Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cyc3genpmlem Structured version   Visualization version   GIF version

Theorem cyc3genpmlem 33162
Description: Lemma for cyc3genpm 33163. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Hypotheses
Ref Expression
cyc3genpm.t 𝐶 = (𝑀 “ (♯ “ {3}))
cyc3genpm.a 𝐴 = (pmEven‘𝐷)
cyc3genpm.s 𝑆 = (SymGrp‘𝐷)
cyc3genpm.n 𝑁 = (♯‘𝐷)
cyc3genpm.m 𝑀 = (toCyc‘𝐷)
cyc3genpmlem.t · = (+g𝑆)
cyc3genpmlem.i (𝜑𝐼𝐷)
cyc3genpmlem.j (𝜑𝐽𝐷)
cyc3genpmlem.k (𝜑𝐾𝐷)
cyc3genpmlem.l (𝜑𝐿𝐷)
cyc3genpmlem.e (𝜑𝐸 = (𝑀‘⟨“𝐼𝐽”⟩))
cyc3genpmlem.f (𝜑𝐹 = (𝑀‘⟨“𝐾𝐿”⟩))
cyc3genpmlem.d (𝜑𝐷𝑉)
cyc3genpmlem.1 (𝜑𝐼𝐽)
cyc3genpmlem.2 (𝜑𝐾𝐿)
Assertion
Ref Expression
cyc3genpmlem (𝜑 → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐))
Distinct variable groups:   · ,𝑐   𝐶,𝑐   𝐷,𝑐   𝐸,𝑐   𝐹,𝑐   𝐼,𝑐   𝐽,𝑐   𝐾,𝑐   𝐿,𝑐   𝑀,𝑐   𝑆,𝑐   𝜑,𝑐
Allowed substitution hints:   𝐴(𝑐)   𝑁(𝑐)   𝑉(𝑐)

Proof of Theorem cyc3genpmlem
StepHypRef Expression
1 wrd0 14557 . . . . 5 ∅ ∈ Word 𝐶
21a1i 11 . . . 4 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ∅ ∈ Word 𝐶)
3 simpr 484 . . . . . 6 ((((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ∅) → 𝑐 = ∅)
43oveq2d 7421 . . . . 5 ((((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ∅) → (𝑆 Σg 𝑐) = (𝑆 Σg ∅))
54eqeq2d 2746 . . . 4 ((((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ∅) → ((𝐸 · 𝐹) = (𝑆 Σg 𝑐) ↔ (𝐸 · 𝐹) = (𝑆 Σg ∅)))
6 cyc3genpmlem.e . . . . . . . . 9 (𝜑𝐸 = (𝑀‘⟨“𝐼𝐽”⟩))
7 cyc3genpm.m . . . . . . . . . 10 𝑀 = (toCyc‘𝐷)
8 cyc3genpmlem.d . . . . . . . . . 10 (𝜑𝐷𝑉)
9 cyc3genpmlem.i . . . . . . . . . 10 (𝜑𝐼𝐷)
10 cyc3genpmlem.j . . . . . . . . . 10 (𝜑𝐽𝐷)
11 cyc3genpmlem.1 . . . . . . . . . 10 (𝜑𝐼𝐽)
12 cyc3genpm.s . . . . . . . . . 10 𝑆 = (SymGrp‘𝐷)
137, 8, 9, 10, 11, 12cycpm2cl 33131 . . . . . . . . 9 (𝜑 → (𝑀‘⟨“𝐼𝐽”⟩) ∈ (Base‘𝑆))
146, 13eqeltrd 2834 . . . . . . . 8 (𝜑𝐸 ∈ (Base‘𝑆))
15 cyc3genpmlem.f . . . . . . . . 9 (𝜑𝐹 = (𝑀‘⟨“𝐾𝐿”⟩))
16 cyc3genpmlem.k . . . . . . . . . 10 (𝜑𝐾𝐷)
17 cyc3genpmlem.l . . . . . . . . . 10 (𝜑𝐿𝐷)
18 cyc3genpmlem.2 . . . . . . . . . 10 (𝜑𝐾𝐿)
197, 8, 16, 17, 18, 12cycpm2cl 33131 . . . . . . . . 9 (𝜑 → (𝑀‘⟨“𝐾𝐿”⟩) ∈ (Base‘𝑆))
2015, 19eqeltrd 2834 . . . . . . . 8 (𝜑𝐹 ∈ (Base‘𝑆))
21 eqid 2735 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
22 cyc3genpmlem.t . . . . . . . . 9 · = (+g𝑆)
2312, 21, 22symgov 19365 . . . . . . . 8 ((𝐸 ∈ (Base‘𝑆) ∧ 𝐹 ∈ (Base‘𝑆)) → (𝐸 · 𝐹) = (𝐸𝐹))
2414, 20, 23syl2anc 584 . . . . . . 7 (𝜑 → (𝐸 · 𝐹) = (𝐸𝐹))
2524ad2antrr 726 . . . . . 6 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = (𝐸𝐹))
266ad2antrr 726 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐸 = (𝑀‘⟨“𝐼𝐽”⟩))
27 eqid 2735 . . . . . . . . . 10 (pmTrsp‘𝐷) = (pmTrsp‘𝐷)
287, 8, 9, 10, 11, 27cycpm2tr 33130 . . . . . . . . 9 (𝜑 → (𝑀‘⟨“𝐼𝐽”⟩) = ((pmTrsp‘𝐷)‘{𝐼, 𝐽}))
2928ad2antrr 726 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐼𝐽”⟩) = ((pmTrsp‘𝐷)‘{𝐼, 𝐽}))
3026, 29eqtrd 2770 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐸 = ((pmTrsp‘𝐷)‘{𝐼, 𝐽}))
317, 8, 16, 17, 18, 27cycpm2tr 33130 . . . . . . . . 9 (𝜑 → (𝑀‘⟨“𝐾𝐿”⟩) = ((pmTrsp‘𝐷)‘{𝐾, 𝐿}))
3231ad2antrr 726 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐾𝐿”⟩) = ((pmTrsp‘𝐷)‘{𝐾, 𝐿}))
3315ad2antrr 726 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐹 = (𝑀‘⟨“𝐾𝐿”⟩))
349ad2antrr 726 . . . . . . . . . 10 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼𝐷)
3510ad2antrr 726 . . . . . . . . . 10 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽𝐷)
3611ad2antrr 726 . . . . . . . . . 10 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼𝐽)
37 simplr 768 . . . . . . . . . . 11 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼 ∈ {𝐾, 𝐿})
38 simpr 484 . . . . . . . . . . 11 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽 ∈ {𝐾, 𝐿})
3937, 38prssd 4798 . . . . . . . . . 10 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐼, 𝐽} ⊆ {𝐾, 𝐿})
40 ssprsseq 4801 . . . . . . . . . . 11 ((𝐼𝐷𝐽𝐷𝐼𝐽) → ({𝐼, 𝐽} ⊆ {𝐾, 𝐿} ↔ {𝐼, 𝐽} = {𝐾, 𝐿}))
4140biimpa 476 . . . . . . . . . 10 (((𝐼𝐷𝐽𝐷𝐼𝐽) ∧ {𝐼, 𝐽} ⊆ {𝐾, 𝐿}) → {𝐼, 𝐽} = {𝐾, 𝐿})
4234, 35, 36, 39, 41syl31anc 1375 . . . . . . . . 9 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐼, 𝐽} = {𝐾, 𝐿})
4342fveq2d 6880 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐼, 𝐽}) = ((pmTrsp‘𝐷)‘{𝐾, 𝐿}))
4432, 33, 433eqtr4d 2780 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐹 = ((pmTrsp‘𝐷)‘{𝐼, 𝐽}))
4530, 44coeq12d 5844 . . . . . 6 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸𝐹) = (((pmTrsp‘𝐷)‘{𝐼, 𝐽}) ∘ ((pmTrsp‘𝐷)‘{𝐼, 𝐽})))
468ad2antrr 726 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐷𝑉)
4734, 35prssd 4798 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐼, 𝐽} ⊆ 𝐷)
48 enpr2 10016 . . . . . . . . 9 ((𝐼𝐷𝐽𝐷𝐼𝐽) → {𝐼, 𝐽} ≈ 2o)
4934, 35, 36, 48syl3anc 1373 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐼, 𝐽} ≈ 2o)
50 eqid 2735 . . . . . . . . 9 ran (pmTrsp‘𝐷) = ran (pmTrsp‘𝐷)
5127, 50pmtrrn 19438 . . . . . . . 8 ((𝐷𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → ((pmTrsp‘𝐷)‘{𝐼, 𝐽}) ∈ ran (pmTrsp‘𝐷))
5246, 47, 49, 51syl3anc 1373 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐼, 𝐽}) ∈ ran (pmTrsp‘𝐷))
5327, 50pmtrfinv 19442 . . . . . . 7 (((pmTrsp‘𝐷)‘{𝐼, 𝐽}) ∈ ran (pmTrsp‘𝐷) → (((pmTrsp‘𝐷)‘{𝐼, 𝐽}) ∘ ((pmTrsp‘𝐷)‘{𝐼, 𝐽})) = ( I ↾ 𝐷))
5452, 53syl 17 . . . . . 6 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (((pmTrsp‘𝐷)‘{𝐼, 𝐽}) ∘ ((pmTrsp‘𝐷)‘{𝐼, 𝐽})) = ( I ↾ 𝐷))
5525, 45, 543eqtrd 2774 . . . . 5 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = ( I ↾ 𝐷))
5612symgid 19382 . . . . . . 7 (𝐷𝑉 → ( I ↾ 𝐷) = (0g𝑆))
5746, 56syl 17 . . . . . 6 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ( I ↾ 𝐷) = (0g𝑆))
58 eqid 2735 . . . . . . 7 (0g𝑆) = (0g𝑆)
5958gsum0 18662 . . . . . 6 (𝑆 Σg ∅) = (0g𝑆)
6057, 59eqtr4di 2788 . . . . 5 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ( I ↾ 𝐷) = (𝑆 Σg ∅))
6155, 60eqtrd 2770 . . . 4 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = (𝑆 Σg ∅))
622, 5, 61rspcedvd 3603 . . 3 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐))
638ad2antrr 726 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐷𝑉)
649ad2antrr 726 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼𝐷)
6516, 17prssd 4798 . . . . . . . . 9 (𝜑 → {𝐾, 𝐿} ⊆ 𝐷)
6665ad2antrr 726 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → {𝐾, 𝐿} ⊆ 𝐷)
67 simplr 768 . . . . . . . . 9 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼 ∈ {𝐾, 𝐿})
68 enpr2 10016 . . . . . . . . . . 11 ((𝐾𝐷𝐿𝐷𝐾𝐿) → {𝐾, 𝐿} ≈ 2o)
6916, 17, 18, 68syl3anc 1373 . . . . . . . . . 10 (𝜑 → {𝐾, 𝐿} ≈ 2o)
7069ad2antrr 726 . . . . . . . . 9 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → {𝐾, 𝐿} ≈ 2o)
71 unidifsnel 32516 . . . . . . . . 9 ((𝐼 ∈ {𝐾, 𝐿} ∧ {𝐾, 𝐿} ≈ 2o) → ({𝐾, 𝐿} ∖ {𝐼}) ∈ {𝐾, 𝐿})
7267, 70, 71syl2anc 584 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ({𝐾, 𝐿} ∖ {𝐼}) ∈ {𝐾, 𝐿})
7366, 72sseldd 3959 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ({𝐾, 𝐿} ∖ {𝐼}) ∈ 𝐷)
7410ad2antrr 726 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽𝐷)
75 unidifsnne 32517 . . . . . . . . 9 ((𝐼 ∈ {𝐾, 𝐿} ∧ {𝐾, 𝐿} ≈ 2o) → ({𝐾, 𝐿} ∖ {𝐼}) ≠ 𝐼)
7667, 70, 75syl2anc 584 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ({𝐾, 𝐿} ∖ {𝐼}) ≠ 𝐼)
7776necomd 2987 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼 ({𝐾, 𝐿} ∖ {𝐼}))
78 nelne2 3030 . . . . . . . 8 (( ({𝐾, 𝐿} ∖ {𝐼}) ∈ {𝐾, 𝐿} ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ({𝐾, 𝐿} ∖ {𝐼}) ≠ 𝐽)
7972, 78sylancom 588 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ({𝐾, 𝐿} ∖ {𝐼}) ≠ 𝐽)
8011necomd 2987 . . . . . . . 8 (𝜑𝐽𝐼)
8180ad2antrr 726 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽𝐼)
827, 12, 63, 64, 73, 74, 77, 79, 81cycpm3cl2 33147 . . . . . 6 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩) ∈ (𝑀 “ (♯ “ {3})))
83 cyc3genpm.t . . . . . 6 𝐶 = (𝑀 “ (♯ “ {3}))
8482, 83eleqtrrdi 2845 . . . . 5 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩) ∈ 𝐶)
8584s1cld 14621 . . . 4 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ⟨“(𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩)”⟩ ∈ Word 𝐶)
86 simpr 484 . . . . . 6 ((((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ⟨“(𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩)”⟩) → 𝑐 = ⟨“(𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩)”⟩)
8786oveq2d 7421 . . . . 5 ((((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ⟨“(𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩)”⟩) → (𝑆 Σg 𝑐) = (𝑆 Σg ⟨“(𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩)”⟩))
8887eqeq2d 2746 . . . 4 ((((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ⟨“(𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩)”⟩) → ((𝐸 · 𝐹) = (𝑆 Σg 𝑐) ↔ (𝐸 · 𝐹) = (𝑆 Σg ⟨“(𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩)”⟩)))
897, 12, 63, 64, 73, 74, 77, 79, 81, 22cyc3co2 33151 . . . . 5 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩) = ((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})”⟩)))
907, 12, 63, 64, 73, 74, 77, 79, 81cycpm3cl 33146 . . . . . 6 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩) ∈ (Base‘𝑆))
9121gsumws1 18816 . . . . . 6 ((𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩) ∈ (Base‘𝑆) → (𝑆 Σg ⟨“(𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩)”⟩) = (𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩))
9290, 91syl 17 . . . . 5 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑆 Σg ⟨“(𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩)”⟩) = (𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩))
936ad2antrr 726 . . . . . 6 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐸 = (𝑀‘⟨“𝐼𝐽”⟩))
94 en2eleq 10022 . . . . . . . . 9 ((𝐼 ∈ {𝐾, 𝐿} ∧ {𝐾, 𝐿} ≈ 2o) → {𝐾, 𝐿} = {𝐼, ({𝐾, 𝐿} ∖ {𝐼})})
9567, 70, 94syl2anc 584 . . . . . . . 8 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → {𝐾, 𝐿} = {𝐼, ({𝐾, 𝐿} ∖ {𝐼})})
9695fveq2d 6880 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐾, 𝐿}) = ((pmTrsp‘𝐷)‘{𝐼, ({𝐾, 𝐿} ∖ {𝐼})}))
9715, 31eqtrd 2770 . . . . . . . 8 (𝜑𝐹 = ((pmTrsp‘𝐷)‘{𝐾, 𝐿}))
9897ad2antrr 726 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐹 = ((pmTrsp‘𝐷)‘{𝐾, 𝐿}))
997, 63, 64, 73, 77, 27cycpm2tr 33130 . . . . . . 7 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})”⟩) = ((pmTrsp‘𝐷)‘{𝐼, ({𝐾, 𝐿} ∖ {𝐼})}))
10096, 98, 993eqtr4d 2780 . . . . . 6 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐹 = (𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})”⟩))
10193, 100oveq12d 7423 . . . . 5 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = ((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})”⟩)))
10289, 92, 1013eqtr4rd 2781 . . . 4 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = (𝑆 Σg ⟨“(𝑀‘⟨“𝐼 ({𝐾, 𝐿} ∖ {𝐼})𝐽”⟩)”⟩))
10385, 88, 102rspcedvd 3603 . . 3 (((𝜑𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐))
10462, 103pm2.61dan 812 . 2 ((𝜑𝐼 ∈ {𝐾, 𝐿}) → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐))
1058ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐷𝑉)
10610ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽𝐷)
10765ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐾, 𝐿} ⊆ 𝐷)
108 simpr 484 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽 ∈ {𝐾, 𝐿})
10969ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐾, 𝐿} ≈ 2o)
110 unidifsnel 32516 . . . . . . . . 9 ((𝐽 ∈ {𝐾, 𝐿} ∧ {𝐾, 𝐿} ≈ 2o) → ({𝐾, 𝐿} ∖ {𝐽}) ∈ {𝐾, 𝐿})
111108, 109, 110syl2anc 584 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ({𝐾, 𝐿} ∖ {𝐽}) ∈ {𝐾, 𝐿})
112107, 111sseldd 3959 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ({𝐾, 𝐿} ∖ {𝐽}) ∈ 𝐷)
1139ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼𝐷)
114 unidifsnne 32517 . . . . . . . . 9 ((𝐽 ∈ {𝐾, 𝐿} ∧ {𝐾, 𝐿} ≈ 2o) → ({𝐾, 𝐿} ∖ {𝐽}) ≠ 𝐽)
115108, 109, 114syl2anc 584 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ({𝐾, 𝐿} ∖ {𝐽}) ≠ 𝐽)
116115necomd 2987 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽 ({𝐾, 𝐿} ∖ {𝐽}))
117 simplr 768 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ¬ 𝐼 ∈ {𝐾, 𝐿})
118 nelne2 3030 . . . . . . . 8 (( ({𝐾, 𝐿} ∖ {𝐽}) ∈ {𝐾, 𝐿} ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) → ({𝐾, 𝐿} ∖ {𝐽}) ≠ 𝐼)
119111, 117, 118syl2anc 584 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ({𝐾, 𝐿} ∖ {𝐽}) ≠ 𝐼)
12011ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼𝐽)
1217, 12, 105, 106, 112, 113, 116, 119, 120cycpm3cl2 33147 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩) ∈ (𝑀 “ (♯ “ {3})))
122121, 83eleqtrrdi 2845 . . . . 5 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩) ∈ 𝐶)
123122s1cld 14621 . . . 4 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ⟨“(𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩)”⟩ ∈ Word 𝐶)
124 simpr 484 . . . . . 6 ((((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ⟨“(𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩)”⟩) → 𝑐 = ⟨“(𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩)”⟩)
125124oveq2d 7421 . . . . 5 ((((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ⟨“(𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩)”⟩) → (𝑆 Σg 𝑐) = (𝑆 Σg ⟨“(𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩)”⟩))
126125eqeq2d 2746 . . . 4 ((((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ⟨“(𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩)”⟩) → ((𝐸 · 𝐹) = (𝑆 Σg 𝑐) ↔ (𝐸 · 𝐹) = (𝑆 Σg ⟨“(𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩)”⟩)))
1277, 12, 105, 106, 112, 113, 116, 119, 120, 22cyc3co2 33151 . . . . 5 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩) = ((𝑀‘⟨“𝐽𝐼”⟩) · (𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})”⟩)))
1287, 12, 105, 106, 112, 113, 116, 119, 120cycpm3cl 33146 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩) ∈ (Base‘𝑆))
12921gsumws1 18816 . . . . . 6 ((𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩) ∈ (Base‘𝑆) → (𝑆 Σg ⟨“(𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩)”⟩) = (𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩))
130128, 129syl 17 . . . . 5 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑆 Σg ⟨“(𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩)”⟩) = (𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩))
131 prcom 4708 . . . . . . . . . 10 {𝐼, 𝐽} = {𝐽, 𝐼}
132131fveq2i 6879 . . . . . . . . 9 ((pmTrsp‘𝐷)‘{𝐼, 𝐽}) = ((pmTrsp‘𝐷)‘{𝐽, 𝐼})
1337, 8, 10, 9, 80, 27cycpm2tr 33130 . . . . . . . . 9 (𝜑 → (𝑀‘⟨“𝐽𝐼”⟩) = ((pmTrsp‘𝐷)‘{𝐽, 𝐼}))
134132, 28, 1333eqtr4a 2796 . . . . . . . 8 (𝜑 → (𝑀‘⟨“𝐼𝐽”⟩) = (𝑀‘⟨“𝐽𝐼”⟩))
1356, 134eqtrd 2770 . . . . . . 7 (𝜑𝐸 = (𝑀‘⟨“𝐽𝐼”⟩))
136135ad2antrr 726 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐸 = (𝑀‘⟨“𝐽𝐼”⟩))
137 en2eleq 10022 . . . . . . . . 9 ((𝐽 ∈ {𝐾, 𝐿} ∧ {𝐾, 𝐿} ≈ 2o) → {𝐾, 𝐿} = {𝐽, ({𝐾, 𝐿} ∖ {𝐽})})
138108, 109, 137syl2anc 584 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐾, 𝐿} = {𝐽, ({𝐾, 𝐿} ∖ {𝐽})})
139138fveq2d 6880 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐾, 𝐿}) = ((pmTrsp‘𝐷)‘{𝐽, ({𝐾, 𝐿} ∖ {𝐽})}))
14097ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐹 = ((pmTrsp‘𝐷)‘{𝐾, 𝐿}))
1417, 105, 106, 112, 116, 27cycpm2tr 33130 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})”⟩) = ((pmTrsp‘𝐷)‘{𝐽, ({𝐾, 𝐿} ∖ {𝐽})}))
142139, 140, 1413eqtr4d 2780 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐹 = (𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})”⟩))
143136, 142oveq12d 7423 . . . . 5 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = ((𝑀‘⟨“𝐽𝐼”⟩) · (𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})”⟩)))
144127, 130, 1433eqtr4rd 2781 . . . 4 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = (𝑆 Σg ⟨“(𝑀‘⟨“𝐽 ({𝐾, 𝐿} ∖ {𝐽})𝐼”⟩)”⟩))
145123, 126, 144rspcedvd 3603 . . 3 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐))
1468ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐷𝑉)
14710ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽𝐷)
14816ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐾𝐷)
1499ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼𝐷)
150 simpr 484 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ¬ 𝐽 ∈ {𝐾, 𝐿})
151147, 150nelpr1 4630 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽𝐾)
152 prid1g 4736 . . . . . . . . . 10 (𝐾𝐷𝐾 ∈ {𝐾, 𝐿})
15316, 152syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ {𝐾, 𝐿})
154153ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐾 ∈ {𝐾, 𝐿})
155 simplr 768 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ¬ 𝐼 ∈ {𝐾, 𝐿})
156 nelne2 3030 . . . . . . . 8 ((𝐾 ∈ {𝐾, 𝐿} ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) → 𝐾𝐼)
157154, 155, 156syl2anc 584 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐾𝐼)
15811ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼𝐽)
1597, 12, 146, 147, 148, 149, 151, 157, 158cycpm3cl2 33147 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽𝐾𝐼”⟩) ∈ (𝑀 “ (♯ “ {3})))
160159, 83eleqtrrdi 2845 . . . . 5 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽𝐾𝐼”⟩) ∈ 𝐶)
16117ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐿𝐷)
16218ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐾𝐿)
163 prid2g 4737 . . . . . . . . 9 (𝐿𝐷𝐿 ∈ {𝐾, 𝐿})
164161, 163syl 17 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐿 ∈ {𝐾, 𝐿})
165 nelne2 3030 . . . . . . . 8 ((𝐿 ∈ {𝐾, 𝐿} ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐿𝐽)
166164, 165sylancom 588 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐿𝐽)
1677, 12, 146, 148, 161, 147, 162, 166, 151cycpm3cl2 33147 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐾𝐿𝐽”⟩) ∈ (𝑀 “ (♯ “ {3})))
168167, 83eleqtrrdi 2845 . . . . 5 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐾𝐿𝐽”⟩) ∈ 𝐶)
169160, 168s2cld 14890 . . . 4 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ⟨“(𝑀‘⟨“𝐽𝐾𝐼”⟩)(𝑀‘⟨“𝐾𝐿𝐽”⟩)”⟩ ∈ Word 𝐶)
170 simpr 484 . . . . . 6 ((((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ⟨“(𝑀‘⟨“𝐽𝐾𝐼”⟩)(𝑀‘⟨“𝐾𝐿𝐽”⟩)”⟩) → 𝑐 = ⟨“(𝑀‘⟨“𝐽𝐾𝐼”⟩)(𝑀‘⟨“𝐾𝐿𝐽”⟩)”⟩)
171170oveq2d 7421 . . . . 5 ((((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ⟨“(𝑀‘⟨“𝐽𝐾𝐼”⟩)(𝑀‘⟨“𝐾𝐿𝐽”⟩)”⟩) → (𝑆 Σg 𝑐) = (𝑆 Σg ⟨“(𝑀‘⟨“𝐽𝐾𝐼”⟩)(𝑀‘⟨“𝐾𝐿𝐽”⟩)”⟩))
172171eqeq2d 2746 . . . 4 ((((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ⟨“(𝑀‘⟨“𝐽𝐾𝐼”⟩)(𝑀‘⟨“𝐾𝐿𝐽”⟩)”⟩) → ((𝐸 · 𝐹) = (𝑆 Σg 𝑐) ↔ (𝐸 · 𝐹) = (𝑆 Σg ⟨“(𝑀‘⟨“𝐽𝐾𝐼”⟩)(𝑀‘⟨“𝐾𝐿𝐽”⟩)”⟩)))
173146, 56syl 17 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ( I ↾ 𝐷) = (0g𝑆))
174173oveq1d 7420 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (( I ↾ 𝐷) · (𝑀‘⟨“𝐾𝐿”⟩)) = ((0g𝑆) · (𝑀‘⟨“𝐾𝐿”⟩)))
17512symggrp 19381 . . . . . . . . . . . 12 (𝐷𝑉𝑆 ∈ Grp)
1768, 175syl 17 . . . . . . . . . . 11 (𝜑𝑆 ∈ Grp)
177176ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝑆 ∈ Grp)
17819ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐾𝐿”⟩) ∈ (Base‘𝑆))
17921, 22, 58grplid 18950 . . . . . . . . . 10 ((𝑆 ∈ Grp ∧ (𝑀‘⟨“𝐾𝐿”⟩) ∈ (Base‘𝑆)) → ((0g𝑆) · (𝑀‘⟨“𝐾𝐿”⟩)) = (𝑀‘⟨“𝐾𝐿”⟩))
180177, 178, 179syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((0g𝑆) · (𝑀‘⟨“𝐾𝐿”⟩)) = (𝑀‘⟨“𝐾𝐿”⟩))
181174, 180eqtrd 2770 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (( I ↾ 𝐷) · (𝑀‘⟨“𝐾𝐿”⟩)) = (𝑀‘⟨“𝐾𝐿”⟩))
182181oveq2d 7421 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘⟨“𝐼𝐽”⟩) · (( I ↾ 𝐷) · (𝑀‘⟨“𝐾𝐿”⟩))) = ((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)))
18313ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐼𝐽”⟩) ∈ (Base‘𝑆))
1847, 146, 147, 148, 151, 27cycpm2tr 33130 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽𝐾”⟩) = ((pmTrsp‘𝐷)‘{𝐽, 𝐾}))
18550, 12, 21symgtrf 19450 . . . . . . . . . . 11 ran (pmTrsp‘𝐷) ⊆ (Base‘𝑆)
18610, 16prssd 4798 . . . . . . . . . . . . 13 (𝜑 → {𝐽, 𝐾} ⊆ 𝐷)
187186ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → {𝐽, 𝐾} ⊆ 𝐷)
188 enpr2 10016 . . . . . . . . . . . . 13 ((𝐽𝐷𝐾𝐷𝐽𝐾) → {𝐽, 𝐾} ≈ 2o)
189147, 148, 151, 188syl3anc 1373 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → {𝐽, 𝐾} ≈ 2o)
19027, 50pmtrrn 19438 . . . . . . . . . . . 12 ((𝐷𝑉 ∧ {𝐽, 𝐾} ⊆ 𝐷 ∧ {𝐽, 𝐾} ≈ 2o) → ((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∈ ran (pmTrsp‘𝐷))
191146, 187, 189, 190syl3anc 1373 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∈ ran (pmTrsp‘𝐷))
192185, 191sselid 3956 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∈ (Base‘𝑆))
193184, 192eqeltrd 2834 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽𝐾”⟩) ∈ (Base‘𝑆))
194151necomd 2987 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐾𝐽)
1957, 146, 148, 147, 194, 27cycpm2tr 33130 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐾𝐽”⟩) = ((pmTrsp‘𝐷)‘{𝐾, 𝐽}))
196 prcom 4708 . . . . . . . . . . . . . 14 {𝐽, 𝐾} = {𝐾, 𝐽}
197196a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → {𝐽, 𝐾} = {𝐾, 𝐽})
198197fveq2d 6880 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐽, 𝐾}) = ((pmTrsp‘𝐷)‘{𝐾, 𝐽}))
199195, 198eqtr4d 2773 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐾𝐽”⟩) = ((pmTrsp‘𝐷)‘{𝐽, 𝐾}))
200199, 192eqeltrd 2834 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐾𝐽”⟩) ∈ (Base‘𝑆))
20121, 22grpcl 18924 . . . . . . . . . 10 ((𝑆 ∈ Grp ∧ (𝑀‘⟨“𝐾𝐽”⟩) ∈ (Base‘𝑆) ∧ (𝑀‘⟨“𝐾𝐿”⟩) ∈ (Base‘𝑆)) → ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)) ∈ (Base‘𝑆))
202177, 200, 178, 201syl3anc 1373 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)) ∈ (Base‘𝑆))
20321, 22grpass 18925 . . . . . . . . 9 ((𝑆 ∈ Grp ∧ ((𝑀‘⟨“𝐼𝐽”⟩) ∈ (Base‘𝑆) ∧ (𝑀‘⟨“𝐽𝐾”⟩) ∈ (Base‘𝑆) ∧ ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)) ∈ (Base‘𝑆))) → (((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)) · ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩))) = ((𝑀‘⟨“𝐼𝐽”⟩) · ((𝑀‘⟨“𝐽𝐾”⟩) · ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)))))
204177, 183, 193, 202, 203syl13anc 1374 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)) · ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩))) = ((𝑀‘⟨“𝐼𝐽”⟩) · ((𝑀‘⟨“𝐽𝐾”⟩) · ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)))))
20521, 22grpass 18925 . . . . . . . . . 10 ((𝑆 ∈ Grp ∧ ((𝑀‘⟨“𝐽𝐾”⟩) ∈ (Base‘𝑆) ∧ (𝑀‘⟨“𝐾𝐽”⟩) ∈ (Base‘𝑆) ∧ (𝑀‘⟨“𝐾𝐿”⟩) ∈ (Base‘𝑆))) → (((𝑀‘⟨“𝐽𝐾”⟩) · (𝑀‘⟨“𝐾𝐽”⟩)) · (𝑀‘⟨“𝐾𝐿”⟩)) = ((𝑀‘⟨“𝐽𝐾”⟩) · ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩))))
206177, 193, 200, 178, 205syl13anc 1374 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (((𝑀‘⟨“𝐽𝐾”⟩) · (𝑀‘⟨“𝐾𝐽”⟩)) · (𝑀‘⟨“𝐾𝐿”⟩)) = ((𝑀‘⟨“𝐽𝐾”⟩) · ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩))))
207206oveq2d 7421 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘⟨“𝐼𝐽”⟩) · (((𝑀‘⟨“𝐽𝐾”⟩) · (𝑀‘⟨“𝐾𝐽”⟩)) · (𝑀‘⟨“𝐾𝐿”⟩))) = ((𝑀‘⟨“𝐼𝐽”⟩) · ((𝑀‘⟨“𝐽𝐾”⟩) · ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)))))
208184, 199oveq12d 7423 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘⟨“𝐽𝐾”⟩) · (𝑀‘⟨“𝐾𝐽”⟩)) = (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) · ((pmTrsp‘𝐷)‘{𝐽, 𝐾})))
20912, 21, 22symgov 19365 . . . . . . . . . . . 12 ((((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∈ (Base‘𝑆) ∧ ((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∈ (Base‘𝑆)) → (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) · ((pmTrsp‘𝐷)‘{𝐽, 𝐾})) = (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∘ ((pmTrsp‘𝐷)‘{𝐽, 𝐾})))
210192, 192, 209syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) · ((pmTrsp‘𝐷)‘{𝐽, 𝐾})) = (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∘ ((pmTrsp‘𝐷)‘{𝐽, 𝐾})))
21127, 50pmtrfinv 19442 . . . . . . . . . . . 12 (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∈ ran (pmTrsp‘𝐷) → (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∘ ((pmTrsp‘𝐷)‘{𝐽, 𝐾})) = ( I ↾ 𝐷))
212191, 211syl 17 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∘ ((pmTrsp‘𝐷)‘{𝐽, 𝐾})) = ( I ↾ 𝐷))
213208, 210, 2123eqtrd 2774 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘⟨“𝐽𝐾”⟩) · (𝑀‘⟨“𝐾𝐽”⟩)) = ( I ↾ 𝐷))
214213oveq1d 7420 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (((𝑀‘⟨“𝐽𝐾”⟩) · (𝑀‘⟨“𝐾𝐽”⟩)) · (𝑀‘⟨“𝐾𝐿”⟩)) = (( I ↾ 𝐷) · (𝑀‘⟨“𝐾𝐿”⟩)))
215214oveq2d 7421 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘⟨“𝐼𝐽”⟩) · (((𝑀‘⟨“𝐽𝐾”⟩) · (𝑀‘⟨“𝐾𝐽”⟩)) · (𝑀‘⟨“𝐾𝐿”⟩))) = ((𝑀‘⟨“𝐼𝐽”⟩) · (( I ↾ 𝐷) · (𝑀‘⟨“𝐾𝐿”⟩))))
216204, 207, 2153eqtr2rd 2777 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘⟨“𝐼𝐽”⟩) · (( I ↾ 𝐷) · (𝑀‘⟨“𝐾𝐿”⟩))) = (((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)) · ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩))))
217182, 216eqtr3d 2772 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)) = (((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)) · ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩))))
2186, 15oveq12d 7423 . . . . . . 7 (𝜑 → (𝐸 · 𝐹) = ((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)))
219218ad2antrr 726 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = ((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)))
2207, 12, 146, 147, 148, 149, 151, 157, 158, 22cyc3co2 33151 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽𝐾𝐼”⟩) = ((𝑀‘⟨“𝐽𝐼”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)))
221134oveq1d 7420 . . . . . . . . 9 (𝜑 → ((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)) = ((𝑀‘⟨“𝐽𝐼”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)))
222221ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)) = ((𝑀‘⟨“𝐽𝐼”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)))
223220, 222eqtr4d 2773 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽𝐾𝐼”⟩) = ((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)))
2247, 12, 146, 148, 161, 147, 162, 166, 151, 22cyc3co2 33151 . . . . . . 7 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐾𝐿𝐽”⟩) = ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩)))
225223, 224oveq12d 7423 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘⟨“𝐽𝐾𝐼”⟩) · (𝑀‘⟨“𝐾𝐿𝐽”⟩)) = (((𝑀‘⟨“𝐼𝐽”⟩) · (𝑀‘⟨“𝐽𝐾”⟩)) · ((𝑀‘⟨“𝐾𝐽”⟩) · (𝑀‘⟨“𝐾𝐿”⟩))))
226217, 219, 2253eqtr4d 2780 . . . . 5 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = ((𝑀‘⟨“𝐽𝐾𝐼”⟩) · (𝑀‘⟨“𝐾𝐿𝐽”⟩)))
227176grpmndd 18929 . . . . . . 7 (𝜑𝑆 ∈ Mnd)
228227ad2antrr 726 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝑆 ∈ Mnd)
2297, 12, 146, 147, 148, 149, 151, 157, 158cycpm3cl 33146 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐽𝐾𝐼”⟩) ∈ (Base‘𝑆))
230224, 202eqeltrd 2834 . . . . . 6 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘⟨“𝐾𝐿𝐽”⟩) ∈ (Base‘𝑆))
23121, 22gsumws2 18820 . . . . . 6 ((𝑆 ∈ Mnd ∧ (𝑀‘⟨“𝐽𝐾𝐼”⟩) ∈ (Base‘𝑆) ∧ (𝑀‘⟨“𝐾𝐿𝐽”⟩) ∈ (Base‘𝑆)) → (𝑆 Σg ⟨“(𝑀‘⟨“𝐽𝐾𝐼”⟩)(𝑀‘⟨“𝐾𝐿𝐽”⟩)”⟩) = ((𝑀‘⟨“𝐽𝐾𝐼”⟩) · (𝑀‘⟨“𝐾𝐿𝐽”⟩)))
232228, 229, 230, 231syl3anc 1373 . . . . 5 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑆 Σg ⟨“(𝑀‘⟨“𝐽𝐾𝐼”⟩)(𝑀‘⟨“𝐾𝐿𝐽”⟩)”⟩) = ((𝑀‘⟨“𝐽𝐾𝐼”⟩) · (𝑀‘⟨“𝐾𝐿𝐽”⟩)))
233226, 232eqtr4d 2773 . . . 4 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = (𝑆 Σg ⟨“(𝑀‘⟨“𝐽𝐾𝐼”⟩)(𝑀‘⟨“𝐾𝐿𝐽”⟩)”⟩))
234169, 172, 233rspcedvd 3603 . . 3 (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐))
235145, 234pm2.61dan 812 . 2 ((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐))
236104, 235pm2.61dan 812 1 (𝜑 → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wrex 3060  cdif 3923  wss 3926  c0 4308  {csn 4601  {cpr 4603   cuni 4883   class class class wbr 5119   I cid 5547  ccnv 5653  ran crn 5655  cres 5656  cima 5657  ccom 5658  cfv 6531  (class class class)co 7405  2oc2o 8474  cen 8956  3c3 12296  chash 14348  Word cword 14531  ⟨“cs1 14613  ⟨“cs2 14860  ⟨“cs3 14861  Basecbs 17228  +gcplusg 17271  0gc0g 17453   Σg cgsu 17454  Mndcmnd 18712  Grpcgrp 18916  SymGrpcsymg 19350  pmTrspcpmtr 19422  pmEvencevpm 19471  toCycctocyc 33117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-reg 9606  ax-ac2 10477  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-card 9953  df-ac 10130  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-hash 14349  df-word 14532  df-concat 14589  df-s1 14614  df-substr 14659  df-pfx 14689  df-csh 14807  df-s2 14867  df-s3 14868  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-tset 17290  df-0g 17455  df-gsum 17456  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-efmnd 18847  df-grp 18919  df-symg 19351  df-pmtr 19423  df-tocyc 33118
This theorem is referenced by:  cyc3genpm  33163
  Copyright terms: Public domain W3C validator