Step | Hyp | Ref
| Expression |
1 | | elfvex 6750 |
. . . . . . 7
⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V) |
2 | | isust 23101 |
. . . . . . 7
⊢ (𝑋 ∈ V → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣))))) |
3 | 1, 2 | syl 17 |
. . . . . 6
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣))))) |
4 | 3 | ibi 270 |
. . . . 5
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣)))) |
5 | 4 | adantl 485 |
. . . 4
⊢ ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣)))) |
6 | 5 | simp1d 1144 |
. . 3
⊢ ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → 𝑈 ⊆ 𝒫 (𝑋 × 𝑋)) |
7 | 5 | simp2d 1145 |
. . . . 5
⊢ ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → (𝑋 × 𝑋) ∈ 𝑈) |
8 | 7 | ne0d 4250 |
. . . 4
⊢ ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → 𝑈 ≠ ∅) |
9 | 5 | simp3d 1146 |
. . . . . . . . . 10
⊢ ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣))) |
10 | 9 | r19.21bi 3130 |
. . . . . . . . 9
⊢ (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣 ∈ 𝑈) → (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣))) |
11 | 10 | simp3d 1146 |
. . . . . . . 8
⊢ (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣 ∈ 𝑈) → (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣)) |
12 | 11 | simp1d 1144 |
. . . . . . 7
⊢ (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣 ∈ 𝑈) → ( I ↾ 𝑋) ⊆ 𝑣) |
13 | | opelidres 5863 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ V → (〈𝑤, 𝑤〉 ∈ ( I ↾ 𝑋) ↔ 𝑤 ∈ 𝑋)) |
14 | 13 | elv 3414 |
. . . . . . . . . . . 12
⊢
(〈𝑤, 𝑤〉 ∈ ( I ↾ 𝑋) ↔ 𝑤 ∈ 𝑋) |
15 | 14 | biimpri 231 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ 𝑋 → 〈𝑤, 𝑤〉 ∈ ( I ↾ 𝑋)) |
16 | 15 | rgen 3071 |
. . . . . . . . . 10
⊢
∀𝑤 ∈
𝑋 〈𝑤, 𝑤〉 ∈ ( I ↾ 𝑋) |
17 | | r19.2z 4406 |
. . . . . . . . . 10
⊢ ((𝑋 ≠ ∅ ∧
∀𝑤 ∈ 𝑋 〈𝑤, 𝑤〉 ∈ ( I ↾ 𝑋)) → ∃𝑤 ∈ 𝑋 〈𝑤, 𝑤〉 ∈ ( I ↾ 𝑋)) |
18 | 16, 17 | mpan2 691 |
. . . . . . . . 9
⊢ (𝑋 ≠ ∅ →
∃𝑤 ∈ 𝑋 〈𝑤, 𝑤〉 ∈ ( I ↾ 𝑋)) |
19 | 18 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣 ∈ 𝑈) → ∃𝑤 ∈ 𝑋 〈𝑤, 𝑤〉 ∈ ( I ↾ 𝑋)) |
20 | | ne0i 4249 |
. . . . . . . . 9
⊢
(〈𝑤, 𝑤〉 ∈ ( I ↾ 𝑋) → ( I ↾ 𝑋) ≠ ∅) |
21 | 20 | rexlimivw 3201 |
. . . . . . . 8
⊢
(∃𝑤 ∈
𝑋 〈𝑤, 𝑤〉 ∈ ( I ↾ 𝑋) → ( I ↾ 𝑋) ≠ ∅) |
22 | 19, 21 | syl 17 |
. . . . . . 7
⊢ (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣 ∈ 𝑈) → ( I ↾ 𝑋) ≠ ∅) |
23 | | ssn0 4315 |
. . . . . . 7
⊢ ((( I
↾ 𝑋) ⊆ 𝑣 ∧ ( I ↾ 𝑋) ≠ ∅) → 𝑣 ≠ ∅) |
24 | 12, 22, 23 | syl2anc 587 |
. . . . . 6
⊢ (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣 ∈ 𝑈) → 𝑣 ≠ ∅) |
25 | 24 | nelrdva 3618 |
. . . . 5
⊢ ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → ¬ ∅ ∈
𝑈) |
26 | | df-nel 3047 |
. . . . 5
⊢ (∅
∉ 𝑈 ↔ ¬
∅ ∈ 𝑈) |
27 | 25, 26 | sylibr 237 |
. . . 4
⊢ ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → ∅ ∉ 𝑈) |
28 | 10 | simp2d 1145 |
. . . . . . . . 9
⊢ (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣 ∈ 𝑈) → ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈) |
29 | 28 | r19.21bi 3130 |
. . . . . . . 8
⊢ ((((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣 ∈ 𝑈) ∧ 𝑤 ∈ 𝑈) → (𝑣 ∩ 𝑤) ∈ 𝑈) |
30 | | vex 3412 |
. . . . . . . . . . 11
⊢ 𝑤 ∈ V |
31 | 30 | inex2 5211 |
. . . . . . . . . 10
⊢ (𝑣 ∩ 𝑤) ∈ V |
32 | 31 | pwid 4537 |
. . . . . . . . 9
⊢ (𝑣 ∩ 𝑤) ∈ 𝒫 (𝑣 ∩ 𝑤) |
33 | 32 | a1i 11 |
. . . . . . . 8
⊢ ((((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣 ∈ 𝑈) ∧ 𝑤 ∈ 𝑈) → (𝑣 ∩ 𝑤) ∈ 𝒫 (𝑣 ∩ 𝑤)) |
34 | 29, 33 | elind 4108 |
. . . . . . 7
⊢ ((((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣 ∈ 𝑈) ∧ 𝑤 ∈ 𝑈) → (𝑣 ∩ 𝑤) ∈ (𝑈 ∩ 𝒫 (𝑣 ∩ 𝑤))) |
35 | 34 | ne0d 4250 |
. . . . . 6
⊢ ((((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣 ∈ 𝑈) ∧ 𝑤 ∈ 𝑈) → (𝑈 ∩ 𝒫 (𝑣 ∩ 𝑤)) ≠ ∅) |
36 | 35 | ralrimiva 3105 |
. . . . 5
⊢ (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣 ∈ 𝑈) → ∀𝑤 ∈ 𝑈 (𝑈 ∩ 𝒫 (𝑣 ∩ 𝑤)) ≠ ∅) |
37 | 36 | ralrimiva 3105 |
. . . 4
⊢ ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → ∀𝑣 ∈ 𝑈 ∀𝑤 ∈ 𝑈 (𝑈 ∩ 𝒫 (𝑣 ∩ 𝑤)) ≠ ∅) |
38 | 8, 27, 37 | 3jca 1130 |
. . 3
⊢ ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → (𝑈 ≠ ∅ ∧ ∅ ∉ 𝑈 ∧ ∀𝑣 ∈ 𝑈 ∀𝑤 ∈ 𝑈 (𝑈 ∩ 𝒫 (𝑣 ∩ 𝑤)) ≠ ∅)) |
39 | 1, 1 | xpexd 7536 |
. . . . 5
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ V) |
40 | | isfbas 22726 |
. . . . 5
⊢ ((𝑋 × 𝑋) ∈ V → (𝑈 ∈ (fBas‘(𝑋 × 𝑋)) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑈 ≠ ∅ ∧ ∅ ∉ 𝑈 ∧ ∀𝑣 ∈ 𝑈 ∀𝑤 ∈ 𝑈 (𝑈 ∩ 𝒫 (𝑣 ∩ 𝑤)) ≠ ∅)))) |
41 | 39, 40 | syl 17 |
. . . 4
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ∈ (fBas‘(𝑋 × 𝑋)) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑈 ≠ ∅ ∧ ∅ ∉ 𝑈 ∧ ∀𝑣 ∈ 𝑈 ∀𝑤 ∈ 𝑈 (𝑈 ∩ 𝒫 (𝑣 ∩ 𝑤)) ≠ ∅)))) |
42 | 41 | adantl 485 |
. . 3
⊢ ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → (𝑈 ∈ (fBas‘(𝑋 × 𝑋)) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑈 ≠ ∅ ∧ ∅ ∉ 𝑈 ∧ ∀𝑣 ∈ 𝑈 ∀𝑤 ∈ 𝑈 (𝑈 ∩ 𝒫 (𝑣 ∩ 𝑤)) ≠ ∅)))) |
43 | 6, 38, 42 | mpbir2and 713 |
. 2
⊢ ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → 𝑈 ∈ (fBas‘(𝑋 × 𝑋))) |
44 | | n0 4261 |
. . . . 5
⊢ ((𝑈 ∩ 𝒫 𝑤) ≠ ∅ ↔
∃𝑣 𝑣 ∈ (𝑈 ∩ 𝒫 𝑤)) |
45 | | elin 3882 |
. . . . . . 7
⊢ (𝑣 ∈ (𝑈 ∩ 𝒫 𝑤) ↔ (𝑣 ∈ 𝑈 ∧ 𝑣 ∈ 𝒫 𝑤)) |
46 | | velpw 4518 |
. . . . . . . 8
⊢ (𝑣 ∈ 𝒫 𝑤 ↔ 𝑣 ⊆ 𝑤) |
47 | 46 | anbi2i 626 |
. . . . . . 7
⊢ ((𝑣 ∈ 𝑈 ∧ 𝑣 ∈ 𝒫 𝑤) ↔ (𝑣 ∈ 𝑈 ∧ 𝑣 ⊆ 𝑤)) |
48 | 45, 47 | bitri 278 |
. . . . . 6
⊢ (𝑣 ∈ (𝑈 ∩ 𝒫 𝑤) ↔ (𝑣 ∈ 𝑈 ∧ 𝑣 ⊆ 𝑤)) |
49 | 48 | exbii 1855 |
. . . . 5
⊢
(∃𝑣 𝑣 ∈ (𝑈 ∩ 𝒫 𝑤) ↔ ∃𝑣(𝑣 ∈ 𝑈 ∧ 𝑣 ⊆ 𝑤)) |
50 | 44, 49 | bitri 278 |
. . . 4
⊢ ((𝑈 ∩ 𝒫 𝑤) ≠ ∅ ↔
∃𝑣(𝑣 ∈ 𝑈 ∧ 𝑣 ⊆ 𝑤)) |
51 | 10 | simp1d 1144 |
. . . . . . . 8
⊢ (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣 ∈ 𝑈) → ∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈)) |
52 | 51 | r19.21bi 3130 |
. . . . . . 7
⊢ ((((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣 ∈ 𝑈) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) → (𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈)) |
53 | 52 | an32s 652 |
. . . . . 6
⊢ ((((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣 ∈ 𝑈) → (𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈)) |
54 | 53 | expimpd 457 |
. . . . 5
⊢ (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) → ((𝑣 ∈ 𝑈 ∧ 𝑣 ⊆ 𝑤) → 𝑤 ∈ 𝑈)) |
55 | 54 | exlimdv 1941 |
. . . 4
⊢ (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) → (∃𝑣(𝑣 ∈ 𝑈 ∧ 𝑣 ⊆ 𝑤) → 𝑤 ∈ 𝑈)) |
56 | 50, 55 | syl5bi 245 |
. . 3
⊢ (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) → ((𝑈 ∩ 𝒫 𝑤) ≠ ∅ → 𝑤 ∈ 𝑈)) |
57 | 56 | ralrimiva 3105 |
. 2
⊢ ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → ∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)((𝑈 ∩ 𝒫 𝑤) ≠ ∅ → 𝑤 ∈ 𝑈)) |
58 | | isfil 22744 |
. 2
⊢ (𝑈 ∈ (Fil‘(𝑋 × 𝑋)) ↔ (𝑈 ∈ (fBas‘(𝑋 × 𝑋)) ∧ ∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)((𝑈 ∩ 𝒫 𝑤) ≠ ∅ → 𝑤 ∈ 𝑈))) |
59 | 43, 57, 58 | sylanbrc 586 |
1
⊢ ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → 𝑈 ∈ (Fil‘(𝑋 × 𝑋))) |