Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drngmxidl Structured version   Visualization version   GIF version

Theorem drngmxidl 33035
Description: The zero ideal is the only ideal of a division ring. (Contributed by Thierry Arnoux, 16-Mar-2025.)
Hypothesis
Ref Expression
drngmxidl.1 0 = (0g𝑅)
Assertion
Ref Expression
drngmxidl (𝑅 ∈ DivRing → (MaxIdeal‘𝑅) = {{ 0 }})

Proof of Theorem drngmxidl
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 drngring 20590 . . . . . 6 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
2 eqid 2731 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
32mxidlidl 33021 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (MaxIdeal‘𝑅)) → 𝑖 ∈ (LIdeal‘𝑅))
43ex 412 . . . . . . 7 (𝑅 ∈ Ring → (𝑖 ∈ (MaxIdeal‘𝑅) → 𝑖 ∈ (LIdeal‘𝑅)))
54ssrdv 3988 . . . . . 6 (𝑅 ∈ Ring → (MaxIdeal‘𝑅) ⊆ (LIdeal‘𝑅))
61, 5syl 17 . . . . 5 (𝑅 ∈ DivRing → (MaxIdeal‘𝑅) ⊆ (LIdeal‘𝑅))
7 drngmxidl.1 . . . . . 6 0 = (0g𝑅)
8 eqid 2731 . . . . . 6 (LIdeal‘𝑅) = (LIdeal‘𝑅)
92, 7, 8drngnidl 21097 . . . . 5 (𝑅 ∈ DivRing → (LIdeal‘𝑅) = {{ 0 }, (Base‘𝑅)})
106, 9sseqtrd 4022 . . . 4 (𝑅 ∈ DivRing → (MaxIdeal‘𝑅) ⊆ {{ 0 }, (Base‘𝑅)})
112mxidlnr 33022 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (MaxIdeal‘𝑅)) → 𝑖 ≠ (Base‘𝑅))
121, 11sylan 579 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑖 ∈ (MaxIdeal‘𝑅)) → 𝑖 ≠ (Base‘𝑅))
1312nelrdva 3701 . . . 4 (𝑅 ∈ DivRing → ¬ (Base‘𝑅) ∈ (MaxIdeal‘𝑅))
14 ssdifsn 4791 . . . 4 ((MaxIdeal‘𝑅) ⊆ ({{ 0 }, (Base‘𝑅)} ∖ {(Base‘𝑅)}) ↔ ((MaxIdeal‘𝑅) ⊆ {{ 0 }, (Base‘𝑅)} ∧ ¬ (Base‘𝑅) ∈ (MaxIdeal‘𝑅)))
1510, 13, 14sylanbrc 582 . . 3 (𝑅 ∈ DivRing → (MaxIdeal‘𝑅) ⊆ ({{ 0 }, (Base‘𝑅)} ∖ {(Base‘𝑅)}))
16 drngnzr 20603 . . . 4 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
177, 2drnglidl1ne0 33033 . . . . 5 (𝑅 ∈ NzRing → (Base‘𝑅) ≠ { 0 })
1817necomd 2995 . . . 4 (𝑅 ∈ NzRing → { 0 } ≠ (Base‘𝑅))
19 difprsn2 4804 . . . 4 ({ 0 } ≠ (Base‘𝑅) → ({{ 0 }, (Base‘𝑅)} ∖ {(Base‘𝑅)}) = {{ 0 }})
2016, 18, 193syl 18 . . 3 (𝑅 ∈ DivRing → ({{ 0 }, (Base‘𝑅)} ∖ {(Base‘𝑅)}) = {{ 0 }})
2115, 20sseqtrd 4022 . 2 (𝑅 ∈ DivRing → (MaxIdeal‘𝑅) ⊆ {{ 0 }})
227drng0mxidl 33034 . . 3 (𝑅 ∈ DivRing → { 0 } ∈ (MaxIdeal‘𝑅))
2322snssd 4812 . 2 (𝑅 ∈ DivRing → {{ 0 }} ⊆ (MaxIdeal‘𝑅))
2421, 23eqssd 3999 1 (𝑅 ∈ DivRing → (MaxIdeal‘𝑅) = {{ 0 }})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2105  wne 2939  cdif 3945  wss 3948  {csn 4628  {cpr 4630  cfv 6543  Basecbs 17151  0gc0g 17392  Ringcrg 20134  NzRingcnzr 20410  DivRingcdr 20583  LIdealclidl 21061  MaxIdealcmxidl 33017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-tpos 8217  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-sca 17220  df-vsca 17221  df-ip 17222  df-0g 17394  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-grp 18864  df-minusg 18865  df-sbg 18866  df-subg 19046  df-cmn 19698  df-abl 19699  df-mgp 20036  df-rng 20054  df-ur 20083  df-ring 20136  df-oppr 20232  df-dvdsr 20255  df-unit 20256  df-invr 20286  df-nzr 20411  df-subrg 20467  df-drng 20585  df-lmod 20704  df-lss 20775  df-sra 21017  df-rgmod 21018  df-lidl 21063  df-mxidl 33018
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator