Proof of Theorem fourierdlem72
Step | Hyp | Ref
| Expression |
1 | | fourierdlem72.o |
. . . 4
⊢ 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) |
2 | | ovex 7308 |
. . . . . 6
⊢ (𝐴(,)𝐵) ∈ V |
3 | 2 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝐴(,)𝐵) ∈ V) |
4 | | fourierdlem72.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
5 | 4 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐹:ℝ⟶ℝ) |
6 | | fourierdlem72.xre |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ ℝ) |
7 | 6 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ) |
8 | | elioore 13109 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ) |
9 | 8 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ) |
10 | 7, 9 | readdcld 11004 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ) |
11 | 5, 10 | ffvelrnd 6962 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ) |
12 | | fourierdlem72.c |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ ℝ) |
13 | 12 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℝ) |
14 | 11, 13 | resubcld 11403 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℝ) |
15 | | ioossicc 13165 |
. . . . . . . . . . . 12
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
16 | 15 | sseli 3917 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ (𝐴[,]𝐵)) |
17 | 16 | ad2antlr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑠 ≠ 0) → 𝑠 ∈ (𝐴[,]𝐵)) |
18 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑠 ≠ 0 → 𝑠 ≠ 0) |
19 | 18 | necon1bi 2972 |
. . . . . . . . . . . 12
⊢ (¬
𝑠 ≠ 0 → 𝑠 = 0) |
20 | 19 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (¬
𝑠 ≠ 0 → (𝑠 ∈ (𝐴[,]𝐵) ↔ 0 ∈ (𝐴[,]𝐵))) |
21 | 20 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑠 ≠ 0) → (𝑠 ∈ (𝐴[,]𝐵) ↔ 0 ∈ (𝐴[,]𝐵))) |
22 | 17, 21 | mpbid 231 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑠 ≠ 0) → 0 ∈ (𝐴[,]𝐵)) |
23 | | fourierdlem72.n0 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵)) |
24 | 23 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑠 ≠ 0) → ¬ 0 ∈ (𝐴[,]𝐵)) |
25 | 22, 24 | condan 815 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0) |
26 | 14, 9, 25 | redivcld 11803 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) ∈ ℝ) |
27 | | fourierdlem72.h |
. . . . . . 7
⊢ 𝐻 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠)) |
28 | 26, 27 | fmptd 6988 |
. . . . . 6
⊢ (𝜑 → 𝐻:(𝐴(,)𝐵)⟶ℝ) |
29 | 28 | ffvelrnda 6961 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝐻‘𝑠) ∈ ℝ) |
30 | | 2re 12047 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
31 | 30 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ) |
32 | 9 | rehalfcld 12220 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℝ) |
33 | 32 | resincld 15852 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℝ) |
34 | 31, 33 | remulcld 11005 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈
ℝ) |
35 | | 2cnd 12051 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ) |
36 | 9 | recnd 11003 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ) |
37 | 36 | halfcld 12218 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℂ) |
38 | 37 | sincld 15839 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ) |
39 | | 2ne0 12077 |
. . . . . . . . . 10
⊢ 2 ≠
0 |
40 | 39 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 2 ≠ 0) |
41 | | fourierdlem72.ab |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π)) |
42 | 41 | sselda 3921 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (-π[,]π)) |
43 | | fourierdlem44 43692 |
. . . . . . . . . 10
⊢ ((𝑠 ∈ (-π[,]π) ∧
𝑠 ≠ 0) →
(sin‘(𝑠 / 2)) ≠
0) |
44 | 42, 25, 43 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ≠ 0) |
45 | 35, 38, 40, 44 | mulne0d 11627 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ≠ 0) |
46 | 9, 34, 45 | redivcld 11803 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ) |
47 | | fourierdlem72.k |
. . . . . . 7
⊢ 𝐾 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) |
48 | 46, 47 | fmptd 6988 |
. . . . . 6
⊢ (𝜑 → 𝐾:(𝐴(,)𝐵)⟶ℝ) |
49 | 48 | ffvelrnda 6961 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝐾‘𝑠) ∈ ℝ) |
50 | 28 | feqmptd 6837 |
. . . . 5
⊢ (𝜑 → 𝐻 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐻‘𝑠))) |
51 | 48 | feqmptd 6837 |
. . . . 5
⊢ (𝜑 → 𝐾 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾‘𝑠))) |
52 | 3, 29, 49, 50, 51 | offval2 7553 |
. . . 4
⊢ (𝜑 → (𝐻 ∘f · 𝐾) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠)))) |
53 | 1, 52 | eqtr4id 2797 |
. . 3
⊢ (𝜑 → 𝑂 = (𝐻 ∘f · 𝐾)) |
54 | 53 | oveq2d 7291 |
. 2
⊢ (𝜑 → (ℝ D 𝑂) = (ℝ D (𝐻 ∘f ·
𝐾))) |
55 | | reelprrecn 10963 |
. . . 4
⊢ ℝ
∈ {ℝ, ℂ} |
56 | 55 | a1i 11 |
. . 3
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
57 | 11 | recnd 11003 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
58 | 12 | recnd 11003 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ ℂ) |
59 | 58 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℂ) |
60 | 57, 59 | subcld 11332 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ) |
61 | | ioossre 13140 |
. . . . . . . 8
⊢ (𝐴(,)𝐵) ⊆ ℝ |
62 | 61 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℝ) |
63 | 62 | sselda 3921 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ) |
64 | 63 | recnd 11003 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ) |
65 | 60, 64, 25 | divcld 11751 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) ∈ ℂ) |
66 | 65, 27 | fmptd 6988 |
. . 3
⊢ (𝜑 → 𝐻:(𝐴(,)𝐵)⟶ℂ) |
67 | 64 | halfcld 12218 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℂ) |
68 | 67 | sincld 15839 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ) |
69 | 35, 68 | mulcld 10995 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈
ℂ) |
70 | 64, 69, 45 | divcld 11751 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℂ) |
71 | 70, 47 | fmptd 6988 |
. . 3
⊢ (𝜑 → 𝐾:(𝐴(,)𝐵)⟶ℂ) |
72 | | ax-resscn 10928 |
. . . . . 6
⊢ ℝ
⊆ ℂ |
73 | 72 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ ⊆
ℂ) |
74 | | ssid 3943 |
. . . . . 6
⊢ ℂ
⊆ ℂ |
75 | 74 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℂ ⊆
ℂ) |
76 | | cncfss 24062 |
. . . . 5
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℝ) ⊆ ((𝐴(,)𝐵)–cn→ℂ)) |
77 | 73, 75, 76 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ((𝐴(,)𝐵)–cn→ℝ) ⊆ ((𝐴(,)𝐵)–cn→ℂ)) |
78 | | fourierdlem72.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ℝ) |
79 | | fourierdlem72.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ ℝ) |
80 | 25 | nelrdva 3640 |
. . . . 5
⊢ (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵)) |
81 | 4, 73 | fssd 6618 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:ℝ⟶ℂ) |
82 | | ssid 3943 |
. . . . . . . . 9
⊢ ℝ
⊆ ℝ |
83 | 82 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ℝ ⊆
ℝ) |
84 | | ioossre 13140 |
. . . . . . . . 9
⊢ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ |
85 | 84 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ) |
86 | | eqid 2738 |
. . . . . . . . 9
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
87 | 86 | tgioo2 23966 |
. . . . . . . . 9
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
88 | 86, 87 | dvres 25075 |
. . . . . . . 8
⊢
(((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ) ∧ (ℝ
⊆ ℝ ∧ ((𝑋 +
𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ)) → (ℝ D
(𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran
(,)))‘((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))) |
89 | 73, 81, 83, 85, 88 | syl22anc 836 |
. . . . . . 7
⊢ (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran
(,)))‘((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))) |
90 | | ioontr 43049 |
. . . . . . . 8
⊢
((int‘(topGen‘ran (,)))‘((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) |
91 | 90 | reseq2i 5888 |
. . . . . . 7
⊢ ((ℝ
D 𝐹) ↾
((int‘(topGen‘ran (,)))‘((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) |
92 | 89, 91 | eqtrdi 2794 |
. . . . . 6
⊢ (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) |
93 | | fourierdlem72.v |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) |
94 | | fourierdlem72.m |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑀 ∈ ℕ) |
95 | | fourierdlem72.p |
. . . . . . . . . . . . . . . . 17
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝‘𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
96 | 95 | fourierdlem2 43650 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃‘𝑀) ↔ (𝑉 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉‘𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))))) |
97 | 94, 96 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑉 ∈ (𝑃‘𝑀) ↔ (𝑉 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉‘𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))))) |
98 | 93, 97 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑉 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉‘𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1))))) |
99 | 98 | simpld 495 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑉 ∈ (ℝ ↑m
(0...𝑀))) |
100 | | elmapi 8637 |
. . . . . . . . . . . . 13
⊢ (𝑉 ∈ (ℝ
↑m (0...𝑀))
→ 𝑉:(0...𝑀)⟶ℝ) |
101 | 99, 100 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑉:(0...𝑀)⟶ℝ) |
102 | | fourierdlem72.u |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑈 ∈ (0..^𝑀)) |
103 | | elfzofz 13403 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈ (0..^𝑀) → 𝑈 ∈ (0...𝑀)) |
104 | 102, 103 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑈 ∈ (0...𝑀)) |
105 | 101, 104 | ffvelrnd 6962 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑉‘𝑈) ∈ ℝ) |
106 | 105 | rexrd 11025 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑉‘𝑈) ∈
ℝ*) |
107 | | fzofzp1 13484 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈ (0..^𝑀) → (𝑈 + 1) ∈ (0...𝑀)) |
108 | 102, 107 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑈 + 1) ∈ (0...𝑀)) |
109 | 101, 108 | ffvelrnd 6962 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑉‘(𝑈 + 1)) ∈ ℝ) |
110 | 109 | rexrd 11025 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑉‘(𝑈 + 1)) ∈
ℝ*) |
111 | | pire 25615 |
. . . . . . . . . . . . . . 15
⊢ π
∈ ℝ |
112 | 111 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → π ∈
ℝ) |
113 | 112 | renegcld 11402 |
. . . . . . . . . . . . 13
⊢ (𝜑 → -π ∈
ℝ) |
114 | | fourierdlem72.q |
. . . . . . . . . . . . 13
⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) |
115 | 113, 112,
6, 95, 94, 93, 104, 114 | fourierdlem13 43661 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑄‘𝑈) = ((𝑉‘𝑈) − 𝑋) ∧ (𝑉‘𝑈) = (𝑋 + (𝑄‘𝑈)))) |
116 | 115 | simprd 496 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑉‘𝑈) = (𝑋 + (𝑄‘𝑈))) |
117 | 115 | simpld 495 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑄‘𝑈) = ((𝑉‘𝑈) − 𝑋)) |
118 | 105, 6 | resubcld 11403 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑉‘𝑈) − 𝑋) ∈ ℝ) |
119 | 117, 118 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑄‘𝑈) ∈ ℝ) |
120 | 113, 112,
6, 95, 94, 93, 108, 114 | fourierdlem13 43661 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑄‘(𝑈 + 1)) = ((𝑉‘(𝑈 + 1)) − 𝑋) ∧ (𝑉‘(𝑈 + 1)) = (𝑋 + (𝑄‘(𝑈 + 1))))) |
121 | 120 | simpld 495 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑄‘(𝑈 + 1)) = ((𝑉‘(𝑈 + 1)) − 𝑋)) |
122 | 109, 6 | resubcld 11403 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑉‘(𝑈 + 1)) − 𝑋) ∈ ℝ) |
123 | 121, 122 | eqeltrd 2839 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑄‘(𝑈 + 1)) ∈ ℝ) |
124 | | fourierdlem72.altb |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 < 𝐵) |
125 | | fourierdlem72.abss |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ((𝑄‘𝑈)(,)(𝑄‘(𝑈 + 1)))) |
126 | 119, 123,
78, 79, 124, 125 | fourierdlem10 43658 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑄‘𝑈) ≤ 𝐴 ∧ 𝐵 ≤ (𝑄‘(𝑈 + 1)))) |
127 | 126 | simpld 495 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑄‘𝑈) ≤ 𝐴) |
128 | 119, 78, 6, 127 | leadd2dd 11590 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑋 + (𝑄‘𝑈)) ≤ (𝑋 + 𝐴)) |
129 | 116, 128 | eqbrtrd 5096 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑉‘𝑈) ≤ (𝑋 + 𝐴)) |
130 | 126 | simprd 496 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ≤ (𝑄‘(𝑈 + 1))) |
131 | 79, 123, 6, 130 | leadd2dd 11590 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑋 + 𝐵) ≤ (𝑋 + (𝑄‘(𝑈 + 1)))) |
132 | 120 | simprd 496 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑉‘(𝑈 + 1)) = (𝑋 + (𝑄‘(𝑈 + 1)))) |
133 | 131, 132 | breqtrrd 5102 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋 + 𝐵) ≤ (𝑉‘(𝑈 + 1))) |
134 | | ioossioo 13173 |
. . . . . . . . . 10
⊢ ((((𝑉‘𝑈) ∈ ℝ* ∧ (𝑉‘(𝑈 + 1)) ∈ ℝ*) ∧
((𝑉‘𝑈) ≤ (𝑋 + 𝐴) ∧ (𝑋 + 𝐵) ≤ (𝑉‘(𝑈 + 1)))) → ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))) |
135 | 106, 110,
129, 133, 134 | syl22anc 836 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))) |
136 | 135 | resabs1d 5922 |
. . . . . . . 8
⊢ (𝜑 → (((ℝ D 𝐹) ↾ ((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) |
137 | 136 | eqcomd 2744 |
. . . . . . 7
⊢ (𝜑 → ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = (((ℝ D 𝐹) ↾ ((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) |
138 | 102 | ancli 549 |
. . . . . . . . 9
⊢ (𝜑 → (𝜑 ∧ 𝑈 ∈ (0..^𝑀))) |
139 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑈 → (𝑖 ∈ (0..^𝑀) ↔ 𝑈 ∈ (0..^𝑀))) |
140 | 139 | anbi2d 629 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑈 → ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ 𝑈 ∈ (0..^𝑀)))) |
141 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑈 → (𝑉‘𝑖) = (𝑉‘𝑈)) |
142 | | oveq1 7282 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑈 → (𝑖 + 1) = (𝑈 + 1)) |
143 | 142 | fveq2d 6778 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑈 → (𝑉‘(𝑖 + 1)) = (𝑉‘(𝑈 + 1))) |
144 | 141, 143 | oveq12d 7293 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑈 → ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))) = ((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))) |
145 | 144 | reseq2d 5891 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑈 → ((ℝ D 𝐹) ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1))))) |
146 | 144 | oveq1d 7290 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑈 → (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ) = (((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ)) |
147 | 145, 146 | eleq12d 2833 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑈 → (((ℝ D 𝐹) ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ) ↔ ((ℝ D 𝐹) ↾ ((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ))) |
148 | 140, 147 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑈 → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ)) ↔ ((𝜑 ∧ 𝑈 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ)))) |
149 | | fourierdlem72.dvcn |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ)) |
150 | 148, 149 | vtoclg 3505 |
. . . . . . . . 9
⊢ (𝑈 ∈ (0..^𝑀) → ((𝜑 ∧ 𝑈 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ))) |
151 | 102, 138,
150 | sylc 65 |
. . . . . . . 8
⊢ (𝜑 → ((ℝ D 𝐹) ↾ ((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ)) |
152 | | rescncf 24060 |
. . . . . . . 8
⊢ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1))) → (((ℝ D 𝐹) ↾ ((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ) → (((ℝ D 𝐹) ↾ ((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ))) |
153 | 135, 151,
152 | sylc 65 |
. . . . . . 7
⊢ (𝜑 → (((ℝ D 𝐹) ↾ ((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ)) |
154 | 137, 153 | eqeltrd 2839 |
. . . . . 6
⊢ (𝜑 → ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ)) |
155 | 92, 154 | eqeltrd 2839 |
. . . . 5
⊢ (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ)) |
156 | 4, 6, 78, 79, 80, 155, 12, 27 | fourierdlem59 43706 |
. . . 4
⊢ (𝜑 → (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℝ)) |
157 | 77, 156 | sseldd 3922 |
. . 3
⊢ (𝜑 → (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
158 | | iooretop 23929 |
. . . . . 6
⊢ (𝐴(,)𝐵) ∈ (topGen‘ran
(,)) |
159 | 158 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran
(,))) |
160 | 47, 41, 80, 159 | fourierdlem58 43705 |
. . . 4
⊢ (𝜑 → (ℝ D 𝐾) ∈ ((𝐴(,)𝐵)–cn→ℝ)) |
161 | 77, 160 | sseldd 3922 |
. . 3
⊢ (𝜑 → (ℝ D 𝐾) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
162 | 56, 66, 71, 157, 161 | dvmulcncf 43466 |
. 2
⊢ (𝜑 → (ℝ D (𝐻 ∘f ·
𝐾)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
163 | 54, 162 | eqeltrd 2839 |
1
⊢ (𝜑 → (ℝ D 𝑂) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |