Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem72 Structured version   Visualization version   GIF version

Theorem fourierdlem72 46207
Description: The derivative of 𝑂 is continuous on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem72.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem72.xre (𝜑𝑋 ∈ ℝ)
fourierdlem72.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem72.m (𝜑𝑀 ∈ ℕ)
fourierdlem72.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem72.dvcn ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
fourierdlem72.a (𝜑𝐴 ∈ ℝ)
fourierdlem72.b (𝜑𝐵 ∈ ℝ)
fourierdlem72.altb (𝜑𝐴 < 𝐵)
fourierdlem72.ab (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
fourierdlem72.n0 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
fourierdlem72.c (𝜑𝐶 ∈ ℝ)
fourierdlem72.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
fourierdlem72.u (𝜑𝑈 ∈ (0..^𝑀))
fourierdlem72.abss (𝜑 → (𝐴(,)𝐵) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1))))
fourierdlem72.h 𝐻 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠))
fourierdlem72.k 𝐾 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
fourierdlem72.o 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐻𝑠) · (𝐾𝑠)))
Assertion
Ref Expression
fourierdlem72 (𝜑 → (ℝ D 𝑂) ∈ ((𝐴(,)𝐵)–cn→ℂ))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐶,𝑠   𝑖,𝐹   𝐹,𝑠   𝐻,𝑠   𝐾,𝑠   𝑖,𝑀,𝑚,𝑝   𝑈,𝑖   𝑖,𝑉,𝑝   𝑖,𝑋,𝑚,𝑝   𝑋,𝑠   𝜑,𝑖   𝜑,𝑠
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑖,𝑚,𝑝)   𝐵(𝑖,𝑚,𝑝)   𝐶(𝑖,𝑚,𝑝)   𝑃(𝑖,𝑚,𝑠,𝑝)   𝑄(𝑖,𝑚,𝑠,𝑝)   𝑈(𝑚,𝑠,𝑝)   𝐹(𝑚,𝑝)   𝐻(𝑖,𝑚,𝑝)   𝐾(𝑖,𝑚,𝑝)   𝑀(𝑠)   𝑂(𝑖,𝑚,𝑠,𝑝)   𝑉(𝑚,𝑠)

Proof of Theorem fourierdlem72
StepHypRef Expression
1 fourierdlem72.o . . . 4 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐻𝑠) · (𝐾𝑠)))
2 ovex 7438 . . . . . 6 (𝐴(,)𝐵) ∈ V
32a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ∈ V)
4 fourierdlem72.f . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶ℝ)
54adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐹:ℝ⟶ℝ)
6 fourierdlem72.xre . . . . . . . . . . . 12 (𝜑𝑋 ∈ ℝ)
76adantr 480 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ)
8 elioore 13392 . . . . . . . . . . . 12 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
98adantl 481 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
107, 9readdcld 11264 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
115, 10ffvelcdmd 7075 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
12 fourierdlem72.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ)
1312adantr 480 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℝ)
1411, 13resubcld 11665 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℝ)
15 ioossicc 13450 . . . . . . . . . . . 12 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
1615sseli 3954 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ (𝐴[,]𝐵))
1716ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑠 ≠ 0) → 𝑠 ∈ (𝐴[,]𝐵))
18 id 22 . . . . . . . . . . . . 13 (𝑠 ≠ 0 → 𝑠 ≠ 0)
1918necon1bi 2960 . . . . . . . . . . . 12 𝑠 ≠ 0 → 𝑠 = 0)
2019eleq1d 2819 . . . . . . . . . . 11 𝑠 ≠ 0 → (𝑠 ∈ (𝐴[,]𝐵) ↔ 0 ∈ (𝐴[,]𝐵)))
2120adantl 481 . . . . . . . . . 10 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑠 ≠ 0) → (𝑠 ∈ (𝐴[,]𝐵) ↔ 0 ∈ (𝐴[,]𝐵)))
2217, 21mpbid 232 . . . . . . . . 9 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑠 ≠ 0) → 0 ∈ (𝐴[,]𝐵))
23 fourierdlem72.n0 . . . . . . . . . 10 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
2423ad2antrr 726 . . . . . . . . 9 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑠 ≠ 0) → ¬ 0 ∈ (𝐴[,]𝐵))
2522, 24condan 817 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0)
2614, 9, 25redivcld 12069 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) ∈ ℝ)
27 fourierdlem72.h . . . . . . 7 𝐻 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠))
2826, 27fmptd 7104 . . . . . 6 (𝜑𝐻:(𝐴(,)𝐵)⟶ℝ)
2928ffvelcdmda 7074 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐻𝑠) ∈ ℝ)
30 2re 12314 . . . . . . . . . 10 2 ∈ ℝ
3130a1i 11 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ)
329rehalfcld 12488 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℝ)
3332resincld 16161 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℝ)
3431, 33remulcld 11265 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
35 2cnd 12318 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
369recnd 11263 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ)
3736halfcld 12486 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℂ)
3837sincld 16148 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ)
39 2ne0 12344 . . . . . . . . . 10 2 ≠ 0
4039a1i 11 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
41 fourierdlem72.ab . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
4241sselda 3958 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (-π[,]π))
43 fourierdlem44 46180 . . . . . . . . . 10 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
4442, 25, 43syl2anc 584 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ≠ 0)
4535, 38, 40, 44mulne0d 11889 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
469, 34, 45redivcld 12069 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
47 fourierdlem72.k . . . . . . 7 𝐾 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
4846, 47fmptd 7104 . . . . . 6 (𝜑𝐾:(𝐴(,)𝐵)⟶ℝ)
4948ffvelcdmda 7074 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐾𝑠) ∈ ℝ)
5028feqmptd 6947 . . . . 5 (𝜑𝐻 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐻𝑠)))
5148feqmptd 6947 . . . . 5 (𝜑𝐾 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠)))
523, 29, 49, 50, 51offval2 7691 . . . 4 (𝜑 → (𝐻f · 𝐾) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐻𝑠) · (𝐾𝑠))))
531, 52eqtr4id 2789 . . 3 (𝜑𝑂 = (𝐻f · 𝐾))
5453oveq2d 7421 . 2 (𝜑 → (ℝ D 𝑂) = (ℝ D (𝐻f · 𝐾)))
55 reelprrecn 11221 . . . 4 ℝ ∈ {ℝ, ℂ}
5655a1i 11 . . 3 (𝜑 → ℝ ∈ {ℝ, ℂ})
5711recnd 11263 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
5812recnd 11263 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
5958adantr 480 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℂ)
6057, 59subcld 11594 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ)
61 ioossre 13424 . . . . . . . 8 (𝐴(,)𝐵) ⊆ ℝ
6261a1i 11 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
6362sselda 3958 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
6463recnd 11263 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ)
6560, 64, 25divcld 12017 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) ∈ ℂ)
6665, 27fmptd 7104 . . 3 (𝜑𝐻:(𝐴(,)𝐵)⟶ℂ)
6764halfcld 12486 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℂ)
6867sincld 16148 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ)
6935, 68mulcld 11255 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
7064, 69, 45divcld 12017 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℂ)
7170, 47fmptd 7104 . . 3 (𝜑𝐾:(𝐴(,)𝐵)⟶ℂ)
72 ax-resscn 11186 . . . . . 6 ℝ ⊆ ℂ
7372a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
74 ssid 3981 . . . . . 6 ℂ ⊆ ℂ
7574a1i 11 . . . . 5 (𝜑 → ℂ ⊆ ℂ)
76 cncfss 24843 . . . . 5 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℝ) ⊆ ((𝐴(,)𝐵)–cn→ℂ))
7773, 75, 76syl2anc 584 . . . 4 (𝜑 → ((𝐴(,)𝐵)–cn→ℝ) ⊆ ((𝐴(,)𝐵)–cn→ℂ))
78 fourierdlem72.a . . . . 5 (𝜑𝐴 ∈ ℝ)
79 fourierdlem72.b . . . . 5 (𝜑𝐵 ∈ ℝ)
8025nelrdva 3688 . . . . 5 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
814, 73fssd 6723 . . . . . . . 8 (𝜑𝐹:ℝ⟶ℂ)
82 ssid 3981 . . . . . . . . 9 ℝ ⊆ ℝ
8382a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℝ)
84 ioossre 13424 . . . . . . . . 9 ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ
8584a1i 11 . . . . . . . 8 (𝜑 → ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ)
86 eqid 2735 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
87 tgioo4 24744 . . . . . . . . 9 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
8886, 87dvres 25864 . . . . . . . 8 (((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))))
8973, 81, 83, 85, 88syl22anc 838 . . . . . . 7 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))))
90 ioontr 45540 . . . . . . . 8 ((int‘(topGen‘ran (,)))‘((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))
9190reseq2i 5963 . . . . . . 7 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))
9289, 91eqtrdi 2786 . . . . . 6 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
93 fourierdlem72.v . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ (𝑃𝑀))
94 fourierdlem72.m . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℕ)
95 fourierdlem72.p . . . . . . . . . . . . . . . . 17 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
9695fourierdlem2 46138 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
9794, 96syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
9893, 97mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))))
9998simpld 494 . . . . . . . . . . . . 13 (𝜑𝑉 ∈ (ℝ ↑m (0...𝑀)))
100 elmapi 8863 . . . . . . . . . . . . 13 (𝑉 ∈ (ℝ ↑m (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
10199, 100syl 17 . . . . . . . . . . . 12 (𝜑𝑉:(0...𝑀)⟶ℝ)
102 fourierdlem72.u . . . . . . . . . . . . 13 (𝜑𝑈 ∈ (0..^𝑀))
103 elfzofz 13692 . . . . . . . . . . . . 13 (𝑈 ∈ (0..^𝑀) → 𝑈 ∈ (0...𝑀))
104102, 103syl 17 . . . . . . . . . . . 12 (𝜑𝑈 ∈ (0...𝑀))
105101, 104ffvelcdmd 7075 . . . . . . . . . . 11 (𝜑 → (𝑉𝑈) ∈ ℝ)
106105rexrd 11285 . . . . . . . . . 10 (𝜑 → (𝑉𝑈) ∈ ℝ*)
107 fzofzp1 13780 . . . . . . . . . . . . 13 (𝑈 ∈ (0..^𝑀) → (𝑈 + 1) ∈ (0...𝑀))
108102, 107syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑈 + 1) ∈ (0...𝑀))
109101, 108ffvelcdmd 7075 . . . . . . . . . . 11 (𝜑 → (𝑉‘(𝑈 + 1)) ∈ ℝ)
110109rexrd 11285 . . . . . . . . . 10 (𝜑 → (𝑉‘(𝑈 + 1)) ∈ ℝ*)
111 pire 26418 . . . . . . . . . . . . . . 15 π ∈ ℝ
112111a1i 11 . . . . . . . . . . . . . 14 (𝜑 → π ∈ ℝ)
113112renegcld 11664 . . . . . . . . . . . . 13 (𝜑 → -π ∈ ℝ)
114 fourierdlem72.q . . . . . . . . . . . . 13 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
115113, 112, 6, 95, 94, 93, 104, 114fourierdlem13 46149 . . . . . . . . . . . 12 (𝜑 → ((𝑄𝑈) = ((𝑉𝑈) − 𝑋) ∧ (𝑉𝑈) = (𝑋 + (𝑄𝑈))))
116115simprd 495 . . . . . . . . . . 11 (𝜑 → (𝑉𝑈) = (𝑋 + (𝑄𝑈)))
117115simpld 494 . . . . . . . . . . . . 13 (𝜑 → (𝑄𝑈) = ((𝑉𝑈) − 𝑋))
118105, 6resubcld 11665 . . . . . . . . . . . . 13 (𝜑 → ((𝑉𝑈) − 𝑋) ∈ ℝ)
119117, 118eqeltrd 2834 . . . . . . . . . . . 12 (𝜑 → (𝑄𝑈) ∈ ℝ)
120113, 112, 6, 95, 94, 93, 108, 114fourierdlem13 46149 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑄‘(𝑈 + 1)) = ((𝑉‘(𝑈 + 1)) − 𝑋) ∧ (𝑉‘(𝑈 + 1)) = (𝑋 + (𝑄‘(𝑈 + 1)))))
121120simpld 494 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄‘(𝑈 + 1)) = ((𝑉‘(𝑈 + 1)) − 𝑋))
122109, 6resubcld 11665 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑉‘(𝑈 + 1)) − 𝑋) ∈ ℝ)
123121, 122eqeltrd 2834 . . . . . . . . . . . . . 14 (𝜑 → (𝑄‘(𝑈 + 1)) ∈ ℝ)
124 fourierdlem72.altb . . . . . . . . . . . . . 14 (𝜑𝐴 < 𝐵)
125 fourierdlem72.abss . . . . . . . . . . . . . 14 (𝜑 → (𝐴(,)𝐵) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1))))
126119, 123, 78, 79, 124, 125fourierdlem10 46146 . . . . . . . . . . . . 13 (𝜑 → ((𝑄𝑈) ≤ 𝐴𝐵 ≤ (𝑄‘(𝑈 + 1))))
127126simpld 494 . . . . . . . . . . . 12 (𝜑 → (𝑄𝑈) ≤ 𝐴)
128119, 78, 6, 127leadd2dd 11852 . . . . . . . . . . 11 (𝜑 → (𝑋 + (𝑄𝑈)) ≤ (𝑋 + 𝐴))
129116, 128eqbrtrd 5141 . . . . . . . . . 10 (𝜑 → (𝑉𝑈) ≤ (𝑋 + 𝐴))
130126simprd 495 . . . . . . . . . . . 12 (𝜑𝐵 ≤ (𝑄‘(𝑈 + 1)))
13179, 123, 6, 130leadd2dd 11852 . . . . . . . . . . 11 (𝜑 → (𝑋 + 𝐵) ≤ (𝑋 + (𝑄‘(𝑈 + 1))))
132120simprd 495 . . . . . . . . . . 11 (𝜑 → (𝑉‘(𝑈 + 1)) = (𝑋 + (𝑄‘(𝑈 + 1))))
133131, 132breqtrrd 5147 . . . . . . . . . 10 (𝜑 → (𝑋 + 𝐵) ≤ (𝑉‘(𝑈 + 1)))
134 ioossioo 13458 . . . . . . . . . 10 ((((𝑉𝑈) ∈ ℝ* ∧ (𝑉‘(𝑈 + 1)) ∈ ℝ*) ∧ ((𝑉𝑈) ≤ (𝑋 + 𝐴) ∧ (𝑋 + 𝐵) ≤ (𝑉‘(𝑈 + 1)))) → ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1))))
135106, 110, 129, 133, 134syl22anc 838 . . . . . . . . 9 (𝜑 → ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1))))
136135resabs1d 5995 . . . . . . . 8 (𝜑 → (((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
137136eqcomd 2741 . . . . . . 7 (𝜑 → ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = (((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
138102ancli 548 . . . . . . . . 9 (𝜑 → (𝜑𝑈 ∈ (0..^𝑀)))
139 eleq1 2822 . . . . . . . . . . . 12 (𝑖 = 𝑈 → (𝑖 ∈ (0..^𝑀) ↔ 𝑈 ∈ (0..^𝑀)))
140139anbi2d 630 . . . . . . . . . . 11 (𝑖 = 𝑈 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑𝑈 ∈ (0..^𝑀))))
141 fveq2 6876 . . . . . . . . . . . . . 14 (𝑖 = 𝑈 → (𝑉𝑖) = (𝑉𝑈))
142 oveq1 7412 . . . . . . . . . . . . . . 15 (𝑖 = 𝑈 → (𝑖 + 1) = (𝑈 + 1))
143142fveq2d 6880 . . . . . . . . . . . . . 14 (𝑖 = 𝑈 → (𝑉‘(𝑖 + 1)) = (𝑉‘(𝑈 + 1)))
144141, 143oveq12d 7423 . . . . . . . . . . . . 13 (𝑖 = 𝑈 → ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) = ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1))))
145144reseq2d 5966 . . . . . . . . . . . 12 (𝑖 = 𝑈 → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))))
146144oveq1d 7420 . . . . . . . . . . . 12 (𝑖 = 𝑈 → (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ) = (((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ))
147145, 146eleq12d 2828 . . . . . . . . . . 11 (𝑖 = 𝑈 → (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ) ↔ ((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ)))
148140, 147imbi12d 344 . . . . . . . . . 10 (𝑖 = 𝑈 → (((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ)) ↔ ((𝜑𝑈 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ))))
149 fourierdlem72.dvcn . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
150148, 149vtoclg 3533 . . . . . . . . 9 (𝑈 ∈ (0..^𝑀) → ((𝜑𝑈 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ)))
151102, 138, 150sylc 65 . . . . . . . 8 (𝜑 → ((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ))
152 rescncf 24841 . . . . . . . 8 (((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1))) → (((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ) → (((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ)))
153135, 151, 152sylc 65 . . . . . . 7 (𝜑 → (((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ))
154137, 153eqeltrd 2834 . . . . . 6 (𝜑 → ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ))
15592, 154eqeltrd 2834 . . . . 5 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ))
1564, 6, 78, 79, 80, 155, 12, 27fourierdlem59 46194 . . . 4 (𝜑 → (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℝ))
15777, 156sseldd 3959 . . 3 (𝜑 → (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℂ))
158 iooretop 24704 . . . . . 6 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
159158a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran (,)))
16047, 41, 80, 159fourierdlem58 46193 . . . 4 (𝜑 → (ℝ D 𝐾) ∈ ((𝐴(,)𝐵)–cn→ℝ))
16177, 160sseldd 3959 . . 3 (𝜑 → (ℝ D 𝐾) ∈ ((𝐴(,)𝐵)–cn→ℂ))
16256, 66, 71, 157, 161dvmulcncf 45954 . 2 (𝜑 → (ℝ D (𝐻f · 𝐾)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
16354, 162eqeltrd 2834 1 (𝜑 → (ℝ D 𝑂) ∈ ((𝐴(,)𝐵)–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  {crab 3415  Vcvv 3459  wss 3926  {cpr 4603   class class class wbr 5119  cmpt 5201  ran crn 5655  cres 5656  wf 6527  cfv 6531  (class class class)co 7405  f cof 7669  m cmap 8840  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  *cxr 11268   < clt 11269  cle 11270  cmin 11466  -cneg 11467   / cdiv 11894  cn 12240  2c2 12295  (,)cioo 13362  [,]cicc 13365  ...cfz 13524  ..^cfzo 13671  sincsin 16079  πcpi 16082  TopOpenctopn 17435  topGenctg 17451  fldccnfld 21315  intcnt 22955  cnccncf 24820   D cdv 25816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085  df-cos 16086  df-pi 16088  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-t1 23252  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820
This theorem is referenced by:  fourierdlem103  46238  fourierdlem104  46239
  Copyright terms: Public domain W3C validator