Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem72 Structured version   Visualization version   GIF version

Theorem fourierdlem72 41919
Description: The derivative of 𝑂 is continuous on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem72.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem72.xre (𝜑𝑋 ∈ ℝ)
fourierdlem72.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem72.m (𝜑𝑀 ∈ ℕ)
fourierdlem72.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem72.dvcn ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
fourierdlem72.a (𝜑𝐴 ∈ ℝ)
fourierdlem72.b (𝜑𝐵 ∈ ℝ)
fourierdlem72.altb (𝜑𝐴 < 𝐵)
fourierdlem72.ab (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
fourierdlem72.n0 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
fourierdlem72.c (𝜑𝐶 ∈ ℝ)
fourierdlem72.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
fourierdlem72.u (𝜑𝑈 ∈ (0..^𝑀))
fourierdlem72.abss (𝜑 → (𝐴(,)𝐵) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1))))
fourierdlem72.h 𝐻 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠))
fourierdlem72.k 𝐾 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
fourierdlem72.o 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐻𝑠) · (𝐾𝑠)))
Assertion
Ref Expression
fourierdlem72 (𝜑 → (ℝ D 𝑂) ∈ ((𝐴(,)𝐵)–cn→ℂ))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐶,𝑠   𝑖,𝐹   𝐹,𝑠   𝐻,𝑠   𝐾,𝑠   𝑖,𝑀,𝑚,𝑝   𝑈,𝑖   𝑖,𝑉,𝑝   𝑖,𝑋,𝑚,𝑝   𝑋,𝑠   𝜑,𝑖   𝜑,𝑠
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑖,𝑚,𝑝)   𝐵(𝑖,𝑚,𝑝)   𝐶(𝑖,𝑚,𝑝)   𝑃(𝑖,𝑚,𝑠,𝑝)   𝑄(𝑖,𝑚,𝑠,𝑝)   𝑈(𝑚,𝑠,𝑝)   𝐹(𝑚,𝑝)   𝐻(𝑖,𝑚,𝑝)   𝐾(𝑖,𝑚,𝑝)   𝑀(𝑠)   𝑂(𝑖,𝑚,𝑠,𝑝)   𝑉(𝑚,𝑠)

Proof of Theorem fourierdlem72
StepHypRef Expression
1 ovex 7006 . . . . . 6 (𝐴(,)𝐵) ∈ V
21a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ∈ V)
3 fourierdlem72.f . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶ℝ)
43adantr 473 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐹:ℝ⟶ℝ)
5 fourierdlem72.xre . . . . . . . . . . . 12 (𝜑𝑋 ∈ ℝ)
65adantr 473 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ)
7 elioore 12582 . . . . . . . . . . . 12 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
87adantl 474 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
96, 8readdcld 10467 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
104, 9ffvelrnd 6675 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
11 fourierdlem72.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ)
1211adantr 473 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℝ)
1310, 12resubcld 10867 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℝ)
14 ioossicc 12636 . . . . . . . . . . . 12 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
1514sseli 3848 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ (𝐴[,]𝐵))
1615ad2antlr 714 . . . . . . . . . 10 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑠 ≠ 0) → 𝑠 ∈ (𝐴[,]𝐵))
17 id 22 . . . . . . . . . . . . 13 (𝑠 ≠ 0 → 𝑠 ≠ 0)
1817necon1bi 2989 . . . . . . . . . . . 12 𝑠 ≠ 0 → 𝑠 = 0)
1918eleq1d 2844 . . . . . . . . . . 11 𝑠 ≠ 0 → (𝑠 ∈ (𝐴[,]𝐵) ↔ 0 ∈ (𝐴[,]𝐵)))
2019adantl 474 . . . . . . . . . 10 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑠 ≠ 0) → (𝑠 ∈ (𝐴[,]𝐵) ↔ 0 ∈ (𝐴[,]𝐵)))
2116, 20mpbid 224 . . . . . . . . 9 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑠 ≠ 0) → 0 ∈ (𝐴[,]𝐵))
22 fourierdlem72.n0 . . . . . . . . . 10 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
2322ad2antrr 713 . . . . . . . . 9 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑠 ≠ 0) → ¬ 0 ∈ (𝐴[,]𝐵))
2421, 23condan 805 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0)
2513, 8, 24redivcld 11267 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) ∈ ℝ)
26 fourierdlem72.h . . . . . . 7 𝐻 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠))
2725, 26fmptd 6699 . . . . . 6 (𝜑𝐻:(𝐴(,)𝐵)⟶ℝ)
2827ffvelrnda 6674 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐻𝑠) ∈ ℝ)
29 2re 11512 . . . . . . . . . 10 2 ∈ ℝ
3029a1i 11 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ)
318rehalfcld 11692 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℝ)
3231resincld 15354 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℝ)
3330, 32remulcld 10468 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
34 2cnd 11516 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
358recnd 10466 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ)
3635halfcld 11690 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℂ)
3736sincld 15341 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ)
38 2ne0 11549 . . . . . . . . . 10 2 ≠ 0
3938a1i 11 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
40 fourierdlem72.ab . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
4140sselda 3852 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (-π[,]π))
42 fourierdlem44 41892 . . . . . . . . . 10 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
4341, 24, 42syl2anc 576 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ≠ 0)
4434, 37, 39, 43mulne0d 11091 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
458, 33, 44redivcld 11267 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
46 fourierdlem72.k . . . . . . 7 𝐾 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
4745, 46fmptd 6699 . . . . . 6 (𝜑𝐾:(𝐴(,)𝐵)⟶ℝ)
4847ffvelrnda 6674 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐾𝑠) ∈ ℝ)
4927feqmptd 6560 . . . . 5 (𝜑𝐻 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐻𝑠)))
5047feqmptd 6560 . . . . 5 (𝜑𝐾 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠)))
512, 28, 48, 49, 50offval2 7242 . . . 4 (𝜑 → (𝐻𝑓 · 𝐾) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐻𝑠) · (𝐾𝑠))))
52 fourierdlem72.o . . . 4 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐻𝑠) · (𝐾𝑠)))
5351, 52syl6reqr 2827 . . 3 (𝜑𝑂 = (𝐻𝑓 · 𝐾))
5453oveq2d 6990 . 2 (𝜑 → (ℝ D 𝑂) = (ℝ D (𝐻𝑓 · 𝐾)))
55 reelprrecn 10425 . . . 4 ℝ ∈ {ℝ, ℂ}
5655a1i 11 . . 3 (𝜑 → ℝ ∈ {ℝ, ℂ})
5710recnd 10466 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
5811recnd 10466 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
5958adantr 473 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℂ)
6057, 59subcld 10796 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ)
61 ioossre 12612 . . . . . . . 8 (𝐴(,)𝐵) ⊆ ℝ
6261a1i 11 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
6362sselda 3852 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
6463recnd 10466 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ)
6560, 64, 24divcld 11215 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) ∈ ℂ)
6665, 26fmptd 6699 . . 3 (𝜑𝐻:(𝐴(,)𝐵)⟶ℂ)
6764halfcld 11690 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℂ)
6867sincld 15341 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ)
6934, 68mulcld 10458 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
7064, 69, 44divcld 11215 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℂ)
7170, 46fmptd 6699 . . 3 (𝜑𝐾:(𝐴(,)𝐵)⟶ℂ)
72 ax-resscn 10390 . . . . . 6 ℝ ⊆ ℂ
7372a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
74 ssid 3873 . . . . . 6 ℂ ⊆ ℂ
7574a1i 11 . . . . 5 (𝜑 → ℂ ⊆ ℂ)
76 cncfss 23222 . . . . 5 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℝ) ⊆ ((𝐴(,)𝐵)–cn→ℂ))
7773, 75, 76syl2anc 576 . . . 4 (𝜑 → ((𝐴(,)𝐵)–cn→ℝ) ⊆ ((𝐴(,)𝐵)–cn→ℂ))
78 fourierdlem72.a . . . . 5 (𝜑𝐴 ∈ ℝ)
79 fourierdlem72.b . . . . 5 (𝜑𝐵 ∈ ℝ)
8024nelrdva 3604 . . . . 5 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
813, 73fssd 6355 . . . . . . . 8 (𝜑𝐹:ℝ⟶ℂ)
82 ssid 3873 . . . . . . . . 9 ℝ ⊆ ℝ
8382a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℝ)
84 ioossre 12612 . . . . . . . . 9 ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ
8584a1i 11 . . . . . . . 8 (𝜑 → ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ)
86 eqid 2772 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
8786tgioo2 23126 . . . . . . . . 9 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
8886, 87dvres 24224 . . . . . . . 8 (((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))))
8973, 81, 83, 85, 88syl22anc 826 . . . . . . 7 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))))
90 ioontr 41243 . . . . . . . 8 ((int‘(topGen‘ran (,)))‘((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))
9190reseq2i 5689 . . . . . . 7 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))
9289, 91syl6eq 2824 . . . . . 6 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
93 fourierdlem72.v . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ (𝑃𝑀))
94 fourierdlem72.m . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℕ)
95 fourierdlem72.p . . . . . . . . . . . . . . . . 17 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
9695fourierdlem2 41850 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
9794, 96syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
9893, 97mpbid 224 . . . . . . . . . . . . . 14 (𝜑 → (𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))))
9998simpld 487 . . . . . . . . . . . . 13 (𝜑𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)))
100 elmapi 8226 . . . . . . . . . . . . 13 (𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
10199, 100syl 17 . . . . . . . . . . . 12 (𝜑𝑉:(0...𝑀)⟶ℝ)
102 fourierdlem72.u . . . . . . . . . . . . 13 (𝜑𝑈 ∈ (0..^𝑀))
103 elfzofz 12867 . . . . . . . . . . . . 13 (𝑈 ∈ (0..^𝑀) → 𝑈 ∈ (0...𝑀))
104102, 103syl 17 . . . . . . . . . . . 12 (𝜑𝑈 ∈ (0...𝑀))
105101, 104ffvelrnd 6675 . . . . . . . . . . 11 (𝜑 → (𝑉𝑈) ∈ ℝ)
106105rexrd 10488 . . . . . . . . . 10 (𝜑 → (𝑉𝑈) ∈ ℝ*)
107 fzofzp1 12947 . . . . . . . . . . . . 13 (𝑈 ∈ (0..^𝑀) → (𝑈 + 1) ∈ (0...𝑀))
108102, 107syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑈 + 1) ∈ (0...𝑀))
109101, 108ffvelrnd 6675 . . . . . . . . . . 11 (𝜑 → (𝑉‘(𝑈 + 1)) ∈ ℝ)
110109rexrd 10488 . . . . . . . . . 10 (𝜑 → (𝑉‘(𝑈 + 1)) ∈ ℝ*)
111 pire 24759 . . . . . . . . . . . . . . 15 π ∈ ℝ
112111a1i 11 . . . . . . . . . . . . . 14 (𝜑 → π ∈ ℝ)
113112renegcld 10866 . . . . . . . . . . . . 13 (𝜑 → -π ∈ ℝ)
114 fourierdlem72.q . . . . . . . . . . . . 13 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
115113, 112, 5, 95, 94, 93, 104, 114fourierdlem13 41861 . . . . . . . . . . . 12 (𝜑 → ((𝑄𝑈) = ((𝑉𝑈) − 𝑋) ∧ (𝑉𝑈) = (𝑋 + (𝑄𝑈))))
116115simprd 488 . . . . . . . . . . 11 (𝜑 → (𝑉𝑈) = (𝑋 + (𝑄𝑈)))
117115simpld 487 . . . . . . . . . . . . 13 (𝜑 → (𝑄𝑈) = ((𝑉𝑈) − 𝑋))
118105, 5resubcld 10867 . . . . . . . . . . . . 13 (𝜑 → ((𝑉𝑈) − 𝑋) ∈ ℝ)
119117, 118eqeltrd 2860 . . . . . . . . . . . 12 (𝜑 → (𝑄𝑈) ∈ ℝ)
120113, 112, 5, 95, 94, 93, 108, 114fourierdlem13 41861 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑄‘(𝑈 + 1)) = ((𝑉‘(𝑈 + 1)) − 𝑋) ∧ (𝑉‘(𝑈 + 1)) = (𝑋 + (𝑄‘(𝑈 + 1)))))
121120simpld 487 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄‘(𝑈 + 1)) = ((𝑉‘(𝑈 + 1)) − 𝑋))
122109, 5resubcld 10867 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑉‘(𝑈 + 1)) − 𝑋) ∈ ℝ)
123121, 122eqeltrd 2860 . . . . . . . . . . . . . 14 (𝜑 → (𝑄‘(𝑈 + 1)) ∈ ℝ)
124 fourierdlem72.altb . . . . . . . . . . . . . 14 (𝜑𝐴 < 𝐵)
125 fourierdlem72.abss . . . . . . . . . . . . . 14 (𝜑 → (𝐴(,)𝐵) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1))))
126119, 123, 78, 79, 124, 125fourierdlem10 41858 . . . . . . . . . . . . 13 (𝜑 → ((𝑄𝑈) ≤ 𝐴𝐵 ≤ (𝑄‘(𝑈 + 1))))
127126simpld 487 . . . . . . . . . . . 12 (𝜑 → (𝑄𝑈) ≤ 𝐴)
128119, 78, 5, 127leadd2dd 11054 . . . . . . . . . . 11 (𝜑 → (𝑋 + (𝑄𝑈)) ≤ (𝑋 + 𝐴))
129116, 128eqbrtrd 4947 . . . . . . . . . 10 (𝜑 → (𝑉𝑈) ≤ (𝑋 + 𝐴))
130126simprd 488 . . . . . . . . . . . 12 (𝜑𝐵 ≤ (𝑄‘(𝑈 + 1)))
13179, 123, 5, 130leadd2dd 11054 . . . . . . . . . . 11 (𝜑 → (𝑋 + 𝐵) ≤ (𝑋 + (𝑄‘(𝑈 + 1))))
132120simprd 488 . . . . . . . . . . 11 (𝜑 → (𝑉‘(𝑈 + 1)) = (𝑋 + (𝑄‘(𝑈 + 1))))
133131, 132breqtrrd 4953 . . . . . . . . . 10 (𝜑 → (𝑋 + 𝐵) ≤ (𝑉‘(𝑈 + 1)))
134 ioossioo 12643 . . . . . . . . . 10 ((((𝑉𝑈) ∈ ℝ* ∧ (𝑉‘(𝑈 + 1)) ∈ ℝ*) ∧ ((𝑉𝑈) ≤ (𝑋 + 𝐴) ∧ (𝑋 + 𝐵) ≤ (𝑉‘(𝑈 + 1)))) → ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1))))
135106, 110, 129, 133, 134syl22anc 826 . . . . . . . . 9 (𝜑 → ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1))))
136135resabs1d 5726 . . . . . . . 8 (𝜑 → (((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
137136eqcomd 2778 . . . . . . 7 (𝜑 → ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = (((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
138102ancli 541 . . . . . . . . 9 (𝜑 → (𝜑𝑈 ∈ (0..^𝑀)))
139 eleq1 2847 . . . . . . . . . . . 12 (𝑖 = 𝑈 → (𝑖 ∈ (0..^𝑀) ↔ 𝑈 ∈ (0..^𝑀)))
140139anbi2d 619 . . . . . . . . . . 11 (𝑖 = 𝑈 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑𝑈 ∈ (0..^𝑀))))
141 fveq2 6496 . . . . . . . . . . . . . 14 (𝑖 = 𝑈 → (𝑉𝑖) = (𝑉𝑈))
142 oveq1 6981 . . . . . . . . . . . . . . 15 (𝑖 = 𝑈 → (𝑖 + 1) = (𝑈 + 1))
143142fveq2d 6500 . . . . . . . . . . . . . 14 (𝑖 = 𝑈 → (𝑉‘(𝑖 + 1)) = (𝑉‘(𝑈 + 1)))
144141, 143oveq12d 6992 . . . . . . . . . . . . 13 (𝑖 = 𝑈 → ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) = ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1))))
145144reseq2d 5692 . . . . . . . . . . . 12 (𝑖 = 𝑈 → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))))
146144oveq1d 6989 . . . . . . . . . . . 12 (𝑖 = 𝑈 → (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ) = (((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ))
147145, 146eleq12d 2854 . . . . . . . . . . 11 (𝑖 = 𝑈 → (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ) ↔ ((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ)))
148140, 147imbi12d 337 . . . . . . . . . 10 (𝑖 = 𝑈 → (((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ)) ↔ ((𝜑𝑈 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ))))
149 fourierdlem72.dvcn . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
150148, 149vtoclg 3480 . . . . . . . . 9 (𝑈 ∈ (0..^𝑀) → ((𝜑𝑈 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ)))
151102, 138, 150sylc 65 . . . . . . . 8 (𝜑 → ((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ))
152 rescncf 23220 . . . . . . . 8 (((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1))) → (((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ) → (((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ)))
153135, 151, 152sylc 65 . . . . . . 7 (𝜑 → (((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ))
154137, 153eqeltrd 2860 . . . . . 6 (𝜑 → ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ))
15592, 154eqeltrd 2860 . . . . 5 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ))
1563, 5, 78, 79, 80, 155, 11, 26fourierdlem59 41906 . . . 4 (𝜑 → (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℝ))
15777, 156sseldd 3853 . . 3 (𝜑 → (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℂ))
158 iooretop 23089 . . . . . 6 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
159158a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran (,)))
16046, 40, 80, 159fourierdlem58 41905 . . . 4 (𝜑 → (ℝ D 𝐾) ∈ ((𝐴(,)𝐵)–cn→ℝ))
16177, 160sseldd 3853 . . 3 (𝜑 → (ℝ D 𝐾) ∈ ((𝐴(,)𝐵)–cn→ℂ))
16256, 66, 71, 157, 161dvmulcncf 41665 . 2 (𝜑 → (ℝ D (𝐻𝑓 · 𝐾)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
16354, 162eqeltrd 2860 1 (𝜑 → (ℝ D 𝑂) ∈ ((𝐴(,)𝐵)–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  wne 2961  wral 3082  {crab 3086  Vcvv 3409  wss 3823  {cpr 4437   class class class wbr 4925  cmpt 5004  ran crn 5404  cres 5405  wf 6181  cfv 6185  (class class class)co 6974  𝑓 cof 7223  𝑚 cmap 8204  cc 10331  cr 10332  0cc0 10333  1c1 10334   + caddc 10336   · cmul 10338  *cxr 10471   < clt 10472  cle 10473  cmin 10668  -cneg 10669   / cdiv 11096  cn 11437  2c2 11493  (,)cioo 12552  [,]cicc 12555  ...cfz 12706  ..^cfzo 12847  sincsin 15275  πcpi 15278  TopOpenctopn 16549  topGenctg 16565  fldccnfld 20259  intcnt 21341  cnccncf 23199   D cdv 24176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-inf2 8896  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410  ax-pre-sup 10411  ax-addf 10412  ax-mulf 10413
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-iin 4791  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-se 5363  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-isom 6194  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-of 7225  df-om 7395  df-1st 7499  df-2nd 7500  df-supp 7632  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-2o 7904  df-oadd 7907  df-er 8087  df-map 8206  df-pm 8207  df-ixp 8258  df-en 8305  df-dom 8306  df-sdom 8307  df-fin 8308  df-fsupp 8627  df-fi 8668  df-sup 8699  df-inf 8700  df-oi 8767  df-card 9160  df-cda 9386  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-div 11097  df-nn 11438  df-2 11501  df-3 11502  df-4 11503  df-5 11504  df-6 11505  df-7 11506  df-8 11507  df-9 11508  df-n0 11706  df-z 11792  df-dec 11910  df-uz 12057  df-q 12161  df-rp 12203  df-xneg 12322  df-xadd 12323  df-xmul 12324  df-ioo 12556  df-ioc 12557  df-ico 12558  df-icc 12559  df-fz 12707  df-fzo 12848  df-fl 12975  df-mod 13051  df-seq 13183  df-exp 13243  df-fac 13447  df-bc 13476  df-hash 13504  df-shft 14285  df-cj 14317  df-re 14318  df-im 14319  df-sqrt 14453  df-abs 14454  df-limsup 14687  df-clim 14704  df-rlim 14705  df-sum 14902  df-ef 15279  df-sin 15281  df-cos 15282  df-pi 15284  df-struct 16339  df-ndx 16340  df-slot 16341  df-base 16343  df-sets 16344  df-ress 16345  df-plusg 16432  df-mulr 16433  df-starv 16434  df-sca 16435  df-vsca 16436  df-ip 16437  df-tset 16438  df-ple 16439  df-ds 16441  df-unif 16442  df-hom 16443  df-cco 16444  df-rest 16550  df-topn 16551  df-0g 16569  df-gsum 16570  df-topgen 16571  df-pt 16572  df-prds 16575  df-xrs 16629  df-qtop 16634  df-imas 16635  df-xps 16637  df-mre 16727  df-mrc 16728  df-acs 16730  df-mgm 17722  df-sgrp 17764  df-mnd 17775  df-submnd 17816  df-mulg 18024  df-cntz 18230  df-cmn 18680  df-psmet 20251  df-xmet 20252  df-met 20253  df-bl 20254  df-mopn 20255  df-fbas 20256  df-fg 20257  df-cnfld 20260  df-top 21218  df-topon 21235  df-topsp 21257  df-bases 21270  df-cld 21343  df-ntr 21344  df-cls 21345  df-nei 21422  df-lp 21460  df-perf 21461  df-cn 21551  df-cnp 21552  df-t1 21638  df-haus 21639  df-tx 21886  df-hmeo 22079  df-fil 22170  df-fm 22262  df-flim 22263  df-flf 22264  df-xms 22645  df-ms 22646  df-tms 22647  df-cncf 23201  df-limc 24179  df-dv 24180
This theorem is referenced by:  fourierdlem103  41950  fourierdlem104  41951
  Copyright terms: Public domain W3C validator