![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > drngmxidl | Structured version Visualization version GIF version |
Description: The zero ideal is the only ideal of a division ring. (Contributed by Thierry Arnoux, 16-Mar-2025.) |
Ref | Expression |
---|---|
drngmxidl.1 | β’ 0 = (0gβπ ) |
Ref | Expression |
---|---|
drngmxidl | β’ (π β DivRing β (MaxIdealβπ ) = {{ 0 }}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngring 20633 | . . . . . 6 β’ (π β DivRing β π β Ring) | |
2 | eqid 2725 | . . . . . . . . 9 β’ (Baseβπ ) = (Baseβπ ) | |
3 | 2 | mxidlidl 33197 | . . . . . . . 8 β’ ((π β Ring β§ π β (MaxIdealβπ )) β π β (LIdealβπ )) |
4 | 3 | ex 411 | . . . . . . 7 β’ (π β Ring β (π β (MaxIdealβπ ) β π β (LIdealβπ ))) |
5 | 4 | ssrdv 3978 | . . . . . 6 β’ (π β Ring β (MaxIdealβπ ) β (LIdealβπ )) |
6 | 1, 5 | syl 17 | . . . . 5 β’ (π β DivRing β (MaxIdealβπ ) β (LIdealβπ )) |
7 | drngmxidl.1 | . . . . . 6 β’ 0 = (0gβπ ) | |
8 | eqid 2725 | . . . . . 6 β’ (LIdealβπ ) = (LIdealβπ ) | |
9 | 2, 7, 8 | drngnidl 21140 | . . . . 5 β’ (π β DivRing β (LIdealβπ ) = {{ 0 }, (Baseβπ )}) |
10 | 6, 9 | sseqtrd 4012 | . . . 4 β’ (π β DivRing β (MaxIdealβπ ) β {{ 0 }, (Baseβπ )}) |
11 | 2 | mxidlnr 33198 | . . . . . 6 β’ ((π β Ring β§ π β (MaxIdealβπ )) β π β (Baseβπ )) |
12 | 1, 11 | sylan 578 | . . . . 5 β’ ((π β DivRing β§ π β (MaxIdealβπ )) β π β (Baseβπ )) |
13 | 12 | nelrdva 3692 | . . . 4 β’ (π β DivRing β Β¬ (Baseβπ ) β (MaxIdealβπ )) |
14 | ssdifsn 4785 | . . . 4 β’ ((MaxIdealβπ ) β ({{ 0 }, (Baseβπ )} β {(Baseβπ )}) β ((MaxIdealβπ ) β {{ 0 }, (Baseβπ )} β§ Β¬ (Baseβπ ) β (MaxIdealβπ ))) | |
15 | 10, 13, 14 | sylanbrc 581 | . . 3 β’ (π β DivRing β (MaxIdealβπ ) β ({{ 0 }, (Baseβπ )} β {(Baseβπ )})) |
16 | drngnzr 20646 | . . . 4 β’ (π β DivRing β π β NzRing) | |
17 | 7, 2 | drnglidl1ne0 33209 | . . . . 5 β’ (π β NzRing β (Baseβπ ) β { 0 }) |
18 | 17 | necomd 2986 | . . . 4 β’ (π β NzRing β { 0 } β (Baseβπ )) |
19 | difprsn2 4798 | . . . 4 β’ ({ 0 } β (Baseβπ ) β ({{ 0 }, (Baseβπ )} β {(Baseβπ )}) = {{ 0 }}) | |
20 | 16, 18, 19 | 3syl 18 | . . 3 β’ (π β DivRing β ({{ 0 }, (Baseβπ )} β {(Baseβπ )}) = {{ 0 }}) |
21 | 15, 20 | sseqtrd 4012 | . 2 β’ (π β DivRing β (MaxIdealβπ ) β {{ 0 }}) |
22 | 7 | drng0mxidl 33210 | . . 3 β’ (π β DivRing β { 0 } β (MaxIdealβπ )) |
23 | 22 | snssd 4806 | . 2 β’ (π β DivRing β {{ 0 }} β (MaxIdealβπ )) |
24 | 21, 23 | eqssd 3989 | 1 β’ (π β DivRing β (MaxIdealβπ ) = {{ 0 }}) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 = wceq 1533 β wcel 2098 β wne 2930 β cdif 3936 β wss 3939 {csn 4622 {cpr 4624 βcfv 6541 Basecbs 17177 0gc0g 17418 Ringcrg 20175 NzRingcnzr 20453 DivRingcdr 20626 LIdealclidl 21104 MaxIdealcmxidl 33193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7989 df-2nd 7990 df-tpos 8228 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-sca 17246 df-vsca 17247 df-ip 17248 df-0g 17420 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-grp 18895 df-minusg 18896 df-sbg 18897 df-subg 19080 df-cmn 19739 df-abl 19740 df-mgp 20077 df-rng 20095 df-ur 20124 df-ring 20177 df-oppr 20275 df-dvdsr 20298 df-unit 20299 df-invr 20329 df-nzr 20454 df-subrg 20510 df-drng 20628 df-lmod 20747 df-lss 20818 df-sra 21060 df-rgmod 21061 df-lidl 21106 df-mxidl 33194 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |