Proof of Theorem cyc3genpmlem
Step | Hyp | Ref
| Expression |
1 | | wrd0 14170 |
. . . . 5
⊢ ∅
∈ Word 𝐶 |
2 | 1 | a1i 11 |
. . . 4
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ∅ ∈ Word 𝐶) |
3 | | simpr 484 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ∅) → 𝑐 = ∅) |
4 | 3 | oveq2d 7271 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ∅) → (𝑆 Σg 𝑐) = (𝑆 Σg
∅)) |
5 | 4 | eqeq2d 2749 |
. . . 4
⊢ ((((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ∅) → ((𝐸 · 𝐹) = (𝑆 Σg 𝑐) ↔ (𝐸 · 𝐹) = (𝑆 Σg
∅))) |
6 | | cyc3genpmlem.e |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 = (𝑀‘〈“𝐼𝐽”〉)) |
7 | | cyc3genpm.m |
. . . . . . . . . 10
⊢ 𝑀 = (toCyc‘𝐷) |
8 | | cyc3genpmlem.d |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ 𝑉) |
9 | | cyc3genpmlem.i |
. . . . . . . . . 10
⊢ (𝜑 → 𝐼 ∈ 𝐷) |
10 | | cyc3genpmlem.j |
. . . . . . . . . 10
⊢ (𝜑 → 𝐽 ∈ 𝐷) |
11 | | cyc3genpmlem.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐼 ≠ 𝐽) |
12 | | cyc3genpm.s |
. . . . . . . . . 10
⊢ 𝑆 = (SymGrp‘𝐷) |
13 | 7, 8, 9, 10, 11, 12 | cycpm2cl 31289 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀‘〈“𝐼𝐽”〉) ∈ (Base‘𝑆)) |
14 | 6, 13 | eqeltrd 2839 |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ (Base‘𝑆)) |
15 | | cyc3genpmlem.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 = (𝑀‘〈“𝐾𝐿”〉)) |
16 | | cyc3genpmlem.k |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ 𝐷) |
17 | | cyc3genpmlem.l |
. . . . . . . . . 10
⊢ (𝜑 → 𝐿 ∈ 𝐷) |
18 | | cyc3genpmlem.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ≠ 𝐿) |
19 | 7, 8, 16, 17, 18, 12 | cycpm2cl 31289 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀‘〈“𝐾𝐿”〉) ∈ (Base‘𝑆)) |
20 | 15, 19 | eqeltrd 2839 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (Base‘𝑆)) |
21 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝑆) =
(Base‘𝑆) |
22 | | cyc3genpmlem.t |
. . . . . . . . 9
⊢ · =
(+g‘𝑆) |
23 | 12, 21, 22 | symgov 18906 |
. . . . . . . 8
⊢ ((𝐸 ∈ (Base‘𝑆) ∧ 𝐹 ∈ (Base‘𝑆)) → (𝐸 · 𝐹) = (𝐸 ∘ 𝐹)) |
24 | 14, 20, 23 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → (𝐸 · 𝐹) = (𝐸 ∘ 𝐹)) |
25 | 24 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = (𝐸 ∘ 𝐹)) |
26 | 6 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐸 = (𝑀‘〈“𝐼𝐽”〉)) |
27 | | eqid 2738 |
. . . . . . . . . 10
⊢
(pmTrsp‘𝐷) =
(pmTrsp‘𝐷) |
28 | 7, 8, 9, 10, 11, 27 | cycpm2tr 31288 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀‘〈“𝐼𝐽”〉) = ((pmTrsp‘𝐷)‘{𝐼, 𝐽})) |
29 | 28 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐼𝐽”〉) = ((pmTrsp‘𝐷)‘{𝐼, 𝐽})) |
30 | 26, 29 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐸 = ((pmTrsp‘𝐷)‘{𝐼, 𝐽})) |
31 | 7, 8, 16, 17, 18, 27 | cycpm2tr 31288 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀‘〈“𝐾𝐿”〉) = ((pmTrsp‘𝐷)‘{𝐾, 𝐿})) |
32 | 31 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐾𝐿”〉) = ((pmTrsp‘𝐷)‘{𝐾, 𝐿})) |
33 | 15 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐹 = (𝑀‘〈“𝐾𝐿”〉)) |
34 | 9 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼 ∈ 𝐷) |
35 | 10 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽 ∈ 𝐷) |
36 | 11 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼 ≠ 𝐽) |
37 | | simplr 765 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼 ∈ {𝐾, 𝐿}) |
38 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽 ∈ {𝐾, 𝐿}) |
39 | 37, 38 | prssd 4752 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐼, 𝐽} ⊆ {𝐾, 𝐿}) |
40 | | ssprsseq 4755 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝐷 ∧ 𝐽 ∈ 𝐷 ∧ 𝐼 ≠ 𝐽) → ({𝐼, 𝐽} ⊆ {𝐾, 𝐿} ↔ {𝐼, 𝐽} = {𝐾, 𝐿})) |
41 | 40 | biimpa 476 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝐷 ∧ 𝐽 ∈ 𝐷 ∧ 𝐼 ≠ 𝐽) ∧ {𝐼, 𝐽} ⊆ {𝐾, 𝐿}) → {𝐼, 𝐽} = {𝐾, 𝐿}) |
42 | 34, 35, 36, 39, 41 | syl31anc 1371 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐼, 𝐽} = {𝐾, 𝐿}) |
43 | 42 | fveq2d 6760 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐼, 𝐽}) = ((pmTrsp‘𝐷)‘{𝐾, 𝐿})) |
44 | 32, 33, 43 | 3eqtr4d 2788 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐹 = ((pmTrsp‘𝐷)‘{𝐼, 𝐽})) |
45 | 30, 44 | coeq12d 5762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 ∘ 𝐹) = (((pmTrsp‘𝐷)‘{𝐼, 𝐽}) ∘ ((pmTrsp‘𝐷)‘{𝐼, 𝐽}))) |
46 | 8 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐷 ∈ 𝑉) |
47 | 34, 35 | prssd 4752 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐼, 𝐽} ⊆ 𝐷) |
48 | | pr2nelem 9691 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝐷 ∧ 𝐽 ∈ 𝐷 ∧ 𝐼 ≠ 𝐽) → {𝐼, 𝐽} ≈ 2o) |
49 | 34, 35, 36, 48 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐼, 𝐽} ≈ 2o) |
50 | | eqid 2738 |
. . . . . . . . 9
⊢ ran
(pmTrsp‘𝐷) = ran
(pmTrsp‘𝐷) |
51 | 27, 50 | pmtrrn 18980 |
. . . . . . . 8
⊢ ((𝐷 ∈ 𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) →
((pmTrsp‘𝐷)‘{𝐼, 𝐽}) ∈ ran (pmTrsp‘𝐷)) |
52 | 46, 47, 49, 51 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐼, 𝐽}) ∈ ran (pmTrsp‘𝐷)) |
53 | 27, 50 | pmtrfinv 18984 |
. . . . . . 7
⊢
(((pmTrsp‘𝐷)‘{𝐼, 𝐽}) ∈ ran (pmTrsp‘𝐷) → (((pmTrsp‘𝐷)‘{𝐼, 𝐽}) ∘ ((pmTrsp‘𝐷)‘{𝐼, 𝐽})) = ( I ↾ 𝐷)) |
54 | 52, 53 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (((pmTrsp‘𝐷)‘{𝐼, 𝐽}) ∘ ((pmTrsp‘𝐷)‘{𝐼, 𝐽})) = ( I ↾ 𝐷)) |
55 | 25, 45, 54 | 3eqtrd 2782 |
. . . . 5
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = ( I ↾ 𝐷)) |
56 | 12 | symgid 18924 |
. . . . . . 7
⊢ (𝐷 ∈ 𝑉 → ( I ↾ 𝐷) = (0g‘𝑆)) |
57 | 46, 56 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ( I ↾ 𝐷) = (0g‘𝑆)) |
58 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘𝑆) = (0g‘𝑆) |
59 | 58 | gsum0 18283 |
. . . . . 6
⊢ (𝑆 Σg
∅) = (0g‘𝑆) |
60 | 57, 59 | eqtr4di 2797 |
. . . . 5
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ( I ↾ 𝐷) = (𝑆 Σg
∅)) |
61 | 55, 60 | eqtrd 2778 |
. . . 4
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = (𝑆 Σg
∅)) |
62 | 2, 5, 61 | rspcedvd 3555 |
. . 3
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐)) |
63 | 8 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐷 ∈ 𝑉) |
64 | 9 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼 ∈ 𝐷) |
65 | 16, 17 | prssd 4752 |
. . . . . . . . 9
⊢ (𝜑 → {𝐾, 𝐿} ⊆ 𝐷) |
66 | 65 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → {𝐾, 𝐿} ⊆ 𝐷) |
67 | | simplr 765 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼 ∈ {𝐾, 𝐿}) |
68 | | pr2nelem 9691 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ 𝐷 ∧ 𝐿 ∈ 𝐷 ∧ 𝐾 ≠ 𝐿) → {𝐾, 𝐿} ≈ 2o) |
69 | 16, 17, 18, 68 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (𝜑 → {𝐾, 𝐿} ≈ 2o) |
70 | 69 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → {𝐾, 𝐿} ≈ 2o) |
71 | | unidifsnel 30784 |
. . . . . . . . 9
⊢ ((𝐼 ∈ {𝐾, 𝐿} ∧ {𝐾, 𝐿} ≈ 2o) → ∪ ({𝐾,
𝐿} ∖ {𝐼}) ∈ {𝐾, 𝐿}) |
72 | 67, 70, 71 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ∪
({𝐾, 𝐿} ∖ {𝐼}) ∈ {𝐾, 𝐿}) |
73 | 66, 72 | sseldd 3918 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ∪
({𝐾, 𝐿} ∖ {𝐼}) ∈ 𝐷) |
74 | 10 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽 ∈ 𝐷) |
75 | | unidifsnne 30785 |
. . . . . . . . 9
⊢ ((𝐼 ∈ {𝐾, 𝐿} ∧ {𝐾, 𝐿} ≈ 2o) → ∪ ({𝐾,
𝐿} ∖ {𝐼}) ≠ 𝐼) |
76 | 67, 70, 75 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ∪
({𝐾, 𝐿} ∖ {𝐼}) ≠ 𝐼) |
77 | 76 | necomd 2998 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼 ≠ ∪ ({𝐾, 𝐿} ∖ {𝐼})) |
78 | | nelne2 3041 |
. . . . . . . 8
⊢ ((∪ ({𝐾,
𝐿} ∖ {𝐼}) ∈ {𝐾, 𝐿} ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ∪
({𝐾, 𝐿} ∖ {𝐼}) ≠ 𝐽) |
79 | 72, 78 | sylancom 587 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ∪
({𝐾, 𝐿} ∖ {𝐼}) ≠ 𝐽) |
80 | 11 | necomd 2998 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ≠ 𝐼) |
81 | 80 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽 ≠ 𝐼) |
82 | 7, 12, 63, 64, 73, 74, 77, 79, 81 | cycpm3cl2 31305 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})𝐽”〉) ∈ (𝑀 “ (◡♯ “ {3}))) |
83 | | cyc3genpm.t |
. . . . . 6
⊢ 𝐶 = (𝑀 “ (◡♯ “ {3})) |
84 | 82, 83 | eleqtrrdi 2850 |
. . . . 5
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})𝐽”〉) ∈ 𝐶) |
85 | 84 | s1cld 14236 |
. . . 4
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 〈“(𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})𝐽”〉)”〉 ∈ Word
𝐶) |
86 | | simpr 484 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = 〈“(𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})𝐽”〉)”〉) → 𝑐 = 〈“(𝑀‘〈“𝐼∪
({𝐾, 𝐿} ∖ {𝐼})𝐽”〉)”〉) |
87 | 86 | oveq2d 7271 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = 〈“(𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})𝐽”〉)”〉) → (𝑆 Σg
𝑐) = (𝑆 Σg
〈“(𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})𝐽”〉)”〉)) |
88 | 87 | eqeq2d 2749 |
. . . 4
⊢ ((((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = 〈“(𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})𝐽”〉)”〉) → ((𝐸 · 𝐹) = (𝑆 Σg 𝑐) ↔ (𝐸 · 𝐹) = (𝑆 Σg
〈“(𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})𝐽”〉)”〉))) |
89 | 7, 12, 63, 64, 73, 74, 77, 79, 81, 22 | cyc3co2 31309 |
. . . . 5
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})𝐽”〉) = ((𝑀‘〈“𝐼𝐽”〉) · (𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})”〉))) |
90 | 7, 12, 63, 64, 73, 74, 77, 79, 81 | cycpm3cl 31304 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})𝐽”〉) ∈ (Base‘𝑆)) |
91 | 21 | gsumws1 18391 |
. . . . . 6
⊢ ((𝑀‘〈“𝐼∪
({𝐾, 𝐿} ∖ {𝐼})𝐽”〉) ∈ (Base‘𝑆) → (𝑆 Σg
〈“(𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})𝐽”〉)”〉) = (𝑀‘〈“𝐼∪
({𝐾, 𝐿} ∖ {𝐼})𝐽”〉)) |
92 | 90, 91 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑆 Σg
〈“(𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})𝐽”〉)”〉) = (𝑀‘〈“𝐼∪
({𝐾, 𝐿} ∖ {𝐼})𝐽”〉)) |
93 | 6 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐸 = (𝑀‘〈“𝐼𝐽”〉)) |
94 | | en2eleq 9695 |
. . . . . . . . 9
⊢ ((𝐼 ∈ {𝐾, 𝐿} ∧ {𝐾, 𝐿} ≈ 2o) → {𝐾, 𝐿} = {𝐼, ∪ ({𝐾, 𝐿} ∖ {𝐼})}) |
95 | 67, 70, 94 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → {𝐾, 𝐿} = {𝐼, ∪ ({𝐾, 𝐿} ∖ {𝐼})}) |
96 | 95 | fveq2d 6760 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐾, 𝐿}) = ((pmTrsp‘𝐷)‘{𝐼, ∪ ({𝐾, 𝐿} ∖ {𝐼})})) |
97 | 15, 31 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 = ((pmTrsp‘𝐷)‘{𝐾, 𝐿})) |
98 | 97 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐹 = ((pmTrsp‘𝐷)‘{𝐾, 𝐿})) |
99 | 7, 63, 64, 73, 77, 27 | cycpm2tr 31288 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})”〉) = ((pmTrsp‘𝐷)‘{𝐼, ∪ ({𝐾, 𝐿} ∖ {𝐼})})) |
100 | 96, 98, 99 | 3eqtr4d 2788 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐹 = (𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})”〉)) |
101 | 93, 100 | oveq12d 7273 |
. . . . 5
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = ((𝑀‘〈“𝐼𝐽”〉) · (𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})”〉))) |
102 | 89, 92, 101 | 3eqtr4rd 2789 |
. . . 4
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = (𝑆 Σg
〈“(𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})𝐽”〉)”〉)) |
103 | 85, 88, 102 | rspcedvd 3555 |
. . 3
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐)) |
104 | 62, 103 | pm2.61dan 809 |
. 2
⊢ ((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐)) |
105 | 8 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐷 ∈ 𝑉) |
106 | 10 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽 ∈ 𝐷) |
107 | 65 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐾, 𝐿} ⊆ 𝐷) |
108 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽 ∈ {𝐾, 𝐿}) |
109 | 69 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐾, 𝐿} ≈ 2o) |
110 | | unidifsnel 30784 |
. . . . . . . . 9
⊢ ((𝐽 ∈ {𝐾, 𝐿} ∧ {𝐾, 𝐿} ≈ 2o) → ∪ ({𝐾,
𝐿} ∖ {𝐽}) ∈ {𝐾, 𝐿}) |
111 | 108, 109,
110 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ∪
({𝐾, 𝐿} ∖ {𝐽}) ∈ {𝐾, 𝐿}) |
112 | 107, 111 | sseldd 3918 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ∪
({𝐾, 𝐿} ∖ {𝐽}) ∈ 𝐷) |
113 | 9 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼 ∈ 𝐷) |
114 | | unidifsnne 30785 |
. . . . . . . . 9
⊢ ((𝐽 ∈ {𝐾, 𝐿} ∧ {𝐾, 𝐿} ≈ 2o) → ∪ ({𝐾,
𝐿} ∖ {𝐽}) ≠ 𝐽) |
115 | 108, 109,
114 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ∪
({𝐾, 𝐿} ∖ {𝐽}) ≠ 𝐽) |
116 | 115 | necomd 2998 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽 ≠ ∪ ({𝐾, 𝐿} ∖ {𝐽})) |
117 | | simplr 765 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ¬ 𝐼 ∈ {𝐾, 𝐿}) |
118 | | nelne2 3041 |
. . . . . . . 8
⊢ ((∪ ({𝐾,
𝐿} ∖ {𝐽}) ∈ {𝐾, 𝐿} ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) → ∪
({𝐾, 𝐿} ∖ {𝐽}) ≠ 𝐼) |
119 | 111, 117,
118 | syl2anc 583 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ∪
({𝐾, 𝐿} ∖ {𝐽}) ≠ 𝐼) |
120 | 11 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼 ≠ 𝐽) |
121 | 7, 12, 105, 106, 112, 113, 116, 119, 120 | cycpm3cl2 31305 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})𝐼”〉) ∈ (𝑀 “ (◡♯ “ {3}))) |
122 | 121, 83 | eleqtrrdi 2850 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})𝐼”〉) ∈ 𝐶) |
123 | 122 | s1cld 14236 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 〈“(𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})𝐼”〉)”〉 ∈ Word
𝐶) |
124 | | simpr 484 |
. . . . . 6
⊢ ((((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = 〈“(𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})𝐼”〉)”〉) → 𝑐 = 〈“(𝑀‘〈“𝐽∪
({𝐾, 𝐿} ∖ {𝐽})𝐼”〉)”〉) |
125 | 124 | oveq2d 7271 |
. . . . 5
⊢ ((((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = 〈“(𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})𝐼”〉)”〉) → (𝑆 Σg
𝑐) = (𝑆 Σg
〈“(𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})𝐼”〉)”〉)) |
126 | 125 | eqeq2d 2749 |
. . . 4
⊢ ((((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = 〈“(𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})𝐼”〉)”〉) → ((𝐸 · 𝐹) = (𝑆 Σg 𝑐) ↔ (𝐸 · 𝐹) = (𝑆 Σg
〈“(𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})𝐼”〉)”〉))) |
127 | 7, 12, 105, 106, 112, 113, 116, 119, 120, 22 | cyc3co2 31309 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})𝐼”〉) = ((𝑀‘〈“𝐽𝐼”〉) · (𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})”〉))) |
128 | 7, 12, 105, 106, 112, 113, 116, 119, 120 | cycpm3cl 31304 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})𝐼”〉) ∈ (Base‘𝑆)) |
129 | 21 | gsumws1 18391 |
. . . . . 6
⊢ ((𝑀‘〈“𝐽∪
({𝐾, 𝐿} ∖ {𝐽})𝐼”〉) ∈ (Base‘𝑆) → (𝑆 Σg
〈“(𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})𝐼”〉)”〉) = (𝑀‘〈“𝐽∪
({𝐾, 𝐿} ∖ {𝐽})𝐼”〉)) |
130 | 128, 129 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑆 Σg
〈“(𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})𝐼”〉)”〉) = (𝑀‘〈“𝐽∪
({𝐾, 𝐿} ∖ {𝐽})𝐼”〉)) |
131 | | prcom 4665 |
. . . . . . . . . 10
⊢ {𝐼, 𝐽} = {𝐽, 𝐼} |
132 | 131 | fveq2i 6759 |
. . . . . . . . 9
⊢
((pmTrsp‘𝐷)‘{𝐼, 𝐽}) = ((pmTrsp‘𝐷)‘{𝐽, 𝐼}) |
133 | 7, 8, 10, 9, 80, 27 | cycpm2tr 31288 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀‘〈“𝐽𝐼”〉) = ((pmTrsp‘𝐷)‘{𝐽, 𝐼})) |
134 | 132, 28, 133 | 3eqtr4a 2805 |
. . . . . . . 8
⊢ (𝜑 → (𝑀‘〈“𝐼𝐽”〉) = (𝑀‘〈“𝐽𝐼”〉)) |
135 | 6, 134 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → 𝐸 = (𝑀‘〈“𝐽𝐼”〉)) |
136 | 135 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐸 = (𝑀‘〈“𝐽𝐼”〉)) |
137 | | en2eleq 9695 |
. . . . . . . . 9
⊢ ((𝐽 ∈ {𝐾, 𝐿} ∧ {𝐾, 𝐿} ≈ 2o) → {𝐾, 𝐿} = {𝐽, ∪ ({𝐾, 𝐿} ∖ {𝐽})}) |
138 | 108, 109,
137 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐾, 𝐿} = {𝐽, ∪ ({𝐾, 𝐿} ∖ {𝐽})}) |
139 | 138 | fveq2d 6760 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐾, 𝐿}) = ((pmTrsp‘𝐷)‘{𝐽, ∪ ({𝐾, 𝐿} ∖ {𝐽})})) |
140 | 97 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐹 = ((pmTrsp‘𝐷)‘{𝐾, 𝐿})) |
141 | 7, 105, 106, 112, 116, 27 | cycpm2tr 31288 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})”〉) = ((pmTrsp‘𝐷)‘{𝐽, ∪ ({𝐾, 𝐿} ∖ {𝐽})})) |
142 | 139, 140,
141 | 3eqtr4d 2788 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐹 = (𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})”〉)) |
143 | 136, 142 | oveq12d 7273 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = ((𝑀‘〈“𝐽𝐼”〉) · (𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})”〉))) |
144 | 127, 130,
143 | 3eqtr4rd 2789 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = (𝑆 Σg
〈“(𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})𝐼”〉)”〉)) |
145 | 123, 126,
144 | rspcedvd 3555 |
. . 3
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐)) |
146 | 8 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐷 ∈ 𝑉) |
147 | 10 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽 ∈ 𝐷) |
148 | 16 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐾 ∈ 𝐷) |
149 | 9 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼 ∈ 𝐷) |
150 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ¬ 𝐽 ∈ {𝐾, 𝐿}) |
151 | 147, 150 | nelpr1 4586 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽 ≠ 𝐾) |
152 | | prid1g 4693 |
. . . . . . . . . 10
⊢ (𝐾 ∈ 𝐷 → 𝐾 ∈ {𝐾, 𝐿}) |
153 | 16, 152 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ {𝐾, 𝐿}) |
154 | 153 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐾 ∈ {𝐾, 𝐿}) |
155 | | simplr 765 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ¬ 𝐼 ∈ {𝐾, 𝐿}) |
156 | | nelne2 3041 |
. . . . . . . 8
⊢ ((𝐾 ∈ {𝐾, 𝐿} ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) → 𝐾 ≠ 𝐼) |
157 | 154, 155,
156 | syl2anc 583 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐾 ≠ 𝐼) |
158 | 11 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼 ≠ 𝐽) |
159 | 7, 12, 146, 147, 148, 149, 151, 157, 158 | cycpm3cl2 31305 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐽𝐾𝐼”〉) ∈ (𝑀 “ (◡♯ “ {3}))) |
160 | 159, 83 | eleqtrrdi 2850 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐽𝐾𝐼”〉) ∈ 𝐶) |
161 | 17 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐿 ∈ 𝐷) |
162 | 18 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐾 ≠ 𝐿) |
163 | | prid2g 4694 |
. . . . . . . . 9
⊢ (𝐿 ∈ 𝐷 → 𝐿 ∈ {𝐾, 𝐿}) |
164 | 161, 163 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐿 ∈ {𝐾, 𝐿}) |
165 | | nelne2 3041 |
. . . . . . . 8
⊢ ((𝐿 ∈ {𝐾, 𝐿} ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐿 ≠ 𝐽) |
166 | 164, 165 | sylancom 587 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐿 ≠ 𝐽) |
167 | 7, 12, 146, 148, 161, 147, 162, 166, 151 | cycpm3cl2 31305 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐾𝐿𝐽”〉) ∈ (𝑀 “ (◡♯ “ {3}))) |
168 | 167, 83 | eleqtrrdi 2850 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐾𝐿𝐽”〉) ∈ 𝐶) |
169 | 160, 168 | s2cld 14512 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 〈“(𝑀‘〈“𝐽𝐾𝐼”〉)(𝑀‘〈“𝐾𝐿𝐽”〉)”〉 ∈ Word
𝐶) |
170 | | simpr 484 |
. . . . . 6
⊢ ((((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = 〈“(𝑀‘〈“𝐽𝐾𝐼”〉)(𝑀‘〈“𝐾𝐿𝐽”〉)”〉) → 𝑐 = 〈“(𝑀‘〈“𝐽𝐾𝐼”〉)(𝑀‘〈“𝐾𝐿𝐽”〉)”〉) |
171 | 170 | oveq2d 7271 |
. . . . 5
⊢ ((((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = 〈“(𝑀‘〈“𝐽𝐾𝐼”〉)(𝑀‘〈“𝐾𝐿𝐽”〉)”〉) → (𝑆 Σg
𝑐) = (𝑆 Σg
〈“(𝑀‘〈“𝐽𝐾𝐼”〉)(𝑀‘〈“𝐾𝐿𝐽”〉)”〉)) |
172 | 171 | eqeq2d 2749 |
. . . 4
⊢ ((((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = 〈“(𝑀‘〈“𝐽𝐾𝐼”〉)(𝑀‘〈“𝐾𝐿𝐽”〉)”〉) → ((𝐸 · 𝐹) = (𝑆 Σg 𝑐) ↔ (𝐸 · 𝐹) = (𝑆 Σg
〈“(𝑀‘〈“𝐽𝐾𝐼”〉)(𝑀‘〈“𝐾𝐿𝐽”〉)”〉))) |
173 | 146, 56 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ( I ↾ 𝐷) = (0g‘𝑆)) |
174 | 173 | oveq1d 7270 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (( I ↾ 𝐷) · (𝑀‘〈“𝐾𝐿”〉)) =
((0g‘𝑆)
·
(𝑀‘〈“𝐾𝐿”〉))) |
175 | 12 | symggrp 18923 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ 𝑉 → 𝑆 ∈ Grp) |
176 | 8, 175 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ∈ Grp) |
177 | 176 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝑆 ∈ Grp) |
178 | 19 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐾𝐿”〉) ∈ (Base‘𝑆)) |
179 | 21, 22, 58 | grplid 18524 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ Grp ∧ (𝑀‘〈“𝐾𝐿”〉) ∈ (Base‘𝑆)) →
((0g‘𝑆)
·
(𝑀‘〈“𝐾𝐿”〉)) = (𝑀‘〈“𝐾𝐿”〉)) |
180 | 177, 178,
179 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((0g‘𝑆) · (𝑀‘〈“𝐾𝐿”〉)) = (𝑀‘〈“𝐾𝐿”〉)) |
181 | 174, 180 | eqtrd 2778 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (( I ↾ 𝐷) · (𝑀‘〈“𝐾𝐿”〉)) = (𝑀‘〈“𝐾𝐿”〉)) |
182 | 181 | oveq2d 7271 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘〈“𝐼𝐽”〉) · (( I ↾ 𝐷) · (𝑀‘〈“𝐾𝐿”〉))) = ((𝑀‘〈“𝐼𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉))) |
183 | 13 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐼𝐽”〉) ∈ (Base‘𝑆)) |
184 | 7, 146, 147, 148, 151, 27 | cycpm2tr 31288 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐽𝐾”〉) = ((pmTrsp‘𝐷)‘{𝐽, 𝐾})) |
185 | 50, 12, 21 | symgtrf 18992 |
. . . . . . . . . . 11
⊢ ran
(pmTrsp‘𝐷) ⊆
(Base‘𝑆) |
186 | 10, 16 | prssd 4752 |
. . . . . . . . . . . . 13
⊢ (𝜑 → {𝐽, 𝐾} ⊆ 𝐷) |
187 | 186 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → {𝐽, 𝐾} ⊆ 𝐷) |
188 | | pr2nelem 9691 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ 𝐷 ∧ 𝐾 ∈ 𝐷 ∧ 𝐽 ≠ 𝐾) → {𝐽, 𝐾} ≈ 2o) |
189 | 147, 148,
151, 188 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → {𝐽, 𝐾} ≈ 2o) |
190 | 27, 50 | pmtrrn 18980 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ 𝑉 ∧ {𝐽, 𝐾} ⊆ 𝐷 ∧ {𝐽, 𝐾} ≈ 2o) →
((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∈ ran (pmTrsp‘𝐷)) |
191 | 146, 187,
189, 190 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∈ ran (pmTrsp‘𝐷)) |
192 | 185, 191 | sselid 3915 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∈ (Base‘𝑆)) |
193 | 184, 192 | eqeltrd 2839 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐽𝐾”〉) ∈ (Base‘𝑆)) |
194 | 151 | necomd 2998 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐾 ≠ 𝐽) |
195 | 7, 146, 148, 147, 194, 27 | cycpm2tr 31288 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐾𝐽”〉) = ((pmTrsp‘𝐷)‘{𝐾, 𝐽})) |
196 | | prcom 4665 |
. . . . . . . . . . . . . 14
⊢ {𝐽, 𝐾} = {𝐾, 𝐽} |
197 | 196 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → {𝐽, 𝐾} = {𝐾, 𝐽}) |
198 | 197 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐽, 𝐾}) = ((pmTrsp‘𝐷)‘{𝐾, 𝐽})) |
199 | 195, 198 | eqtr4d 2781 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐾𝐽”〉) = ((pmTrsp‘𝐷)‘{𝐽, 𝐾})) |
200 | 199, 192 | eqeltrd 2839 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐾𝐽”〉) ∈ (Base‘𝑆)) |
201 | 21, 22 | grpcl 18500 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ Grp ∧ (𝑀‘〈“𝐾𝐽”〉) ∈ (Base‘𝑆) ∧ (𝑀‘〈“𝐾𝐿”〉) ∈ (Base‘𝑆)) → ((𝑀‘〈“𝐾𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉)) ∈ (Base‘𝑆)) |
202 | 177, 200,
178, 201 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘〈“𝐾𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉)) ∈ (Base‘𝑆)) |
203 | 21, 22 | grpass 18501 |
. . . . . . . . 9
⊢ ((𝑆 ∈ Grp ∧ ((𝑀‘〈“𝐼𝐽”〉) ∈ (Base‘𝑆) ∧ (𝑀‘〈“𝐽𝐾”〉) ∈ (Base‘𝑆) ∧ ((𝑀‘〈“𝐾𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉)) ∈ (Base‘𝑆))) → (((𝑀‘〈“𝐼𝐽”〉) · (𝑀‘〈“𝐽𝐾”〉)) · ((𝑀‘〈“𝐾𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉))) = ((𝑀‘〈“𝐼𝐽”〉) · ((𝑀‘〈“𝐽𝐾”〉) · ((𝑀‘〈“𝐾𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉))))) |
204 | 177, 183,
193, 202, 203 | syl13anc 1370 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (((𝑀‘〈“𝐼𝐽”〉) · (𝑀‘〈“𝐽𝐾”〉)) · ((𝑀‘〈“𝐾𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉))) = ((𝑀‘〈“𝐼𝐽”〉) · ((𝑀‘〈“𝐽𝐾”〉) · ((𝑀‘〈“𝐾𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉))))) |
205 | 21, 22 | grpass 18501 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ Grp ∧ ((𝑀‘〈“𝐽𝐾”〉) ∈ (Base‘𝑆) ∧ (𝑀‘〈“𝐾𝐽”〉) ∈ (Base‘𝑆) ∧ (𝑀‘〈“𝐾𝐿”〉) ∈ (Base‘𝑆))) → (((𝑀‘〈“𝐽𝐾”〉) · (𝑀‘〈“𝐾𝐽”〉)) · (𝑀‘〈“𝐾𝐿”〉)) = ((𝑀‘〈“𝐽𝐾”〉) · ((𝑀‘〈“𝐾𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉)))) |
206 | 177, 193,
200, 178, 205 | syl13anc 1370 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (((𝑀‘〈“𝐽𝐾”〉) · (𝑀‘〈“𝐾𝐽”〉)) · (𝑀‘〈“𝐾𝐿”〉)) = ((𝑀‘〈“𝐽𝐾”〉) · ((𝑀‘〈“𝐾𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉)))) |
207 | 206 | oveq2d 7271 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘〈“𝐼𝐽”〉) · (((𝑀‘〈“𝐽𝐾”〉) · (𝑀‘〈“𝐾𝐽”〉)) · (𝑀‘〈“𝐾𝐿”〉))) = ((𝑀‘〈“𝐼𝐽”〉) · ((𝑀‘〈“𝐽𝐾”〉) · ((𝑀‘〈“𝐾𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉))))) |
208 | 184, 199 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘〈“𝐽𝐾”〉) · (𝑀‘〈“𝐾𝐽”〉)) = (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ·
((pmTrsp‘𝐷)‘{𝐽, 𝐾}))) |
209 | 12, 21, 22 | symgov 18906 |
. . . . . . . . . . . 12
⊢
((((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∈ (Base‘𝑆) ∧ ((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∈ (Base‘𝑆)) → (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ·
((pmTrsp‘𝐷)‘{𝐽, 𝐾})) = (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∘ ((pmTrsp‘𝐷)‘{𝐽, 𝐾}))) |
210 | 192, 192,
209 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ·
((pmTrsp‘𝐷)‘{𝐽, 𝐾})) = (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∘ ((pmTrsp‘𝐷)‘{𝐽, 𝐾}))) |
211 | 27, 50 | pmtrfinv 18984 |
. . . . . . . . . . . 12
⊢
(((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∈ ran (pmTrsp‘𝐷) → (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∘ ((pmTrsp‘𝐷)‘{𝐽, 𝐾})) = ( I ↾ 𝐷)) |
212 | 191, 211 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∘ ((pmTrsp‘𝐷)‘{𝐽, 𝐾})) = ( I ↾ 𝐷)) |
213 | 208, 210,
212 | 3eqtrd 2782 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘〈“𝐽𝐾”〉) · (𝑀‘〈“𝐾𝐽”〉)) = ( I ↾ 𝐷)) |
214 | 213 | oveq1d 7270 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (((𝑀‘〈“𝐽𝐾”〉) · (𝑀‘〈“𝐾𝐽”〉)) · (𝑀‘〈“𝐾𝐿”〉)) = (( I ↾ 𝐷) · (𝑀‘〈“𝐾𝐿”〉))) |
215 | 214 | oveq2d 7271 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘〈“𝐼𝐽”〉) · (((𝑀‘〈“𝐽𝐾”〉) · (𝑀‘〈“𝐾𝐽”〉)) · (𝑀‘〈“𝐾𝐿”〉))) = ((𝑀‘〈“𝐼𝐽”〉) · (( I ↾ 𝐷) · (𝑀‘〈“𝐾𝐿”〉)))) |
216 | 204, 207,
215 | 3eqtr2rd 2785 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘〈“𝐼𝐽”〉) · (( I ↾ 𝐷) · (𝑀‘〈“𝐾𝐿”〉))) = (((𝑀‘〈“𝐼𝐽”〉) · (𝑀‘〈“𝐽𝐾”〉)) · ((𝑀‘〈“𝐾𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉)))) |
217 | 182, 216 | eqtr3d 2780 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘〈“𝐼𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉)) = (((𝑀‘〈“𝐼𝐽”〉) · (𝑀‘〈“𝐽𝐾”〉)) · ((𝑀‘〈“𝐾𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉)))) |
218 | 6, 15 | oveq12d 7273 |
. . . . . . 7
⊢ (𝜑 → (𝐸 · 𝐹) = ((𝑀‘〈“𝐼𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉))) |
219 | 218 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = ((𝑀‘〈“𝐼𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉))) |
220 | 7, 12, 146, 147, 148, 149, 151, 157, 158, 22 | cyc3co2 31309 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐽𝐾𝐼”〉) = ((𝑀‘〈“𝐽𝐼”〉) · (𝑀‘〈“𝐽𝐾”〉))) |
221 | 134 | oveq1d 7270 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑀‘〈“𝐼𝐽”〉) · (𝑀‘〈“𝐽𝐾”〉)) = ((𝑀‘〈“𝐽𝐼”〉) · (𝑀‘〈“𝐽𝐾”〉))) |
222 | 221 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘〈“𝐼𝐽”〉) · (𝑀‘〈“𝐽𝐾”〉)) = ((𝑀‘〈“𝐽𝐼”〉) · (𝑀‘〈“𝐽𝐾”〉))) |
223 | 220, 222 | eqtr4d 2781 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐽𝐾𝐼”〉) = ((𝑀‘〈“𝐼𝐽”〉) · (𝑀‘〈“𝐽𝐾”〉))) |
224 | 7, 12, 146, 148, 161, 147, 162, 166, 151, 22 | cyc3co2 31309 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐾𝐿𝐽”〉) = ((𝑀‘〈“𝐾𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉))) |
225 | 223, 224 | oveq12d 7273 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘〈“𝐽𝐾𝐼”〉) · (𝑀‘〈“𝐾𝐿𝐽”〉)) = (((𝑀‘〈“𝐼𝐽”〉) · (𝑀‘〈“𝐽𝐾”〉)) · ((𝑀‘〈“𝐾𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉)))) |
226 | 217, 219,
225 | 3eqtr4d 2788 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = ((𝑀‘〈“𝐽𝐾𝐼”〉) · (𝑀‘〈“𝐾𝐿𝐽”〉))) |
227 | 176 | grpmndd 18504 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ Mnd) |
228 | 227 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝑆 ∈ Mnd) |
229 | 7, 12, 146, 147, 148, 149, 151, 157, 158 | cycpm3cl 31304 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐽𝐾𝐼”〉) ∈ (Base‘𝑆)) |
230 | 224, 202 | eqeltrd 2839 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐾𝐿𝐽”〉) ∈ (Base‘𝑆)) |
231 | 21, 22 | gsumws2 18396 |
. . . . . 6
⊢ ((𝑆 ∈ Mnd ∧ (𝑀‘〈“𝐽𝐾𝐼”〉) ∈ (Base‘𝑆) ∧ (𝑀‘〈“𝐾𝐿𝐽”〉) ∈ (Base‘𝑆)) → (𝑆 Σg
〈“(𝑀‘〈“𝐽𝐾𝐼”〉)(𝑀‘〈“𝐾𝐿𝐽”〉)”〉) = ((𝑀‘〈“𝐽𝐾𝐼”〉) · (𝑀‘〈“𝐾𝐿𝐽”〉))) |
232 | 228, 229,
230, 231 | syl3anc 1369 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑆 Σg
〈“(𝑀‘〈“𝐽𝐾𝐼”〉)(𝑀‘〈“𝐾𝐿𝐽”〉)”〉) = ((𝑀‘〈“𝐽𝐾𝐼”〉) · (𝑀‘〈“𝐾𝐿𝐽”〉))) |
233 | 226, 232 | eqtr4d 2781 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = (𝑆 Σg
〈“(𝑀‘〈“𝐽𝐾𝐼”〉)(𝑀‘〈“𝐾𝐿𝐽”〉)”〉)) |
234 | 169, 172,
233 | rspcedvd 3555 |
. . 3
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐)) |
235 | 145, 234 | pm2.61dan 809 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐)) |
236 | 104, 235 | pm2.61dan 809 |
1
⊢ (𝜑 → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐)) |