 726 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐹 = (𝑀‘⟨“𝐾𝐿”⟩))
349ad2antrr 726 . . . . . . . . . 10 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼𝐷)
3510ad2antrr 726 . . . . . . . . . 10 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽𝐷)
3611ad2antrr 726 . . . . . . . . . 10 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼𝐽)
37 simplr 768 . . . . . . . . . . 11 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼 ∈ {𝐾, 𝐿})
38 simpr 484 . . . . . . . . . . 11 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽 ∈ {𝐾, 𝐿})
3937, 38prssd 4782 . . . . . . . . . 10 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐼, 𝐽} ⊆ {𝐾, 𝐿})
40 ssprsseq 4785 . . . . . . . . . . 11 ((𝐼𝐷𝐽𝐷𝐼𝐽) → ({𝐼, 𝐽} ⊆ {𝐾, 𝐿} ↔ {𝐼, 𝐽} = {𝐾, 𝐿}))
4140biimpa 476 . . . . . . . . . 10 (((𝐼𝐷𝐽𝐷𝐼𝐽) ∧ {𝐼, 𝐽} ⊆ {𝐾, 𝐿}) → {𝐼, 𝐽} = {𝐾, 𝐿})
4234, 35, 36, 39, 41syl31anc 1375 . . . . . . . . 9 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐼, 𝐽} = {𝐾, 𝐿})
4342fveq2d 6844 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐼, 𝐽}) = ((pmTrsp‘𝐷)‘{𝐾, 𝐿}))
4432, 33, 433eqtr4d 2774 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐹 = ((pmTrsp‘𝐷)‘{𝐼, 𝐽}))
4530, 44coeq12d 5818 . . . . . 6 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸𝐹) = (((pmTrsp‘𝐷)‘{𝐼, 𝐽}) ∘ ((pmTrsp‘𝐷)‘{𝐼, 𝐽})))
468ad2antrr 726 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐷𝑉)
4734, 35prssd 4782 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐼, 𝐽} ⊆ 𝐷)
48 enpr2 9931 . . . . . . . . 9 ((𝐼𝐷𝐽𝐷𝐼𝐽) → {𝐼, 𝐽} ≈ 2o)
4934, 35, 36, 48syl3anc 1373 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐼, 𝐽} ≈ 2o)
50 eqid 2729 . . . . . . . . 9 ran (pmTrsp‘𝐷) = ran (pmTrsp‘𝐷)
5127, 50pmtrrn 19363 . . . . . . . 8 ((𝐷𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → ((pmTrsp‘𝐷)‘{𝐼, 𝐽}) ∈ ran (pmTrsp‘𝐷))
5246, 47, 49, 51syl3anc 1373 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐼, 𝐽}) ∈ ran (pmTrsp‘𝐷))
5327, 50pmtrfinv 19367 . . . . . . 7 (((pmTrsp‘𝐷)‘{𝐼, 𝐽}) ∈ ran (pmTrsp‘𝐷) → (((pmTrsp‘𝐷)‘{𝐼, 𝐽}) ∘ ((pmTrsp‘𝐷)‘{𝐼, 𝐽})) = ( I ↾ 𝐷))
5452, 53syl 17 . . . . . 6 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (((pmTrsp‘𝐷)‘{𝐼, 𝐽}) ∘ ((pmTrsp‘𝐷)‘{𝐼, 𝐽})) = ( I ↾ 𝐷))
5525, 45, 543eqtrd 2768 . . . . 5 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = ( I ↾ 𝐷))
5612symgid 19307 . . . . . . 7 (𝐷𝑉 → ( I ↾ 𝐷) = (0g𝑆))
5746, 56syl 17 . . . . . 6 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ( I ↾ 𝐷) = (0g𝑆))
58 eqid 2729 . . . . . . 7 (0g𝑆) = (0g𝑆)
5958gsum0 18587 . . . . . 6 (𝑆 Σg ∅) = (0g𝑆)
6057, 59eqtr4di 2782 . . . . 5 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ( I ↾ 𝐷) = (𝑆 Σg ∅))
6155, 60eqtrd 2764 . . . 4 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = (𝑆 Σg ∅))
622, 5, 61rspcedvd 3587 . . 3 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐))
638ad2antrr 726 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐷𝑉)
649ad2antrr 726 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼𝐷)
6516, 17prssd 4782 . . . . . . . . 9 (𝜑 → {𝐾, 𝐿} ⊆ 𝐷)
6665ad2antrr 726 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → {𝐾, 𝐿} ⊆ 𝐷)
67 simplr 768 . . . . . . . . 9 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼 ∈ {𝐾, 𝐿})
68 enpr2 9931 . . . . . . . . . . 11 ((𝐾𝐷𝐿𝐷𝐾𝐿) → {𝐾, 𝐿} ≈ 2o)
6916, 17, 18, 68syl3anc 1373 . . . . . . . . . 10 (𝜑 → {𝐾, 𝐿} ≈ 2o)
7069ad2antrr 726 . . . . . . . . 9 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → {𝐾, 𝐿} ≈ 2o)
71 unidifsnel 32437 . . . . . . . . 9 ((𝐼 ∈ {𝐾, 𝐿} ∧ {𝐾, 𝐿} ≈ 2o) → ({𝐾, 𝐿} ∖ {𝐼}) ∈ {𝐾, 𝐿})
7267, 70, 71syl2anc 584 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ({𝐾, 𝐿} ∖ {𝐼}) ∈ {𝐾, 𝐿})
7366, 72sseldd 3944 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ({𝐾, 𝐿} ∖ {𝐼}) ∈ 𝐷)
7410ad2antrr 726 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽𝐷)
75 unidifsnne 32438 . . . . . . . . 9 ((𝐼 ∈ {𝐾, 𝐿} ∧ {𝐾, 𝐿} ≈ 2o) → ({𝐾, 𝐿} ∖ {𝐼}) ≠ 𝐼)
7667, 70, 75syl2anc 584 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ({𝐾, 𝐿} ∖ {𝐼}) ≠ 𝐼)
7776necomd 2980 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼 ({𝐾, 𝐿} ∖ {𝐼}))
78 nelne2 3023 . . . . . . . 8 (( ({𝐾, 𝐿} ∖ {𝐼}) ∈ {𝐾, 𝐿} ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ({𝐾, 𝐿} ∖ {𝐼}) ≠ 𝐽)
7972, 78sylancom 588 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ({𝐾, 𝐿} ∖ {𝐼}) ≠ 𝐽)
8011necomd 2980 . . . . . . . 8 (𝜑𝐽𝐼)
8180ad2antrr 726 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽𝐼)
827, 12, 63, 64, 73, 74, 77, 79, 81cycpm3cl2 33066 . . . . . 6 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩) ∈ (𝑀 “ (♯ “ {3})))
83 cyc3genpm.t . . . . . 6 𝐶 = (𝑀 “ (♯ “ {3}))
8482, 83eleqtrrdi 2839 . . . . 5 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩) ∈ 𝐶)
8584s1cld 14544 . . . 4 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ⟨“(𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩)”⟩ ∈ Word 𝐶)
86 simpr 484 . . . . . 6 ((((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ⟨“(𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩)”⟩) → 𝑐 = ⟨“(𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩)”⟩)
8786oveq2d 7385 . . . . 5 ((((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ⟨“(𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩)”⟩) → (𝑆 Σg 𝑐) = (𝑆 Σg ⟨“(𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩)”⟩))
8887eqeq2d 2740 . . . 4 ((((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ⟨“(𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩)”⟩) → ((𝐸 · 𝐹) = (𝑆 Σg 𝑐) ↔ (𝐸 · 𝐹) = (𝑆 Σg ⟨“(𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩)”⟩)))
897, 12, 63, 64, 73, 74, 77, 79, 81, 22cyc3co2 33070 . . . . 5 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩) = ((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})”⟩)))
907, 12, 63, 64, 73, 74, 77, 79, 81cycpm3cl 33065 . . . . . 6 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩) ∈ (Base‘𝑆))
9121gsumws1 18741 . . . . . 6 ((𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩) ∈ (Base‘𝑆) → (𝑆 Σg ⟨“(𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩)”⟩) = (𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩))
9290, 91syl 17 . . . . 5 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑆 Σg ⟨“(𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩)”⟩) = (𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩))
936ad2antrr 726 . . . . . 6 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐸 = (𝑀‘⟨“𝐼𝐽”⟩))
94 en2eleq 9937 . . . . . . . . 9 ((𝐼 ∈ {𝐾, 𝐿} ∧ {𝐾, 𝐿} ≈ 2o) → {𝐾, 𝐿} = {𝐼, ({𝐾, 𝐿} ∖ {𝐼})})
9567, 70, 94syl2anc 584 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → {𝐾, 𝐿} = {𝐼, ({𝐾, 𝐿} ∖ {𝐼})})
9695fveq2d 6844 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐾, 𝐿}) = ((pmTrsp‘𝐷)‘{𝐼, ({𝐾, 𝐿} ∖ {𝐼})}))
9715, 31eqtrd 2764 . . . . . . . 8 (𝜑𝐹 = ((pmTrsp‘𝐷)‘{𝐾, 𝐿}))
9897ad2antrr 726 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐹 = ((pmTrsp‘𝐷)‘{𝐾, 𝐿}))
997, 63, 64, 73, 77, 27cycpm2tr 33049 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})”⟩) = ((pmTrsp‘𝐷)‘{𝐼, ({𝐾, 𝐿} ∖ {𝐼})}))
10096, 98, 993eqtr4d 2774 . . . . . 6 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐹 = (𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})”⟩))
10193, 100oveq12d 7387 . . . . 5 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = ((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})”⟩)))
10289, 92, 1013eqtr4rd 2775 . . . 4 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = (𝑆 Σg ⟨“(𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩)”⟩))
10385, 88, 102rspcedvd 3587 . . 3 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐))
10462, 103pm2.61dan 812 . 2 ((𝜑𝐼 ∈ {𝐾, 𝐿}) → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐))
1058ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐷𝑉)
10610ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽𝐷)
10765ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐾, 𝐿} ⊆ 𝐷)
108 simpr 484 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽 ∈ {𝐾, 𝐿})
10969ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐾, 𝐿} ≈ 2o)
110 unidifsnel 32437 . . . . . . . . 9 ((𝐽 ∈ {𝐾, 𝐿} ∧ {𝐾, 𝐿} ≈ 2o) → ({𝐾, 𝐿} ∖ {𝐽}) ∈ {𝐾, 𝐿})
111108, 109, 110syl2anc 584 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ({𝐾, 𝐿} ∖ {𝐽}) ∈ {𝐾, 𝐿})
112107, 111sseldd 3944 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ({𝐾, 𝐿} ∖ {𝐽}) ∈ 𝐷)
1139ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼𝐷)
114 unidifsnne 32438 . . . . . . . . 9 ((𝐽 ∈ {𝐾, 𝐿} ∧ {𝐾, 𝐿} ≈ 2o) → ({𝐾, 𝐿} ∖ {𝐽}) ≠ 𝐽)
115108, 109, 114syl2anc 584 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ({𝐾, 𝐿} ∖ {𝐽}) ≠ 𝐽)
116115necomd 2980 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽 ({𝐾, 𝐿} ∖ {𝐽}))
117 simplr 768 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ¬ 𝐼 ∈ {𝐾, 𝐿})
118 nelne2 3023 . . . . . . . 8 (( ({𝐾, 𝐿} ∖ {𝐽}) ∈ {𝐾, 𝐿} ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) → ({𝐾, 𝐿} ∖ {𝐽}) ≠ 𝐼)
119111, 117, 118syl2anc 584 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ({𝐾, 𝐿} ∖ {𝐽}) ≠ 𝐼)
12011ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼𝐽)
1217, 12, 105, 106, 112, 113, 116, 119, 120cycpm3cl2 33066 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩) ∈ (𝑀 “ (♯ “ {3})))
122121, 83eleqtrrdi 2839 . . . . 5 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩) ∈ 𝐶)
123122s1cld 14544 . . . 4 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ⟨“(𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩)”⟩ ∈ Word 𝐶)
124 simpr 484 . . . . . 6 ((((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ⟨“(𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩)”⟩) → 𝑐 = ⟨“(𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩)”⟩)
125124oveq2d 7385 . . . . 5 ((((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ⟨“(𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩)”⟩) → (𝑆 Σg 𝑐) = (𝑆 Σg ⟨“(𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩)”⟩))
126125eqeq2d 2740 . . . 4 ((((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ⟨“(𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩)”⟩) → ((𝐸 · 𝐹) = (𝑆 Σg 𝑐) ↔ (𝐸 · 𝐹) = (𝑆 Σg ⟨“(𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩)”⟩)))
1277, 12, 105, 106, 112, 113, 116, 119, 120, 22cyc3co2 33070 . . . . 5 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩) = ((𝑀‘⟨“𝐽𝐼”⟩) · (𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})”⟩)))
1287, 12, 105, 106, 112, 113, 116, 119, 120cycpm3cl 33065 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩) ∈ (Base‘𝑆))
12921gsumws1 18741 . . . . . 6 ((𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩) ∈ (Base‘𝑆) → (𝑆 Σg ⟨“(𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩)”⟩) = (𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩))
130128, 129syl 17 . . . . 5 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑆 Σg ⟨“(𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩)”⟩) = (𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩))
131 prcom 4692 . . . . . . . . . 10 {𝐼, 𝐽} = {𝐽, 𝐼}
132131fveq2i 6843 . . . . . . . . 9 ((pmTrsp‘𝐷)‘{𝐼, 𝐽}) = ((pmTrsp‘𝐷)‘{𝐽, 𝐼})
1337, 8, 10, 9, 80, 27cycpm2tr 33049 . . . . . . . . 9 (𝜑 → (𝑀‘⟨“𝐽𝐼”⟩) = ((pmTrsp‘𝐷)‘{𝐽, 𝐼}))
134132, 28, 1333eqtr4a 2790 . . . . . . . 8 (𝜑 → (𝑀‘⟨“𝐼𝐽”⟩) = (𝑀‘⟨“𝐽𝐼”⟩))
1356, 134eqtrd 2764 . . . . . . 7 (𝜑𝐸 = (𝑀‘⟨“𝐽𝐼”⟩))
136135ad2antrr 726 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐸 = (𝑀‘⟨“𝐽𝐼”⟩))
137 en2eleq 9937 . . . . . . . . 9 ((𝐽 ∈ {𝐾, 𝐿} ∧ {𝐾, 𝐿} ≈ 2o) → {𝐾, 𝐿} = {𝐽, ({𝐾, 𝐿} ∖ {𝐽})})
138108, 109, 137syl2anc 584 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐾, 𝐿} = {𝐽, ({𝐾, 𝐿} ∖ {𝐽})})
139138fveq2d 6844 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐾, 𝐿}) = ((pmTrsp‘𝐷)‘{𝐽, ({𝐾, 𝐿} ∖ {𝐽})}))
14097ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐹 = ((pmTrsp‘𝐷)‘{𝐾, 𝐿}))
1417, 105, 106, 112, 116, 27cycpm2tr 33049 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})”⟩) = ((pmTrsp‘𝐷)‘{𝐽, ({𝐾, 𝐿} ∖ {𝐽})}))
142139, 140, 1413eqtr4d 2774 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐹 = (𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})”⟩))
143136, 142oveq12d 7387 . . . . 5 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = ((𝑀‘⟨“𝐽𝐼”⟩) · (𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})”⟩)))
144127, 130, 1433eqtr4rd 2775 . . . 4 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = (𝑆 Σg ⟨“(𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩)”⟩))
145123, 126, 144rspcedvd 3587 . . 3 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐))
1468ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐷𝑉)
14710ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽𝐷)
14816ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐾𝐷)
1499ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼𝐷)
150 simpr 484 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ¬ 𝐽 ∈ {𝐾, 𝐿})
151147, 150nelpr1 4614 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽𝐾)
152 prid1g 4720 . . . . . . . . . 10 (𝐾𝐷𝐾 ∈ {𝐾, 𝐿})
15316, 152syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ {𝐾, 𝐿})
154153ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐾 ∈ {𝐾, 𝐿})
155 simplr 768 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ¬ 𝐼 ∈ {𝐾, 𝐿})
156 nelne2 3023 . . . . . . . 8 ((𝐾 ∈ {𝐾, 𝐿} ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) → 𝐾𝐼)
157154, 155, 156syl2anc 584 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐾𝐼)
15811ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼𝐽)
1597, 12, 146, 147, 148, 149, 151, 157, 158cycpm3cl2 33066 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽𝐾𝐼”⟩) ∈ (𝑀 “ (♯ “ {3})))
160159, 83eleqtrrdi 2839 . . . . 5 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽𝐾𝐼”⟩) ∈ 𝐶)
16117ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐿𝐷)
16218ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐾𝐿)
163 prid2g 4721 . . . . . . . . 9 (𝐿𝐷𝐿 ∈ {𝐾, 𝐿})
164161, 163syl 17 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐿 ∈ {𝐾, 𝐿})
165 nelne2 3023 . . . . . . . 8 ((𝐿 ∈ {𝐾, 𝐿} ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐿𝐽)
166164, 165sylancom 588 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐿𝐽)
1677, 12, 146, 148, 161, 147, 162, 166, 151cycpm3cl2 33066 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐾𝐿𝐽”⟩) ∈ (𝑀 “ (♯ “ {3})))
168167, 83eleqtrrdi 2839 . . . . 5 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐾𝐿𝐽”⟩) ∈ 𝐶)
169160, 168s2cld 14813 . . . 4 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ⟨“(𝑀‘⟨“𝐽𝐾𝐼”⟩)(𝑀‘⟨“𝐾𝐿𝐽”⟩)”⟩ ∈ Word 𝐶)
170 simpr 484 . . . . . 6 ((((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ⟨“(𝑀‘⟨“𝐽𝐾𝐼”⟩)(𝑀‘⟨“𝐾𝐿𝐽”⟩)”⟩) → 𝑐 = ⟨“(𝑀‘⟨“𝐽𝐾𝐼”⟩)(𝑀‘⟨“𝐾𝐿𝐽”⟩)”⟩)
171170oveq2d 7385 . . . . 5 ((((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ⟨“(𝑀‘⟨“𝐽𝐾𝐼”⟩)(𝑀‘⟨“𝐾𝐿𝐽”⟩)”⟩) → (𝑆 Σg 𝑐) = (𝑆 Σg ⟨“(𝑀‘⟨“𝐽𝐾𝐼”⟩)(𝑀‘⟨“𝐾𝐿𝐽”⟩)”⟩))
172171eqeq2d 2740 . . . 4 ((((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ⟨“(𝑀‘⟨“𝐽𝐾𝐼”⟩)(𝑀‘⟨“𝐾𝐿𝐽”⟩)”⟩) → ((𝐸 · 𝐹) = (𝑆 Σg 𝑐) ↔ (𝐸 · 𝐹) = (𝑆 Σg ⟨“(𝑀‘⟨“𝐽𝐾𝐼”⟩)(𝑀‘⟨“𝐾𝐿𝐽”⟩)”⟩)))
173146, 56syl 17 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ( I ↾ 𝐷) = (0g𝑆))
174173oveq1d 7384 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (( I ↾ 𝐷) · (𝑀‘⟨“𝐾𝐿”⟩)) = ((0g𝑆) · (𝑀‘⟨“𝐾𝐿”⟩)))
17512symggrp 19306 . . . . . . . . . . . 12 (𝐷𝑉𝑆 ∈ Grp)
1768, 175syl 17 . . . . . . . . . . 11 (𝜑𝑆 ∈ Grp)
177176ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝑆 ∈ Grp)
17819ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐾𝐿”⟩) ∈ (Base‘𝑆))
17921, 22, 58grplid 18875 . . . . . . . . . 10 ((𝑆 ∈ Grp ∧ (𝑀‘⟨“𝐾𝐿”⟩) ∈ (Base‘𝑆)) → ((0g𝑆) · (𝑀‘⟨“𝐾𝐿”⟩)) = (𝑀‘⟨“𝐾𝐿”⟩))
180177, 178, 179syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((0g𝑆) · (𝑀‘⟨“𝐾𝐿”⟩)) = (𝑀‘⟨“𝐾𝐿”⟩))
181174, 180eqtrd 2764 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (( I ↾ 𝐷) · (𝑀‘⟨“𝐾𝐿”⟩)) = (𝑀‘⟨“𝐾𝐿”⟩))
182181oveq2d 7385 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘⟨“𝐼𝐽”⟩) · (( I ↾ 𝐷) · (𝑀‘⟨“𝐾𝐿”⟩))) = ((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)))
18313ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐼𝐽”⟩) ∈ (Base‘𝑆))
1847, 146, 147, 148, 151, 27cycpm2tr 33049 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽𝐾”⟩) = ((pmTrsp‘𝐷)‘{𝐽, 𝐾}))
18550, 12, 21symgtrf 19375 . . . . . . . . . . 11 ran (pmTrsp‘𝐷) ⊆ (Base‘𝑆)
18610, 16prssd 4782 . . . . . . . . . . . . 13 (𝜑 → {𝐽, 𝐾} ⊆ 𝐷)
187186ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → {𝐽, 𝐾} ⊆ 𝐷)
188 enpr2 9931 . . . . . . . . . . . . 13 ((𝐽𝐷𝐾𝐷𝐽𝐾) → {𝐽, 𝐾} ≈ 2o)
189147, 148, 151, 188syl3anc 1373 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → {𝐽, 𝐾} ≈ 2o)
19027, 50pmtrrn 19363 . . . . . . . . . . . 12 ((𝐷𝑉 ∧ {𝐽, 𝐾} ⊆ 𝐷 ∧ {𝐽, 𝐾} ≈ 2o) → ((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∈ ran (pmTrsp‘𝐷))
191146, 187, 189, 190syl3anc 1373 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∈ ran (pmTrsp‘𝐷))
192185, 191sselid 3941 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∈ (Base‘𝑆))
193184, 192eqeltrd 2828 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽𝐾”⟩) ∈ (Base‘𝑆))
194151necomd 2980 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐾𝐽)
1957, 146, 148, 147, 194, 27cycpm2tr 33049 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐾𝐽”⟩) = ((pmTrsp‘𝐷)‘{𝐾, 𝐽}))
196 prcom 4692 . . . . . . . . . . . . . 14 {𝐽, 𝐾} = {𝐾, 𝐽}
197196a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → {𝐽, 𝐾} = {𝐾, 𝐽})
198197fveq2d 6844 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐽, 𝐾}) = ((pmTrsp‘𝐷)‘{𝐾, 𝐽}))
199195, 198eqtr4d 2767 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐾𝐽”⟩) = ((pmTrsp‘𝐷)‘{𝐽, 𝐾}))
200199, 192eqeltrd 2828 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐾𝐽”⟩) ∈ (Base‘𝑆))
20121, 22grpcl 18849 . . . . . . . . . 10 ((𝑆 ∈ Grp ∧ (𝑀‘⟨“𝐾𝐽”⟩) ∈ (Base‘𝑆) ∧ (𝑀‘⟨“𝐾𝐿”⟩) ∈ (Base‘𝑆)) → ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)) ∈ (Base‘𝑆))
202177, 200, 178, 201syl3anc 1373 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)) ∈ (Base‘𝑆))
20321, 22grpass 18850 . . . . . . . . 9 ((𝑆 ∈ Grp ∧ ((𝑀‘⟨“𝐼𝐽”⟩) ∈ (Base‘𝑆) ∧ (𝑀‘⟨“𝐽𝐾”⟩) ∈ (Base‘𝑆) ∧ ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)) ∈ (Base‘𝑆))) → (((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)) · ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩))) = ((𝑀‘⟨“𝐼𝐽”⟩) · ((𝑀‘⟨“𝐽𝐾”⟩) · ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)))))
204177, 183, 193, 202, 203syl13anc 1374 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)) · ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩))) = ((𝑀‘⟨“𝐼𝐽”⟩) · ((𝑀‘⟨“𝐽𝐾”⟩) · ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)))))
20521, 22grpass 18850 . . . . . . . . . 10 ((𝑆 ∈ Grp ∧ ((𝑀‘⟨“𝐽𝐾”⟩) ∈ (Base‘𝑆) ∧ (𝑀‘⟨“𝐾𝐽”⟩) ∈ (Base‘𝑆) ∧ (𝑀‘⟨“𝐾𝐿”⟩) ∈ (Base‘𝑆))) → (((𝑀‘⟨“𝐽𝐾”⟩) · (𝑀‘⟨“𝐾𝐽”⟩)) · (𝑀‘⟨“𝐾𝐿”⟩)) = ((𝑀‘⟨“𝐽𝐾”⟩) · ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩))))
206177, 193, 200, 178, 205syl13anc 1374 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (((𝑀‘⟨“𝐽𝐾”⟩) · (𝑀‘⟨“𝐾𝐽”⟩)) · (𝑀‘⟨“𝐾𝐿”⟩)) = ((𝑀‘⟨“𝐽𝐾”⟩) · ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩))))
207206oveq2d 7385 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘⟨“𝐼𝐽”⟩) · (((𝑀‘⟨“𝐽𝐾”⟩) · (𝑀‘⟨“𝐾𝐽”⟩)) · (𝑀‘⟨“𝐾𝐿”⟩))) = ((𝑀‘⟨“𝐼𝐽”⟩) · ((𝑀‘⟨“𝐽𝐾”⟩) · ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)))))
208184, 199oveq12d 7387 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘⟨“𝐽𝐾”⟩) · (𝑀‘⟨“𝐾𝐽”⟩)) = (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) · ((pmTrsp‘𝐷)‘{𝐽, 𝐾})))
20912, 21, 22symgov 19290 . . . . . . . . . . . 12 ((((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∈ (Base‘𝑆) ∧ ((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∈ (Base‘𝑆)) → (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) · ((pmTrsp‘𝐷)‘{𝐽, 𝐾})) = (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∘ ((pmTrsp‘𝐷)‘{𝐽, 𝐾})))
210192, 192, 209syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) · ((pmTrsp‘𝐷)‘{𝐽, 𝐾})) = (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∘ ((pmTrsp‘𝐷)‘{𝐽, 𝐾})))
21127, 50pmtrfinv 19367 . . . . . . . . . . . 12 (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∈ ran (pmTrsp‘𝐷) → (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∘ ((pmTrsp‘𝐷)‘{𝐽, 𝐾})) = ( I ↾ 𝐷))
212191, 211syl 17 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∘ ((pmTrsp‘𝐷)‘{𝐽, 𝐾})) = ( I ↾ 𝐷))
213208, 210, 2123eqtrd 2768 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘⟨“𝐽𝐾”⟩) · (𝑀‘⟨“𝐾𝐽”⟩)) = ( I ↾ 𝐷))
214213oveq1d 7384 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (((𝑀‘⟨“𝐽𝐾”⟩) · (𝑀‘⟨“𝐾𝐽”⟩)) · (𝑀‘⟨“𝐾𝐿”⟩)) = (( I ↾ 𝐷) · (𝑀‘⟨“𝐾𝐿”⟩)))
215214oveq2d 7385 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘⟨“𝐼𝐽”⟩) · (((𝑀‘⟨“𝐽𝐾”⟩) · (𝑀‘⟨“𝐾𝐽”⟩)) · (𝑀‘⟨“𝐾𝐿”⟩))) = ((𝑀‘⟨“𝐼𝐽”⟩) · (( I ↾ 𝐷) · (𝑀‘⟨“𝐾𝐿”⟩))))
216204, 207, 2153eqtr2rd 2771 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘⟨“𝐼𝐽”⟩) · (( I ↾ 𝐷) · (𝑀‘⟨“𝐾𝐿”⟩))) = (((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)) · ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩))))
217182, 216eqtr3d 2766 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)) = (((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)) · ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩))))
2186, 15oveq12d 7387 . . . . . . 7 (𝜑 → (𝐸 · 𝐹) = ((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)))
219218ad2antrr 726 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = ((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)))
2207, 12, 146, 147, 148, 149, 151, 157, 158, 22cyc3co2 33070 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽𝐾𝐼”⟩) = ((𝑀‘⟨“𝐽𝐼”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)))
221134oveq1d 7384 . . . . . . . . 9 (𝜑 → ((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)) = ((𝑀‘⟨“𝐽𝐼”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)))
222221ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)) = ((𝑀‘⟨“𝐽𝐼”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)))
223220, 222eqtr4d 2767 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽𝐾𝐼”⟩) = ((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)))
2247, 12, 146, 148, 161, 147, 162, 166, 151, 22cyc3co2 33070 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐾𝐿𝐽”⟩) = ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)))
225223, 224oveq12d 7387 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘⟨“𝐽𝐾𝐼”⟩) · (𝑀‘⟨“𝐾𝐿𝐽”⟩)) = (((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)) · ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩))))
226217, 219, 2253eqtr4d 2774 . . . . 5 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = ((𝑀‘⟨“𝐽𝐾𝐼”⟩) · (𝑀‘⟨“𝐾𝐿𝐽”⟩)))
227176grpmndd 18854 . . . . . . 7 (𝜑𝑆 ∈ Mnd)
228227ad2antrr 726 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝑆 ∈ Mnd)
2297, 12, 146, 147, 148, 149, 151, 157, 158cycpm3cl 33065 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽𝐾𝐼”⟩) ∈ (Base‘𝑆))
230224, 202eqeltrd 2828 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐾𝐿𝐽”⟩) ∈ (Base‘𝑆))
23121, 22gsumws2 18745 . . . . . 6 ((𝑆 ∈ Mnd ∧ (𝑀‘⟨“𝐽𝐾𝐼”⟩) ∈ (Base‘𝑆) ∧ (𝑀‘⟨“𝐾𝐿𝐽”⟩) ∈ (Base‘𝑆)) → (𝑆 Σg ⟨“(𝑀‘⟨“𝐽𝐾𝐼”⟩)(𝑀‘⟨“𝐾𝐿𝐽”⟩)”⟩) = ((𝑀‘⟨“𝐽𝐾𝐼”⟩) · (𝑀‘⟨“𝐾𝐿𝐽”⟩)))
232228, 229, 230, 231syl3anc 1373 . . . . 5 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑆 Σg ⟨“(𝑀‘⟨“𝐽𝐾𝐼”⟩)(𝑀‘⟨“𝐾𝐿𝐽”⟩)”⟩) = ((𝑀‘⟨“𝐽𝐾𝐼”⟩) · (𝑀‘⟨“𝐾𝐿𝐽”⟩)))
233226, 232eqtr4d 2767 . . . 4 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = (𝑆 Σg ⟨“(𝑀‘⟨“𝐽𝐾𝐼”⟩)(𝑀‘⟨“𝐾𝐿𝐽”⟩)”⟩))
234169, 172, 233rspcedvd 3587 . . 3 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐))
235145, 234pm2.61dan 812 . 2 ((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐))
236104, 235pm2.61dan 812 1 (𝜑 → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cdif 3908  wss 3911  c0 4292  {csn 4585  {cpr 4587   cuni 4867   class class class wbr 5102   I cid 5525  ccnv 5630  ran crn 5632  cres 5633  cima 5634  ccom 5635  cfv 6499  (class class class)co 7369  2oc2o 8405  cen 8892  3c3 12218  chash 14271  Word cword 14454  ⟨“cs1 14536  ⟨“cs2 14783  ⟨“cs3 14784  Basecbs 17155  +gcplusg 17196  0gc0g 17378   Σg cgsu 17379  Mndcmnd 18637  Grpcgrp 18841  SymGrpcsymg 19275  pmTrspcpmtr 19347  pmEvencevpm 19396  toCycctocyc 33036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-reg 9521  ax-ac2 10392  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-card 9868  df-ac 10045  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-hash 14272  df-word 14455  df-concat 14512  df-s1 14537  df-substr 14582  df-pfx 14612  df-csh 14730  df-s2 14790  df-s3 14791  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-tset 17215  df-0g 17380  df-gsum 17381  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-efmnd 18772  df-grp 18844  df-symg 19276  df-pmtr 19348  df-tocyc 33037
This theorem is referenced by:  cyc3genpm  33082
  Copyright terms: Public domain W3C validator