Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drngmxidl Structured version   Visualization version   GIF version

Theorem drngmxidl 33492
Description: The zero ideal is the only ideal of a division ring. (Contributed by Thierry Arnoux, 16-Mar-2025.)
Hypothesis
Ref Expression
drngmxidl.1 0 = (0g𝑅)
Assertion
Ref Expression
drngmxidl (𝑅 ∈ DivRing → (MaxIdeal‘𝑅) = {{ 0 }})

Proof of Theorem drngmxidl
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 drngring 20728 . . . . . 6 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
2 eqid 2736 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
32mxidlidl 33478 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (MaxIdeal‘𝑅)) → 𝑖 ∈ (LIdeal‘𝑅))
43ex 412 . . . . . . 7 (𝑅 ∈ Ring → (𝑖 ∈ (MaxIdeal‘𝑅) → 𝑖 ∈ (LIdeal‘𝑅)))
54ssrdv 3988 . . . . . 6 (𝑅 ∈ Ring → (MaxIdeal‘𝑅) ⊆ (LIdeal‘𝑅))
61, 5syl 17 . . . . 5 (𝑅 ∈ DivRing → (MaxIdeal‘𝑅) ⊆ (LIdeal‘𝑅))
7 drngmxidl.1 . . . . . 6 0 = (0g𝑅)
8 eqid 2736 . . . . . 6 (LIdeal‘𝑅) = (LIdeal‘𝑅)
92, 7, 8drngnidl 21245 . . . . 5 (𝑅 ∈ DivRing → (LIdeal‘𝑅) = {{ 0 }, (Base‘𝑅)})
106, 9sseqtrd 4019 . . . 4 (𝑅 ∈ DivRing → (MaxIdeal‘𝑅) ⊆ {{ 0 }, (Base‘𝑅)})
112mxidlnr 33479 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (MaxIdeal‘𝑅)) → 𝑖 ≠ (Base‘𝑅))
121, 11sylan 580 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑖 ∈ (MaxIdeal‘𝑅)) → 𝑖 ≠ (Base‘𝑅))
1312nelrdva 3710 . . . 4 (𝑅 ∈ DivRing → ¬ (Base‘𝑅) ∈ (MaxIdeal‘𝑅))
14 ssdifsn 4786 . . . 4 ((MaxIdeal‘𝑅) ⊆ ({{ 0 }, (Base‘𝑅)} ∖ {(Base‘𝑅)}) ↔ ((MaxIdeal‘𝑅) ⊆ {{ 0 }, (Base‘𝑅)} ∧ ¬ (Base‘𝑅) ∈ (MaxIdeal‘𝑅)))
1510, 13, 14sylanbrc 583 . . 3 (𝑅 ∈ DivRing → (MaxIdeal‘𝑅) ⊆ ({{ 0 }, (Base‘𝑅)} ∖ {(Base‘𝑅)}))
16 drngnzr 20740 . . . 4 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
177, 2drnglidl1ne0 33490 . . . . 5 (𝑅 ∈ NzRing → (Base‘𝑅) ≠ { 0 })
1817necomd 2995 . . . 4 (𝑅 ∈ NzRing → { 0 } ≠ (Base‘𝑅))
19 difprsn2 4799 . . . 4 ({ 0 } ≠ (Base‘𝑅) → ({{ 0 }, (Base‘𝑅)} ∖ {(Base‘𝑅)}) = {{ 0 }})
2016, 18, 193syl 18 . . 3 (𝑅 ∈ DivRing → ({{ 0 }, (Base‘𝑅)} ∖ {(Base‘𝑅)}) = {{ 0 }})
2115, 20sseqtrd 4019 . 2 (𝑅 ∈ DivRing → (MaxIdeal‘𝑅) ⊆ {{ 0 }})
227drng0mxidl 33491 . . 3 (𝑅 ∈ DivRing → { 0 } ∈ (MaxIdeal‘𝑅))
2322snssd 4807 . 2 (𝑅 ∈ DivRing → {{ 0 }} ⊆ (MaxIdeal‘𝑅))
2421, 23eqssd 4000 1 (𝑅 ∈ DivRing → (MaxIdeal‘𝑅) = {{ 0 }})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2108  wne 2939  cdif 3947  wss 3950  {csn 4624  {cpr 4626  cfv 6559  Basecbs 17243  0gc0g 17480  Ringcrg 20226  NzRingcnzr 20504  DivRingcdr 20721  LIdealclidl 21208  MaxIdealcmxidl 33474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751  ax-cnex 11207  ax-resscn 11208  ax-1cn 11209  ax-icn 11210  ax-addcl 11211  ax-addrcl 11212  ax-mulcl 11213  ax-mulrcl 11214  ax-mulcom 11215  ax-addass 11216  ax-mulass 11217  ax-distr 11218  ax-i2m1 11219  ax-1ne0 11220  ax-1rid 11221  ax-rnegex 11222  ax-rrecex 11223  ax-cnre 11224  ax-pre-lttri 11225  ax-pre-lttrn 11226  ax-pre-ltadd 11227  ax-pre-mulgt0 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-tr 5258  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6319  df-ord 6385  df-on 6386  df-lim 6387  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-riota 7386  df-ov 7432  df-oprab 7433  df-mpo 7434  df-om 7884  df-1st 8010  df-2nd 8011  df-tpos 8247  df-frecs 8302  df-wrecs 8333  df-recs 8407  df-rdg 8446  df-er 8741  df-en 8982  df-dom 8983  df-sdom 8984  df-pnf 11293  df-mnf 11294  df-xr 11295  df-ltxr 11296  df-le 11297  df-sub 11490  df-neg 11491  df-nn 12263  df-2 12325  df-3 12326  df-4 12327  df-5 12328  df-6 12329  df-7 12330  df-8 12331  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17244  df-ress 17271  df-plusg 17306  df-mulr 17307  df-sca 17309  df-vsca 17310  df-ip 17311  df-0g 17482  df-mgm 18649  df-sgrp 18728  df-mnd 18744  df-grp 18950  df-minusg 18951  df-sbg 18952  df-subg 19137  df-cmn 19796  df-abl 19797  df-mgp 20134  df-rng 20146  df-ur 20175  df-ring 20228  df-oppr 20326  df-dvdsr 20349  df-unit 20350  df-invr 20380  df-nzr 20505  df-subrg 20562  df-drng 20723  df-lmod 20852  df-lss 20922  df-sra 21164  df-rgmod 21165  df-lidl 21210  df-mxidl 33475
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator