Proof of Theorem cyc3genpmlem
| Step | Hyp | Ref
| Expression |
| 1 | | wrd0 14577 |
. . . . 5
⊢ ∅
∈ Word 𝐶 |
| 2 | 1 | a1i 11 |
. . . 4
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ∅ ∈ Word 𝐶) |
| 3 | | simpr 484 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ∅) → 𝑐 = ∅) |
| 4 | 3 | oveq2d 7447 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ∅) → (𝑆 Σg 𝑐) = (𝑆 Σg
∅)) |
| 5 | 4 | eqeq2d 2748 |
. . . 4
⊢ ((((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = ∅) → ((𝐸 · 𝐹) = (𝑆 Σg 𝑐) ↔ (𝐸 · 𝐹) = (𝑆 Σg
∅))) |
| 6 | | cyc3genpmlem.e |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 = (𝑀‘〈“𝐼𝐽”〉)) |
| 7 | | cyc3genpm.m |
. . . . . . . . . 10
⊢ 𝑀 = (toCyc‘𝐷) |
| 8 | | cyc3genpmlem.d |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| 9 | | cyc3genpmlem.i |
. . . . . . . . . 10
⊢ (𝜑 → 𝐼 ∈ 𝐷) |
| 10 | | cyc3genpmlem.j |
. . . . . . . . . 10
⊢ (𝜑 → 𝐽 ∈ 𝐷) |
| 11 | | cyc3genpmlem.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐼 ≠ 𝐽) |
| 12 | | cyc3genpm.s |
. . . . . . . . . 10
⊢ 𝑆 = (SymGrp‘𝐷) |
| 13 | 7, 8, 9, 10, 11, 12 | cycpm2cl 33140 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀‘〈“𝐼𝐽”〉) ∈ (Base‘𝑆)) |
| 14 | 6, 13 | eqeltrd 2841 |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ (Base‘𝑆)) |
| 15 | | cyc3genpmlem.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 = (𝑀‘〈“𝐾𝐿”〉)) |
| 16 | | cyc3genpmlem.k |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ 𝐷) |
| 17 | | cyc3genpmlem.l |
. . . . . . . . . 10
⊢ (𝜑 → 𝐿 ∈ 𝐷) |
| 18 | | cyc3genpmlem.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ≠ 𝐿) |
| 19 | 7, 8, 16, 17, 18, 12 | cycpm2cl 33140 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀‘〈“𝐾𝐿”〉) ∈ (Base‘𝑆)) |
| 20 | 15, 19 | eqeltrd 2841 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (Base‘𝑆)) |
| 21 | | eqid 2737 |
. . . . . . . . 9
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 22 | | cyc3genpmlem.t |
. . . . . . . . 9
⊢ · =
(+g‘𝑆) |
| 23 | 12, 21, 22 | symgov 19401 |
. . . . . . . 8
⊢ ((𝐸 ∈ (Base‘𝑆) ∧ 𝐹 ∈ (Base‘𝑆)) → (𝐸 · 𝐹) = (𝐸 ∘ 𝐹)) |
| 24 | 14, 20, 23 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝐸 · 𝐹) = (𝐸 ∘ 𝐹)) |
| 25 | 24 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = (𝐸 ∘ 𝐹)) |
| 26 | 6 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐸 = (𝑀‘〈“𝐼𝐽”〉)) |
| 27 | | eqid 2737 |
. . . . . . . . . 10
⊢
(pmTrsp‘𝐷) =
(pmTrsp‘𝐷) |
| 28 | 7, 8, 9, 10, 11, 27 | cycpm2tr 33139 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀‘〈“𝐼𝐽”〉) = ((pmTrsp‘𝐷)‘{𝐼, 𝐽})) |
| 29 | 28 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐼𝐽”〉) = ((pmTrsp‘𝐷)‘{𝐼, 𝐽})) |
| 30 | 26, 29 | eqtrd 2777 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐸 = ((pmTrsp‘𝐷)‘{𝐼, 𝐽})) |
| 31 | 7, 8, 16, 17, 18, 27 | cycpm2tr 33139 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀‘〈“𝐾𝐿”〉) = ((pmTrsp‘𝐷)‘{𝐾, 𝐿})) |
| 32 | 31 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐾𝐿”〉) = ((pmTrsp‘𝐷)‘{𝐾, 𝐿})) |
| 33 | 15 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐹 = (𝑀‘〈“𝐾𝐿”〉)) |
| 34 | 9 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼 ∈ 𝐷) |
| 35 | 10 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽 ∈ 𝐷) |
| 36 | 11 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼 ≠ 𝐽) |
| 37 | | simplr 769 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼 ∈ {𝐾, 𝐿}) |
| 38 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽 ∈ {𝐾, 𝐿}) |
| 39 | 37, 38 | prssd 4822 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐼, 𝐽} ⊆ {𝐾, 𝐿}) |
| 40 | | ssprsseq 4825 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝐷 ∧ 𝐽 ∈ 𝐷 ∧ 𝐼 ≠ 𝐽) → ({𝐼, 𝐽} ⊆ {𝐾, 𝐿} ↔ {𝐼, 𝐽} = {𝐾, 𝐿})) |
| 41 | 40 | biimpa 476 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝐷 ∧ 𝐽 ∈ 𝐷 ∧ 𝐼 ≠ 𝐽) ∧ {𝐼, 𝐽} ⊆ {𝐾, 𝐿}) → {𝐼, 𝐽} = {𝐾, 𝐿}) |
| 42 | 34, 35, 36, 39, 41 | syl31anc 1375 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐼, 𝐽} = {𝐾, 𝐿}) |
| 43 | 42 | fveq2d 6910 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐼, 𝐽}) = ((pmTrsp‘𝐷)‘{𝐾, 𝐿})) |
| 44 | 32, 33, 43 | 3eqtr4d 2787 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐹 = ((pmTrsp‘𝐷)‘{𝐼, 𝐽})) |
| 45 | 30, 44 | coeq12d 5875 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 ∘ 𝐹) = (((pmTrsp‘𝐷)‘{𝐼, 𝐽}) ∘ ((pmTrsp‘𝐷)‘{𝐼, 𝐽}))) |
| 46 | 8 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐷 ∈ 𝑉) |
| 47 | 34, 35 | prssd 4822 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐼, 𝐽} ⊆ 𝐷) |
| 48 | | enpr2 10042 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝐷 ∧ 𝐽 ∈ 𝐷 ∧ 𝐼 ≠ 𝐽) → {𝐼, 𝐽} ≈ 2o) |
| 49 | 34, 35, 36, 48 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐼, 𝐽} ≈ 2o) |
| 50 | | eqid 2737 |
. . . . . . . . 9
⊢ ran
(pmTrsp‘𝐷) = ran
(pmTrsp‘𝐷) |
| 51 | 27, 50 | pmtrrn 19475 |
. . . . . . . 8
⊢ ((𝐷 ∈ 𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) →
((pmTrsp‘𝐷)‘{𝐼, 𝐽}) ∈ ran (pmTrsp‘𝐷)) |
| 52 | 46, 47, 49, 51 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐼, 𝐽}) ∈ ran (pmTrsp‘𝐷)) |
| 53 | 27, 50 | pmtrfinv 19479 |
. . . . . . 7
⊢
(((pmTrsp‘𝐷)‘{𝐼, 𝐽}) ∈ ran (pmTrsp‘𝐷) → (((pmTrsp‘𝐷)‘{𝐼, 𝐽}) ∘ ((pmTrsp‘𝐷)‘{𝐼, 𝐽})) = ( I ↾ 𝐷)) |
| 54 | 52, 53 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (((pmTrsp‘𝐷)‘{𝐼, 𝐽}) ∘ ((pmTrsp‘𝐷)‘{𝐼, 𝐽})) = ( I ↾ 𝐷)) |
| 55 | 25, 45, 54 | 3eqtrd 2781 |
. . . . 5
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = ( I ↾ 𝐷)) |
| 56 | 12 | symgid 19419 |
. . . . . . 7
⊢ (𝐷 ∈ 𝑉 → ( I ↾ 𝐷) = (0g‘𝑆)) |
| 57 | 46, 56 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ( I ↾ 𝐷) = (0g‘𝑆)) |
| 58 | | eqid 2737 |
. . . . . . 7
⊢
(0g‘𝑆) = (0g‘𝑆) |
| 59 | 58 | gsum0 18697 |
. . . . . 6
⊢ (𝑆 Σg
∅) = (0g‘𝑆) |
| 60 | 57, 59 | eqtr4di 2795 |
. . . . 5
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ( I ↾ 𝐷) = (𝑆 Σg
∅)) |
| 61 | 55, 60 | eqtrd 2777 |
. . . 4
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = (𝑆 Σg
∅)) |
| 62 | 2, 5, 61 | rspcedvd 3624 |
. . 3
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐)) |
| 63 | 8 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐷 ∈ 𝑉) |
| 64 | 9 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼 ∈ 𝐷) |
| 65 | 16, 17 | prssd 4822 |
. . . . . . . . 9
⊢ (𝜑 → {𝐾, 𝐿} ⊆ 𝐷) |
| 66 | 65 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → {𝐾, 𝐿} ⊆ 𝐷) |
| 67 | | simplr 769 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼 ∈ {𝐾, 𝐿}) |
| 68 | | enpr2 10042 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ 𝐷 ∧ 𝐿 ∈ 𝐷 ∧ 𝐾 ≠ 𝐿) → {𝐾, 𝐿} ≈ 2o) |
| 69 | 16, 17, 18, 68 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (𝜑 → {𝐾, 𝐿} ≈ 2o) |
| 70 | 69 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → {𝐾, 𝐿} ≈ 2o) |
| 71 | | unidifsnel 32553 |
. . . . . . . . 9
⊢ ((𝐼 ∈ {𝐾, 𝐿} ∧ {𝐾, 𝐿} ≈ 2o) → ∪ ({𝐾,
𝐿} ∖ {𝐼}) ∈ {𝐾, 𝐿}) |
| 72 | 67, 70, 71 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ∪
({𝐾, 𝐿} ∖ {𝐼}) ∈ {𝐾, 𝐿}) |
| 73 | 66, 72 | sseldd 3984 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ∪
({𝐾, 𝐿} ∖ {𝐼}) ∈ 𝐷) |
| 74 | 10 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽 ∈ 𝐷) |
| 75 | | unidifsnne 32554 |
. . . . . . . . 9
⊢ ((𝐼 ∈ {𝐾, 𝐿} ∧ {𝐾, 𝐿} ≈ 2o) → ∪ ({𝐾,
𝐿} ∖ {𝐼}) ≠ 𝐼) |
| 76 | 67, 70, 75 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ∪
({𝐾, 𝐿} ∖ {𝐼}) ≠ 𝐼) |
| 77 | 76 | necomd 2996 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼 ≠ ∪ ({𝐾, 𝐿} ∖ {𝐼})) |
| 78 | | nelne2 3040 |
. . . . . . . 8
⊢ ((∪ ({𝐾,
𝐿} ∖ {𝐼}) ∈ {𝐾, 𝐿} ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ∪
({𝐾, 𝐿} ∖ {𝐼}) ≠ 𝐽) |
| 79 | 72, 78 | sylancom 588 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ∪
({𝐾, 𝐿} ∖ {𝐼}) ≠ 𝐽) |
| 80 | 11 | necomd 2996 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ≠ 𝐼) |
| 81 | 80 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽 ≠ 𝐼) |
| 82 | 7, 12, 63, 64, 73, 74, 77, 79, 81 | cycpm3cl2 33156 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})𝐽”〉) ∈ (𝑀 “ (◡♯ “ {3}))) |
| 83 | | cyc3genpm.t |
. . . . . 6
⊢ 𝐶 = (𝑀 “ (◡♯ “ {3})) |
| 84 | 82, 83 | eleqtrrdi 2852 |
. . . . 5
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})𝐽”〉) ∈ 𝐶) |
| 85 | 84 | s1cld 14641 |
. . . 4
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 〈“(𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})𝐽”〉)”〉 ∈ Word
𝐶) |
| 86 | | simpr 484 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = 〈“(𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})𝐽”〉)”〉) → 𝑐 = 〈“(𝑀‘〈“𝐼∪
({𝐾, 𝐿} ∖ {𝐼})𝐽”〉)”〉) |
| 87 | 86 | oveq2d 7447 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = 〈“(𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})𝐽”〉)”〉) → (𝑆 Σg
𝑐) = (𝑆 Σg
〈“(𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})𝐽”〉)”〉)) |
| 88 | 87 | eqeq2d 2748 |
. . . 4
⊢ ((((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = 〈“(𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})𝐽”〉)”〉) → ((𝐸 · 𝐹) = (𝑆 Σg 𝑐) ↔ (𝐸 · 𝐹) = (𝑆 Σg
〈“(𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})𝐽”〉)”〉))) |
| 89 | 7, 12, 63, 64, 73, 74, 77, 79, 81, 22 | cyc3co2 33160 |
. . . . 5
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})𝐽”〉) = ((𝑀‘〈“𝐼𝐽”〉) · (𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})”〉))) |
| 90 | 7, 12, 63, 64, 73, 74, 77, 79, 81 | cycpm3cl 33155 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})𝐽”〉) ∈ (Base‘𝑆)) |
| 91 | 21 | gsumws1 18851 |
. . . . . 6
⊢ ((𝑀‘〈“𝐼∪
({𝐾, 𝐿} ∖ {𝐼})𝐽”〉) ∈ (Base‘𝑆) → (𝑆 Σg
〈“(𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})𝐽”〉)”〉) = (𝑀‘〈“𝐼∪
({𝐾, 𝐿} ∖ {𝐼})𝐽”〉)) |
| 92 | 90, 91 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑆 Σg
〈“(𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})𝐽”〉)”〉) = (𝑀‘〈“𝐼∪
({𝐾, 𝐿} ∖ {𝐼})𝐽”〉)) |
| 93 | 6 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐸 = (𝑀‘〈“𝐼𝐽”〉)) |
| 94 | | en2eleq 10048 |
. . . . . . . . 9
⊢ ((𝐼 ∈ {𝐾, 𝐿} ∧ {𝐾, 𝐿} ≈ 2o) → {𝐾, 𝐿} = {𝐼, ∪ ({𝐾, 𝐿} ∖ {𝐼})}) |
| 95 | 67, 70, 94 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → {𝐾, 𝐿} = {𝐼, ∪ ({𝐾, 𝐿} ∖ {𝐼})}) |
| 96 | 95 | fveq2d 6910 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐾, 𝐿}) = ((pmTrsp‘𝐷)‘{𝐼, ∪ ({𝐾, 𝐿} ∖ {𝐼})})) |
| 97 | 15, 31 | eqtrd 2777 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 = ((pmTrsp‘𝐷)‘{𝐾, 𝐿})) |
| 98 | 97 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐹 = ((pmTrsp‘𝐷)‘{𝐾, 𝐿})) |
| 99 | 7, 63, 64, 73, 77, 27 | cycpm2tr 33139 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})”〉) = ((pmTrsp‘𝐷)‘{𝐼, ∪ ({𝐾, 𝐿} ∖ {𝐼})})) |
| 100 | 96, 98, 99 | 3eqtr4d 2787 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐹 = (𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})”〉)) |
| 101 | 93, 100 | oveq12d 7449 |
. . . . 5
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = ((𝑀‘〈“𝐼𝐽”〉) · (𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})”〉))) |
| 102 | 89, 92, 101 | 3eqtr4rd 2788 |
. . . 4
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = (𝑆 Σg
〈“(𝑀‘〈“𝐼∪ ({𝐾, 𝐿} ∖ {𝐼})𝐽”〉)”〉)) |
| 103 | 85, 88, 102 | rspcedvd 3624 |
. . 3
⊢ (((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐)) |
| 104 | 62, 103 | pm2.61dan 813 |
. 2
⊢ ((𝜑 ∧ 𝐼 ∈ {𝐾, 𝐿}) → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐)) |
| 105 | 8 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐷 ∈ 𝑉) |
| 106 | 10 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽 ∈ 𝐷) |
| 107 | 65 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐾, 𝐿} ⊆ 𝐷) |
| 108 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽 ∈ {𝐾, 𝐿}) |
| 109 | 69 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐾, 𝐿} ≈ 2o) |
| 110 | | unidifsnel 32553 |
. . . . . . . . 9
⊢ ((𝐽 ∈ {𝐾, 𝐿} ∧ {𝐾, 𝐿} ≈ 2o) → ∪ ({𝐾,
𝐿} ∖ {𝐽}) ∈ {𝐾, 𝐿}) |
| 111 | 108, 109,
110 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ∪
({𝐾, 𝐿} ∖ {𝐽}) ∈ {𝐾, 𝐿}) |
| 112 | 107, 111 | sseldd 3984 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ∪
({𝐾, 𝐿} ∖ {𝐽}) ∈ 𝐷) |
| 113 | 9 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼 ∈ 𝐷) |
| 114 | | unidifsnne 32554 |
. . . . . . . . 9
⊢ ((𝐽 ∈ {𝐾, 𝐿} ∧ {𝐾, 𝐿} ≈ 2o) → ∪ ({𝐾,
𝐿} ∖ {𝐽}) ≠ 𝐽) |
| 115 | 108, 109,
114 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ∪
({𝐾, 𝐿} ∖ {𝐽}) ≠ 𝐽) |
| 116 | 115 | necomd 2996 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽 ≠ ∪ ({𝐾, 𝐿} ∖ {𝐽})) |
| 117 | | simplr 769 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ¬ 𝐼 ∈ {𝐾, 𝐿}) |
| 118 | | nelne2 3040 |
. . . . . . . 8
⊢ ((∪ ({𝐾,
𝐿} ∖ {𝐽}) ∈ {𝐾, 𝐿} ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) → ∪
({𝐾, 𝐿} ∖ {𝐽}) ≠ 𝐼) |
| 119 | 111, 117,
118 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ∪
({𝐾, 𝐿} ∖ {𝐽}) ≠ 𝐼) |
| 120 | 11 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼 ≠ 𝐽) |
| 121 | 7, 12, 105, 106, 112, 113, 116, 119, 120 | cycpm3cl2 33156 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})𝐼”〉) ∈ (𝑀 “ (◡♯ “ {3}))) |
| 122 | 121, 83 | eleqtrrdi 2852 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})𝐼”〉) ∈ 𝐶) |
| 123 | 122 | s1cld 14641 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 〈“(𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})𝐼”〉)”〉 ∈ Word
𝐶) |
| 124 | | simpr 484 |
. . . . . 6
⊢ ((((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = 〈“(𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})𝐼”〉)”〉) → 𝑐 = 〈“(𝑀‘〈“𝐽∪
({𝐾, 𝐿} ∖ {𝐽})𝐼”〉)”〉) |
| 125 | 124 | oveq2d 7447 |
. . . . 5
⊢ ((((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = 〈“(𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})𝐼”〉)”〉) → (𝑆 Σg
𝑐) = (𝑆 Σg
〈“(𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})𝐼”〉)”〉)) |
| 126 | 125 | eqeq2d 2748 |
. . . 4
⊢ ((((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = 〈“(𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})𝐼”〉)”〉) → ((𝐸 · 𝐹) = (𝑆 Σg 𝑐) ↔ (𝐸 · 𝐹) = (𝑆 Σg
〈“(𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})𝐼”〉)”〉))) |
| 127 | 7, 12, 105, 106, 112, 113, 116, 119, 120, 22 | cyc3co2 33160 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})𝐼”〉) = ((𝑀‘〈“𝐽𝐼”〉) · (𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})”〉))) |
| 128 | 7, 12, 105, 106, 112, 113, 116, 119, 120 | cycpm3cl 33155 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})𝐼”〉) ∈ (Base‘𝑆)) |
| 129 | 21 | gsumws1 18851 |
. . . . . 6
⊢ ((𝑀‘〈“𝐽∪
({𝐾, 𝐿} ∖ {𝐽})𝐼”〉) ∈ (Base‘𝑆) → (𝑆 Σg
〈“(𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})𝐼”〉)”〉) = (𝑀‘〈“𝐽∪
({𝐾, 𝐿} ∖ {𝐽})𝐼”〉)) |
| 130 | 128, 129 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑆 Σg
〈“(𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})𝐼”〉)”〉) = (𝑀‘〈“𝐽∪
({𝐾, 𝐿} ∖ {𝐽})𝐼”〉)) |
| 131 | | prcom 4732 |
. . . . . . . . . 10
⊢ {𝐼, 𝐽} = {𝐽, 𝐼} |
| 132 | 131 | fveq2i 6909 |
. . . . . . . . 9
⊢
((pmTrsp‘𝐷)‘{𝐼, 𝐽}) = ((pmTrsp‘𝐷)‘{𝐽, 𝐼}) |
| 133 | 7, 8, 10, 9, 80, 27 | cycpm2tr 33139 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀‘〈“𝐽𝐼”〉) = ((pmTrsp‘𝐷)‘{𝐽, 𝐼})) |
| 134 | 132, 28, 133 | 3eqtr4a 2803 |
. . . . . . . 8
⊢ (𝜑 → (𝑀‘〈“𝐼𝐽”〉) = (𝑀‘〈“𝐽𝐼”〉)) |
| 135 | 6, 134 | eqtrd 2777 |
. . . . . . 7
⊢ (𝜑 → 𝐸 = (𝑀‘〈“𝐽𝐼”〉)) |
| 136 | 135 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐸 = (𝑀‘〈“𝐽𝐼”〉)) |
| 137 | | en2eleq 10048 |
. . . . . . . . 9
⊢ ((𝐽 ∈ {𝐾, 𝐿} ∧ {𝐾, 𝐿} ≈ 2o) → {𝐾, 𝐿} = {𝐽, ∪ ({𝐾, 𝐿} ∖ {𝐽})}) |
| 138 | 108, 109,
137 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → {𝐾, 𝐿} = {𝐽, ∪ ({𝐾, 𝐿} ∖ {𝐽})}) |
| 139 | 138 | fveq2d 6910 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐾, 𝐿}) = ((pmTrsp‘𝐷)‘{𝐽, ∪ ({𝐾, 𝐿} ∖ {𝐽})})) |
| 140 | 97 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐹 = ((pmTrsp‘𝐷)‘{𝐾, 𝐿})) |
| 141 | 7, 105, 106, 112, 116, 27 | cycpm2tr 33139 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})”〉) = ((pmTrsp‘𝐷)‘{𝐽, ∪ ({𝐾, 𝐿} ∖ {𝐽})})) |
| 142 | 139, 140,
141 | 3eqtr4d 2787 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → 𝐹 = (𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})”〉)) |
| 143 | 136, 142 | oveq12d 7449 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = ((𝑀‘〈“𝐽𝐼”〉) · (𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})”〉))) |
| 144 | 127, 130,
143 | 3eqtr4rd 2788 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = (𝑆 Σg
〈“(𝑀‘〈“𝐽∪ ({𝐾, 𝐿} ∖ {𝐽})𝐼”〉)”〉)) |
| 145 | 123, 126,
144 | rspcedvd 3624 |
. . 3
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ 𝐽 ∈ {𝐾, 𝐿}) → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐)) |
| 146 | 8 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐷 ∈ 𝑉) |
| 147 | 10 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽 ∈ 𝐷) |
| 148 | 16 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐾 ∈ 𝐷) |
| 149 | 9 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼 ∈ 𝐷) |
| 150 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ¬ 𝐽 ∈ {𝐾, 𝐿}) |
| 151 | 147, 150 | nelpr1 4654 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐽 ≠ 𝐾) |
| 152 | | prid1g 4760 |
. . . . . . . . . 10
⊢ (𝐾 ∈ 𝐷 → 𝐾 ∈ {𝐾, 𝐿}) |
| 153 | 16, 152 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ {𝐾, 𝐿}) |
| 154 | 153 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐾 ∈ {𝐾, 𝐿}) |
| 155 | | simplr 769 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ¬ 𝐼 ∈ {𝐾, 𝐿}) |
| 156 | | nelne2 3040 |
. . . . . . . 8
⊢ ((𝐾 ∈ {𝐾, 𝐿} ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) → 𝐾 ≠ 𝐼) |
| 157 | 154, 155,
156 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐾 ≠ 𝐼) |
| 158 | 11 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐼 ≠ 𝐽) |
| 159 | 7, 12, 146, 147, 148, 149, 151, 157, 158 | cycpm3cl2 33156 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐽𝐾𝐼”〉) ∈ (𝑀 “ (◡♯ “ {3}))) |
| 160 | 159, 83 | eleqtrrdi 2852 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐽𝐾𝐼”〉) ∈ 𝐶) |
| 161 | 17 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐿 ∈ 𝐷) |
| 162 | 18 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐾 ≠ 𝐿) |
| 163 | | prid2g 4761 |
. . . . . . . . 9
⊢ (𝐿 ∈ 𝐷 → 𝐿 ∈ {𝐾, 𝐿}) |
| 164 | 161, 163 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐿 ∈ {𝐾, 𝐿}) |
| 165 | | nelne2 3040 |
. . . . . . . 8
⊢ ((𝐿 ∈ {𝐾, 𝐿} ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐿 ≠ 𝐽) |
| 166 | 164, 165 | sylancom 588 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐿 ≠ 𝐽) |
| 167 | 7, 12, 146, 148, 161, 147, 162, 166, 151 | cycpm3cl2 33156 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐾𝐿𝐽”〉) ∈ (𝑀 “ (◡♯ “ {3}))) |
| 168 | 167, 83 | eleqtrrdi 2852 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐾𝐿𝐽”〉) ∈ 𝐶) |
| 169 | 160, 168 | s2cld 14910 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 〈“(𝑀‘〈“𝐽𝐾𝐼”〉)(𝑀‘〈“𝐾𝐿𝐽”〉)”〉 ∈ Word
𝐶) |
| 170 | | simpr 484 |
. . . . . 6
⊢ ((((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = 〈“(𝑀‘〈“𝐽𝐾𝐼”〉)(𝑀‘〈“𝐾𝐿𝐽”〉)”〉) → 𝑐 = 〈“(𝑀‘〈“𝐽𝐾𝐼”〉)(𝑀‘〈“𝐾𝐿𝐽”〉)”〉) |
| 171 | 170 | oveq2d 7447 |
. . . . 5
⊢ ((((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = 〈“(𝑀‘〈“𝐽𝐾𝐼”〉)(𝑀‘〈“𝐾𝐿𝐽”〉)”〉) → (𝑆 Σg
𝑐) = (𝑆 Σg
〈“(𝑀‘〈“𝐽𝐾𝐼”〉)(𝑀‘〈“𝐾𝐿𝐽”〉)”〉)) |
| 172 | 171 | eqeq2d 2748 |
. . . 4
⊢ ((((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) ∧ 𝑐 = 〈“(𝑀‘〈“𝐽𝐾𝐼”〉)(𝑀‘〈“𝐾𝐿𝐽”〉)”〉) → ((𝐸 · 𝐹) = (𝑆 Σg 𝑐) ↔ (𝐸 · 𝐹) = (𝑆 Σg
〈“(𝑀‘〈“𝐽𝐾𝐼”〉)(𝑀‘〈“𝐾𝐿𝐽”〉)”〉))) |
| 173 | 146, 56 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ( I ↾ 𝐷) = (0g‘𝑆)) |
| 174 | 173 | oveq1d 7446 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (( I ↾ 𝐷) · (𝑀‘〈“𝐾𝐿”〉)) =
((0g‘𝑆)
·
(𝑀‘〈“𝐾𝐿”〉))) |
| 175 | 12 | symggrp 19418 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ 𝑉 → 𝑆 ∈ Grp) |
| 176 | 8, 175 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ∈ Grp) |
| 177 | 176 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝑆 ∈ Grp) |
| 178 | 19 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐾𝐿”〉) ∈ (Base‘𝑆)) |
| 179 | 21, 22, 58 | grplid 18985 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ Grp ∧ (𝑀‘〈“𝐾𝐿”〉) ∈ (Base‘𝑆)) →
((0g‘𝑆)
·
(𝑀‘〈“𝐾𝐿”〉)) = (𝑀‘〈“𝐾𝐿”〉)) |
| 180 | 177, 178,
179 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((0g‘𝑆) · (𝑀‘〈“𝐾𝐿”〉)) = (𝑀‘〈“𝐾𝐿”〉)) |
| 181 | 174, 180 | eqtrd 2777 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (( I ↾ 𝐷) · (𝑀‘〈“𝐾𝐿”〉)) = (𝑀‘〈“𝐾𝐿”〉)) |
| 182 | 181 | oveq2d 7447 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘〈“𝐼𝐽”〉) · (( I ↾ 𝐷) · (𝑀‘〈“𝐾𝐿”〉))) = ((𝑀‘〈“𝐼𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉))) |
| 183 | 13 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐼𝐽”〉) ∈ (Base‘𝑆)) |
| 184 | 7, 146, 147, 148, 151, 27 | cycpm2tr 33139 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐽𝐾”〉) = ((pmTrsp‘𝐷)‘{𝐽, 𝐾})) |
| 185 | 50, 12, 21 | symgtrf 19487 |
. . . . . . . . . . 11
⊢ ran
(pmTrsp‘𝐷) ⊆
(Base‘𝑆) |
| 186 | 10, 16 | prssd 4822 |
. . . . . . . . . . . . 13
⊢ (𝜑 → {𝐽, 𝐾} ⊆ 𝐷) |
| 187 | 186 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → {𝐽, 𝐾} ⊆ 𝐷) |
| 188 | | enpr2 10042 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ 𝐷 ∧ 𝐾 ∈ 𝐷 ∧ 𝐽 ≠ 𝐾) → {𝐽, 𝐾} ≈ 2o) |
| 189 | 147, 148,
151, 188 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → {𝐽, 𝐾} ≈ 2o) |
| 190 | 27, 50 | pmtrrn 19475 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ 𝑉 ∧ {𝐽, 𝐾} ⊆ 𝐷 ∧ {𝐽, 𝐾} ≈ 2o) →
((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∈ ran (pmTrsp‘𝐷)) |
| 191 | 146, 187,
189, 190 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∈ ran (pmTrsp‘𝐷)) |
| 192 | 185, 191 | sselid 3981 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∈ (Base‘𝑆)) |
| 193 | 184, 192 | eqeltrd 2841 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐽𝐾”〉) ∈ (Base‘𝑆)) |
| 194 | 151 | necomd 2996 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝐾 ≠ 𝐽) |
| 195 | 7, 146, 148, 147, 194, 27 | cycpm2tr 33139 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐾𝐽”〉) = ((pmTrsp‘𝐷)‘{𝐾, 𝐽})) |
| 196 | | prcom 4732 |
. . . . . . . . . . . . . 14
⊢ {𝐽, 𝐾} = {𝐾, 𝐽} |
| 197 | 196 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → {𝐽, 𝐾} = {𝐾, 𝐽}) |
| 198 | 197 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((pmTrsp‘𝐷)‘{𝐽, 𝐾}) = ((pmTrsp‘𝐷)‘{𝐾, 𝐽})) |
| 199 | 195, 198 | eqtr4d 2780 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐾𝐽”〉) = ((pmTrsp‘𝐷)‘{𝐽, 𝐾})) |
| 200 | 199, 192 | eqeltrd 2841 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐾𝐽”〉) ∈ (Base‘𝑆)) |
| 201 | 21, 22 | grpcl 18959 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ Grp ∧ (𝑀‘〈“𝐾𝐽”〉) ∈ (Base‘𝑆) ∧ (𝑀‘〈“𝐾𝐿”〉) ∈ (Base‘𝑆)) → ((𝑀‘〈“𝐾𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉)) ∈ (Base‘𝑆)) |
| 202 | 177, 200,
178, 201 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘〈“𝐾𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉)) ∈ (Base‘𝑆)) |
| 203 | 21, 22 | grpass 18960 |
. . . . . . . . 9
⊢ ((𝑆 ∈ Grp ∧ ((𝑀‘〈“𝐼𝐽”〉) ∈ (Base‘𝑆) ∧ (𝑀‘〈“𝐽𝐾”〉) ∈ (Base‘𝑆) ∧ ((𝑀‘〈“𝐾𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉)) ∈ (Base‘𝑆))) → (((𝑀‘〈“𝐼𝐽”〉) · (𝑀‘〈“𝐽𝐾”〉)) · ((𝑀‘〈“𝐾𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉))) = ((𝑀‘〈“𝐼𝐽”〉) · ((𝑀‘〈“𝐽𝐾”〉) · ((𝑀‘〈“𝐾𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉))))) |
| 204 | 177, 183,
193, 202, 203 | syl13anc 1374 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (((𝑀‘〈“𝐼𝐽”〉) · (𝑀‘〈“𝐽𝐾”〉)) · ((𝑀‘〈“𝐾𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉))) = ((𝑀‘〈“𝐼𝐽”〉) · ((𝑀‘〈“𝐽𝐾”〉) · ((𝑀‘〈“𝐾𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉))))) |
| 205 | 21, 22 | grpass 18960 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ Grp ∧ ((𝑀‘〈“𝐽𝐾”〉) ∈ (Base‘𝑆) ∧ (𝑀‘〈“𝐾𝐽”〉) ∈ (Base‘𝑆) ∧ (𝑀‘〈“𝐾𝐿”〉) ∈ (Base‘𝑆))) → (((𝑀‘〈“𝐽𝐾”〉) · (𝑀‘〈“𝐾𝐽”〉)) · (𝑀‘〈“𝐾𝐿”〉)) = ((𝑀‘〈“𝐽𝐾”〉) · ((𝑀‘〈“𝐾𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉)))) |
| 206 | 177, 193,
200, 178, 205 | syl13anc 1374 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (((𝑀‘〈“𝐽𝐾”〉) · (𝑀‘〈“𝐾𝐽”〉)) · (𝑀‘〈“𝐾𝐿”〉)) = ((𝑀‘〈“𝐽𝐾”〉) · ((𝑀‘〈“𝐾𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉)))) |
| 207 | 206 | oveq2d 7447 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘〈“𝐼𝐽”〉) · (((𝑀‘〈“𝐽𝐾”〉) · (𝑀‘〈“𝐾𝐽”〉)) · (𝑀‘〈“𝐾𝐿”〉))) = ((𝑀‘〈“𝐼𝐽”〉) · ((𝑀‘〈“𝐽𝐾”〉) · ((𝑀‘〈“𝐾𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉))))) |
| 208 | 184, 199 | oveq12d 7449 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘〈“𝐽𝐾”〉) · (𝑀‘〈“𝐾𝐽”〉)) = (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ·
((pmTrsp‘𝐷)‘{𝐽, 𝐾}))) |
| 209 | 12, 21, 22 | symgov 19401 |
. . . . . . . . . . . 12
⊢
((((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∈ (Base‘𝑆) ∧ ((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∈ (Base‘𝑆)) → (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ·
((pmTrsp‘𝐷)‘{𝐽, 𝐾})) = (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∘ ((pmTrsp‘𝐷)‘{𝐽, 𝐾}))) |
| 210 | 192, 192,
209 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ·
((pmTrsp‘𝐷)‘{𝐽, 𝐾})) = (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∘ ((pmTrsp‘𝐷)‘{𝐽, 𝐾}))) |
| 211 | 27, 50 | pmtrfinv 19479 |
. . . . . . . . . . . 12
⊢
(((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∈ ran (pmTrsp‘𝐷) → (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∘ ((pmTrsp‘𝐷)‘{𝐽, 𝐾})) = ( I ↾ 𝐷)) |
| 212 | 191, 211 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (((pmTrsp‘𝐷)‘{𝐽, 𝐾}) ∘ ((pmTrsp‘𝐷)‘{𝐽, 𝐾})) = ( I ↾ 𝐷)) |
| 213 | 208, 210,
212 | 3eqtrd 2781 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘〈“𝐽𝐾”〉) · (𝑀‘〈“𝐾𝐽”〉)) = ( I ↾ 𝐷)) |
| 214 | 213 | oveq1d 7446 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (((𝑀‘〈“𝐽𝐾”〉) · (𝑀‘〈“𝐾𝐽”〉)) · (𝑀‘〈“𝐾𝐿”〉)) = (( I ↾ 𝐷) · (𝑀‘〈“𝐾𝐿”〉))) |
| 215 | 214 | oveq2d 7447 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘〈“𝐼𝐽”〉) · (((𝑀‘〈“𝐽𝐾”〉) · (𝑀‘〈“𝐾𝐽”〉)) · (𝑀‘〈“𝐾𝐿”〉))) = ((𝑀‘〈“𝐼𝐽”〉) · (( I ↾ 𝐷) · (𝑀‘〈“𝐾𝐿”〉)))) |
| 216 | 204, 207,
215 | 3eqtr2rd 2784 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘〈“𝐼𝐽”〉) · (( I ↾ 𝐷) · (𝑀‘〈“𝐾𝐿”〉))) = (((𝑀‘〈“𝐼𝐽”〉) · (𝑀‘〈“𝐽𝐾”〉)) · ((𝑀‘〈“𝐾𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉)))) |
| 217 | 182, 216 | eqtr3d 2779 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘〈“𝐼𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉)) = (((𝑀‘〈“𝐼𝐽”〉) · (𝑀‘〈“𝐽𝐾”〉)) · ((𝑀‘〈“𝐾𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉)))) |
| 218 | 6, 15 | oveq12d 7449 |
. . . . . . 7
⊢ (𝜑 → (𝐸 · 𝐹) = ((𝑀‘〈“𝐼𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉))) |
| 219 | 218 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = ((𝑀‘〈“𝐼𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉))) |
| 220 | 7, 12, 146, 147, 148, 149, 151, 157, 158, 22 | cyc3co2 33160 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐽𝐾𝐼”〉) = ((𝑀‘〈“𝐽𝐼”〉) · (𝑀‘〈“𝐽𝐾”〉))) |
| 221 | 134 | oveq1d 7446 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑀‘〈“𝐼𝐽”〉) · (𝑀‘〈“𝐽𝐾”〉)) = ((𝑀‘〈“𝐽𝐼”〉) · (𝑀‘〈“𝐽𝐾”〉))) |
| 222 | 221 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘〈“𝐼𝐽”〉) · (𝑀‘〈“𝐽𝐾”〉)) = ((𝑀‘〈“𝐽𝐼”〉) · (𝑀‘〈“𝐽𝐾”〉))) |
| 223 | 220, 222 | eqtr4d 2780 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐽𝐾𝐼”〉) = ((𝑀‘〈“𝐼𝐽”〉) · (𝑀‘〈“𝐽𝐾”〉))) |
| 224 | 7, 12, 146, 148, 161, 147, 162, 166, 151, 22 | cyc3co2 33160 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐾𝐿𝐽”〉) = ((𝑀‘〈“𝐾𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉))) |
| 225 | 223, 224 | oveq12d 7449 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ((𝑀‘〈“𝐽𝐾𝐼”〉) · (𝑀‘〈“𝐾𝐿𝐽”〉)) = (((𝑀‘〈“𝐼𝐽”〉) · (𝑀‘〈“𝐽𝐾”〉)) · ((𝑀‘〈“𝐾𝐽”〉) · (𝑀‘〈“𝐾𝐿”〉)))) |
| 226 | 217, 219,
225 | 3eqtr4d 2787 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = ((𝑀‘〈“𝐽𝐾𝐼”〉) · (𝑀‘〈“𝐾𝐿𝐽”〉))) |
| 227 | 176 | grpmndd 18964 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ Mnd) |
| 228 | 227 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → 𝑆 ∈ Mnd) |
| 229 | 7, 12, 146, 147, 148, 149, 151, 157, 158 | cycpm3cl 33155 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐽𝐾𝐼”〉) ∈ (Base‘𝑆)) |
| 230 | 224, 202 | eqeltrd 2841 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑀‘〈“𝐾𝐿𝐽”〉) ∈ (Base‘𝑆)) |
| 231 | 21, 22 | gsumws2 18855 |
. . . . . 6
⊢ ((𝑆 ∈ Mnd ∧ (𝑀‘〈“𝐽𝐾𝐼”〉) ∈ (Base‘𝑆) ∧ (𝑀‘〈“𝐾𝐿𝐽”〉) ∈ (Base‘𝑆)) → (𝑆 Σg
〈“(𝑀‘〈“𝐽𝐾𝐼”〉)(𝑀‘〈“𝐾𝐿𝐽”〉)”〉) = ((𝑀‘〈“𝐽𝐾𝐼”〉) · (𝑀‘〈“𝐾𝐿𝐽”〉))) |
| 232 | 228, 229,
230, 231 | syl3anc 1373 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝑆 Σg
〈“(𝑀‘〈“𝐽𝐾𝐼”〉)(𝑀‘〈“𝐾𝐿𝐽”〉)”〉) = ((𝑀‘〈“𝐽𝐾𝐼”〉) · (𝑀‘〈“𝐾𝐿𝐽”〉))) |
| 233 | 226, 232 | eqtr4d 2780 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → (𝐸 · 𝐹) = (𝑆 Σg
〈“(𝑀‘〈“𝐽𝐾𝐼”〉)(𝑀‘〈“𝐾𝐿𝐽”〉)”〉)) |
| 234 | 169, 172,
233 | rspcedvd 3624 |
. . 3
⊢ (((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) ∧ ¬ 𝐽 ∈ {𝐾, 𝐿}) → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐)) |
| 235 | 145, 234 | pm2.61dan 813 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐼 ∈ {𝐾, 𝐿}) → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐)) |
| 236 | 104, 235 | pm2.61dan 813 |
1
⊢ (𝜑 → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐)) |