![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > drngmxidl | Structured version Visualization version GIF version |
Description: The zero ideal is the only ideal of a division ring. (Contributed by Thierry Arnoux, 16-Mar-2025.) |
Ref | Expression |
---|---|
drngmxidl.1 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
drngmxidl | ⊢ (𝑅 ∈ DivRing → (MaxIdeal‘𝑅) = {{ 0 }}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngring 20734 | . . . . . 6 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
2 | eqid 2733 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | 2 | mxidlidl 33434 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑖 ∈ (MaxIdeal‘𝑅)) → 𝑖 ∈ (LIdeal‘𝑅)) |
4 | 3 | ex 412 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (𝑖 ∈ (MaxIdeal‘𝑅) → 𝑖 ∈ (LIdeal‘𝑅))) |
5 | 4 | ssrdv 4001 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (MaxIdeal‘𝑅) ⊆ (LIdeal‘𝑅)) |
6 | 1, 5 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ DivRing → (MaxIdeal‘𝑅) ⊆ (LIdeal‘𝑅)) |
7 | drngmxidl.1 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
8 | eqid 2733 | . . . . . 6 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
9 | 2, 7, 8 | drngnidl 21252 | . . . . 5 ⊢ (𝑅 ∈ DivRing → (LIdeal‘𝑅) = {{ 0 }, (Base‘𝑅)}) |
10 | 6, 9 | sseqtrd 4036 | . . . 4 ⊢ (𝑅 ∈ DivRing → (MaxIdeal‘𝑅) ⊆ {{ 0 }, (Base‘𝑅)}) |
11 | 2 | mxidlnr 33435 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑖 ∈ (MaxIdeal‘𝑅)) → 𝑖 ≠ (Base‘𝑅)) |
12 | 1, 11 | sylan 579 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝑖 ∈ (MaxIdeal‘𝑅)) → 𝑖 ≠ (Base‘𝑅)) |
13 | 12 | nelrdva 3714 | . . . 4 ⊢ (𝑅 ∈ DivRing → ¬ (Base‘𝑅) ∈ (MaxIdeal‘𝑅)) |
14 | ssdifsn 4795 | . . . 4 ⊢ ((MaxIdeal‘𝑅) ⊆ ({{ 0 }, (Base‘𝑅)} ∖ {(Base‘𝑅)}) ↔ ((MaxIdeal‘𝑅) ⊆ {{ 0 }, (Base‘𝑅)} ∧ ¬ (Base‘𝑅) ∈ (MaxIdeal‘𝑅))) | |
15 | 10, 13, 14 | sylanbrc 582 | . . 3 ⊢ (𝑅 ∈ DivRing → (MaxIdeal‘𝑅) ⊆ ({{ 0 }, (Base‘𝑅)} ∖ {(Base‘𝑅)})) |
16 | drngnzr 20746 | . . . 4 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ NzRing) | |
17 | 7, 2 | drnglidl1ne0 33446 | . . . . 5 ⊢ (𝑅 ∈ NzRing → (Base‘𝑅) ≠ { 0 }) |
18 | 17 | necomd 2992 | . . . 4 ⊢ (𝑅 ∈ NzRing → { 0 } ≠ (Base‘𝑅)) |
19 | difprsn2 4808 | . . . 4 ⊢ ({ 0 } ≠ (Base‘𝑅) → ({{ 0 }, (Base‘𝑅)} ∖ {(Base‘𝑅)}) = {{ 0 }}) | |
20 | 16, 18, 19 | 3syl 18 | . . 3 ⊢ (𝑅 ∈ DivRing → ({{ 0 }, (Base‘𝑅)} ∖ {(Base‘𝑅)}) = {{ 0 }}) |
21 | 15, 20 | sseqtrd 4036 | . 2 ⊢ (𝑅 ∈ DivRing → (MaxIdeal‘𝑅) ⊆ {{ 0 }}) |
22 | 7 | drng0mxidl 33447 | . . 3 ⊢ (𝑅 ∈ DivRing → { 0 } ∈ (MaxIdeal‘𝑅)) |
23 | 22 | snssd 4816 | . 2 ⊢ (𝑅 ∈ DivRing → {{ 0 }} ⊆ (MaxIdeal‘𝑅)) |
24 | 21, 23 | eqssd 4013 | 1 ⊢ (𝑅 ∈ DivRing → (MaxIdeal‘𝑅) = {{ 0 }}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1535 ∈ wcel 2104 ≠ wne 2936 ∖ cdif 3960 ⊆ wss 3963 {csn 4630 {cpr 4632 ‘cfv 6558 Basecbs 17234 0gc0g 17475 Ringcrg 20236 NzRingcnzr 20514 DivRingcdr 20727 LIdealclidl 21215 MaxIdealcmxidl 33430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-11 2153 ax-12 2173 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5366 ax-pr 5430 ax-un 7747 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2536 df-eu 2565 df-clab 2711 df-cleq 2725 df-clel 2812 df-nfc 2888 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3479 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4915 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6317 df-ord 6383 df-on 6384 df-lim 6385 df-suc 6386 df-iota 6510 df-fun 6560 df-fn 6561 df-f 6562 df-f1 6563 df-fo 6564 df-f1o 6565 df-fv 6566 df-riota 7381 df-ov 7428 df-oprab 7429 df-mpo 7430 df-om 7881 df-1st 8007 df-2nd 8008 df-tpos 8244 df-frecs 8299 df-wrecs 8330 df-recs 8404 df-rdg 8443 df-er 8738 df-en 8979 df-dom 8980 df-sdom 8981 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11485 df-neg 11486 df-nn 12258 df-2 12320 df-3 12321 df-4 12322 df-5 12323 df-6 12324 df-7 12325 df-8 12326 df-sets 17187 df-slot 17205 df-ndx 17217 df-base 17235 df-ress 17264 df-plusg 17300 df-mulr 17301 df-sca 17303 df-vsca 17304 df-ip 17305 df-0g 17477 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-grp 18952 df-minusg 18953 df-sbg 18954 df-subg 19139 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20156 df-ur 20185 df-ring 20238 df-oppr 20336 df-dvdsr 20359 df-unit 20360 df-invr 20390 df-nzr 20515 df-subrg 20573 df-drng 20729 df-lmod 20858 df-lss 20929 df-sra 21171 df-rgmod 21172 df-lidl 21217 df-mxidl 33431 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |