MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustfilxp Structured version   Visualization version   GIF version

Theorem ustfilxp 22295
Description: A uniform structure on a nonempty base is a filter. Remark 3 of [BourbakiTop1] p. II.2. (Contributed by Thierry Arnoux, 15-Nov-2017.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
ustfilxp ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → 𝑈 ∈ (Fil‘(𝑋 × 𝑋)))

Proof of Theorem ustfilxp
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6409 . . . . . . 7 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V)
2 isust 22286 . . . . . . 7 (𝑋 ∈ V → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))))
31, 2syl 17 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))))
43ibi 258 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣))))
54adantl 473 . . . 4 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣))))
65simp1d 1172 . . 3 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → 𝑈 ⊆ 𝒫 (𝑋 × 𝑋))
75simp2d 1173 . . . . 5 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → (𝑋 × 𝑋) ∈ 𝑈)
87ne0d 4086 . . . 4 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → 𝑈 ≠ ∅)
95simp3d 1174 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))
109r19.21bi 3079 . . . . . . . . 9 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) → (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))
1110simp3d 1174 . . . . . . . 8 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) → (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣))
1211simp1d 1172 . . . . . . 7 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) → ( I ↾ 𝑋) ⊆ 𝑣)
13 opelidres 5584 . . . . . . . . . . . . 13 (𝑤 ∈ V → (⟨𝑤, 𝑤⟩ ∈ ( I ↾ 𝑋) ↔ 𝑤𝑋))
1413elv 3354 . . . . . . . . . . . 12 (⟨𝑤, 𝑤⟩ ∈ ( I ↾ 𝑋) ↔ 𝑤𝑋)
1514biimpri 219 . . . . . . . . . . 11 (𝑤𝑋 → ⟨𝑤, 𝑤⟩ ∈ ( I ↾ 𝑋))
1615rgen 3069 . . . . . . . . . 10 𝑤𝑋𝑤, 𝑤⟩ ∈ ( I ↾ 𝑋)
17 r19.2z 4219 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ ∀𝑤𝑋𝑤, 𝑤⟩ ∈ ( I ↾ 𝑋)) → ∃𝑤𝑋𝑤, 𝑤⟩ ∈ ( I ↾ 𝑋))
1816, 17mpan2 682 . . . . . . . . 9 (𝑋 ≠ ∅ → ∃𝑤𝑋𝑤, 𝑤⟩ ∈ ( I ↾ 𝑋))
1918ad2antrr 717 . . . . . . . 8 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) → ∃𝑤𝑋𝑤, 𝑤⟩ ∈ ( I ↾ 𝑋))
20 ne0i 4085 . . . . . . . . 9 (⟨𝑤, 𝑤⟩ ∈ ( I ↾ 𝑋) → ( I ↾ 𝑋) ≠ ∅)
2120rexlimivw 3176 . . . . . . . 8 (∃𝑤𝑋𝑤, 𝑤⟩ ∈ ( I ↾ 𝑋) → ( I ↾ 𝑋) ≠ ∅)
2219, 21syl 17 . . . . . . 7 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) → ( I ↾ 𝑋) ≠ ∅)
23 ssn0 4138 . . . . . . 7 ((( I ↾ 𝑋) ⊆ 𝑣 ∧ ( I ↾ 𝑋) ≠ ∅) → 𝑣 ≠ ∅)
2412, 22, 23syl2anc 579 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) → 𝑣 ≠ ∅)
2524nelrdva 3578 . . . . 5 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → ¬ ∅ ∈ 𝑈)
26 df-nel 3041 . . . . 5 (∅ ∉ 𝑈 ↔ ¬ ∅ ∈ 𝑈)
2725, 26sylibr 225 . . . 4 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → ∅ ∉ 𝑈)
2810simp2d 1173 . . . . . . . . 9 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) → ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈)
2928r19.21bi 3079 . . . . . . . 8 ((((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) ∧ 𝑤𝑈) → (𝑣𝑤) ∈ 𝑈)
30 vex 3353 . . . . . . . . . . 11 𝑤 ∈ V
3130inex2 4961 . . . . . . . . . 10 (𝑣𝑤) ∈ V
3231pwid 4331 . . . . . . . . 9 (𝑣𝑤) ∈ 𝒫 (𝑣𝑤)
3332a1i 11 . . . . . . . 8 ((((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) ∧ 𝑤𝑈) → (𝑣𝑤) ∈ 𝒫 (𝑣𝑤))
3429, 33elind 3960 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) ∧ 𝑤𝑈) → (𝑣𝑤) ∈ (𝑈 ∩ 𝒫 (𝑣𝑤)))
3534ne0d 4086 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) ∧ 𝑤𝑈) → (𝑈 ∩ 𝒫 (𝑣𝑤)) ≠ ∅)
3635ralrimiva 3113 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) → ∀𝑤𝑈 (𝑈 ∩ 𝒫 (𝑣𝑤)) ≠ ∅)
3736ralrimiva 3113 . . . 4 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → ∀𝑣𝑈𝑤𝑈 (𝑈 ∩ 𝒫 (𝑣𝑤)) ≠ ∅)
388, 27, 373jca 1158 . . 3 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → (𝑈 ≠ ∅ ∧ ∅ ∉ 𝑈 ∧ ∀𝑣𝑈𝑤𝑈 (𝑈 ∩ 𝒫 (𝑣𝑤)) ≠ ∅))
39 xpexg 7158 . . . . . 6 ((𝑋 ∈ V ∧ 𝑋 ∈ V) → (𝑋 × 𝑋) ∈ V)
401, 1, 39syl2anc 579 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ V)
41 isfbas 21912 . . . . 5 ((𝑋 × 𝑋) ∈ V → (𝑈 ∈ (fBas‘(𝑋 × 𝑋)) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑈 ≠ ∅ ∧ ∅ ∉ 𝑈 ∧ ∀𝑣𝑈𝑤𝑈 (𝑈 ∩ 𝒫 (𝑣𝑤)) ≠ ∅))))
4240, 41syl 17 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ∈ (fBas‘(𝑋 × 𝑋)) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑈 ≠ ∅ ∧ ∅ ∉ 𝑈 ∧ ∀𝑣𝑈𝑤𝑈 (𝑈 ∩ 𝒫 (𝑣𝑤)) ≠ ∅))))
4342adantl 473 . . 3 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → (𝑈 ∈ (fBas‘(𝑋 × 𝑋)) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑈 ≠ ∅ ∧ ∅ ∉ 𝑈 ∧ ∀𝑣𝑈𝑤𝑈 (𝑈 ∩ 𝒫 (𝑣𝑤)) ≠ ∅))))
446, 38, 43mpbir2and 704 . 2 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → 𝑈 ∈ (fBas‘(𝑋 × 𝑋)))
45 n0 4095 . . . . 5 ((𝑈 ∩ 𝒫 𝑤) ≠ ∅ ↔ ∃𝑣 𝑣 ∈ (𝑈 ∩ 𝒫 𝑤))
46 elin 3958 . . . . . . 7 (𝑣 ∈ (𝑈 ∩ 𝒫 𝑤) ↔ (𝑣𝑈𝑣 ∈ 𝒫 𝑤))
47 selpw 4322 . . . . . . . 8 (𝑣 ∈ 𝒫 𝑤𝑣𝑤)
4847anbi2i 616 . . . . . . 7 ((𝑣𝑈𝑣 ∈ 𝒫 𝑤) ↔ (𝑣𝑈𝑣𝑤))
4946, 48bitri 266 . . . . . 6 (𝑣 ∈ (𝑈 ∩ 𝒫 𝑤) ↔ (𝑣𝑈𝑣𝑤))
5049exbii 1943 . . . . 5 (∃𝑣 𝑣 ∈ (𝑈 ∩ 𝒫 𝑤) ↔ ∃𝑣(𝑣𝑈𝑣𝑤))
5145, 50bitri 266 . . . 4 ((𝑈 ∩ 𝒫 𝑤) ≠ ∅ ↔ ∃𝑣(𝑣𝑈𝑣𝑤))
5210simp1d 1172 . . . . . . . 8 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) → ∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈))
5352r19.21bi 3079 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) → (𝑣𝑤𝑤𝑈))
5453an32s 642 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣𝑈) → (𝑣𝑤𝑤𝑈))
5554expimpd 445 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) → ((𝑣𝑈𝑣𝑤) → 𝑤𝑈))
5655exlimdv 2028 . . . 4 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) → (∃𝑣(𝑣𝑈𝑣𝑤) → 𝑤𝑈))
5751, 56syl5bi 233 . . 3 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) → ((𝑈 ∩ 𝒫 𝑤) ≠ ∅ → 𝑤𝑈))
5857ralrimiva 3113 . 2 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → ∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)((𝑈 ∩ 𝒫 𝑤) ≠ ∅ → 𝑤𝑈))
59 isfil 21930 . 2 (𝑈 ∈ (Fil‘(𝑋 × 𝑋)) ↔ (𝑈 ∈ (fBas‘(𝑋 × 𝑋)) ∧ ∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)((𝑈 ∩ 𝒫 𝑤) ≠ ∅ → 𝑤𝑈)))
6044, 58, 59sylanbrc 578 1 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → 𝑈 ∈ (Fil‘(𝑋 × 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107  wex 1874  wcel 2155  wne 2937  wnel 3040  wral 3055  wrex 3056  Vcvv 3350  cin 3731  wss 3732  c0 4079  𝒫 cpw 4315  cop 4340   I cid 5184   × cxp 5275  ccnv 5276  cres 5279  ccom 5281  cfv 6068  fBascfbas 20007  Filcfil 21928  UnifOncust 22282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fv 6076  df-fbas 20016  df-fil 21929  df-ust 22283
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator