Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem72 Structured version   Visualization version   GIF version

Theorem fourierdlem72 40964
Description: The derivative of 𝑂 is continuous on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem72.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem72.xre (𝜑𝑋 ∈ ℝ)
fourierdlem72.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem72.m (𝜑𝑀 ∈ ℕ)
fourierdlem72.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem72.dvcn ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
fourierdlem72.a (𝜑𝐴 ∈ ℝ)
fourierdlem72.b (𝜑𝐵 ∈ ℝ)
fourierdlem72.altb (𝜑𝐴 < 𝐵)
fourierdlem72.ab (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
fourierdlem72.n0 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
fourierdlem72.c (𝜑𝐶 ∈ ℝ)
fourierdlem72.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
fourierdlem72.u (𝜑𝑈 ∈ (0..^𝑀))
fourierdlem72.abss (𝜑 → (𝐴(,)𝐵) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1))))
fourierdlem72.h 𝐻 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠))
fourierdlem72.k 𝐾 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
fourierdlem72.o 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐻𝑠) · (𝐾𝑠)))
Assertion
Ref Expression
fourierdlem72 (𝜑 → (ℝ D 𝑂) ∈ ((𝐴(,)𝐵)–cn→ℂ))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐶,𝑠   𝑖,𝐹   𝐹,𝑠   𝐻,𝑠   𝐾,𝑠   𝑖,𝑀,𝑚,𝑝   𝑈,𝑖   𝑖,𝑉,𝑝   𝑖,𝑋,𝑚,𝑝   𝑋,𝑠   𝜑,𝑖   𝜑,𝑠
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑖,𝑚,𝑝)   𝐵(𝑖,𝑚,𝑝)   𝐶(𝑖,𝑚,𝑝)   𝑃(𝑖,𝑚,𝑠,𝑝)   𝑄(𝑖,𝑚,𝑠,𝑝)   𝑈(𝑚,𝑠,𝑝)   𝐹(𝑚,𝑝)   𝐻(𝑖,𝑚,𝑝)   𝐾(𝑖,𝑚,𝑝)   𝑀(𝑠)   𝑂(𝑖,𝑚,𝑠,𝑝)   𝑉(𝑚,𝑠)

Proof of Theorem fourierdlem72
StepHypRef Expression
1 ovex 6874 . . . . . 6 (𝐴(,)𝐵) ∈ V
21a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ∈ V)
3 fourierdlem72.f . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶ℝ)
43adantr 472 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐹:ℝ⟶ℝ)
5 fourierdlem72.xre . . . . . . . . . . . 12 (𝜑𝑋 ∈ ℝ)
65adantr 472 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ)
7 elioore 12407 . . . . . . . . . . . 12 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
87adantl 473 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
96, 8readdcld 10323 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
104, 9ffvelrnd 6550 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
11 fourierdlem72.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ)
1211adantr 472 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℝ)
1310, 12resubcld 10712 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℝ)
14 ioossicc 12461 . . . . . . . . . . . 12 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
1514sseli 3757 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ (𝐴[,]𝐵))
1615ad2antlr 718 . . . . . . . . . 10 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑠 ≠ 0) → 𝑠 ∈ (𝐴[,]𝐵))
17 id 22 . . . . . . . . . . . . 13 (𝑠 ≠ 0 → 𝑠 ≠ 0)
1817necon1bi 2965 . . . . . . . . . . . 12 𝑠 ≠ 0 → 𝑠 = 0)
1918eleq1d 2829 . . . . . . . . . . 11 𝑠 ≠ 0 → (𝑠 ∈ (𝐴[,]𝐵) ↔ 0 ∈ (𝐴[,]𝐵)))
2019adantl 473 . . . . . . . . . 10 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑠 ≠ 0) → (𝑠 ∈ (𝐴[,]𝐵) ↔ 0 ∈ (𝐴[,]𝐵)))
2116, 20mpbid 223 . . . . . . . . 9 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑠 ≠ 0) → 0 ∈ (𝐴[,]𝐵))
22 fourierdlem72.n0 . . . . . . . . . 10 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
2322ad2antrr 717 . . . . . . . . 9 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑠 ≠ 0) → ¬ 0 ∈ (𝐴[,]𝐵))
2421, 23condan 852 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0)
2513, 8, 24redivcld 11107 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) ∈ ℝ)
26 fourierdlem72.h . . . . . . 7 𝐻 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠))
2725, 26fmptd 6574 . . . . . 6 (𝜑𝐻:(𝐴(,)𝐵)⟶ℝ)
2827ffvelrnda 6549 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐻𝑠) ∈ ℝ)
29 2re 11346 . . . . . . . . . 10 2 ∈ ℝ
3029a1i 11 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ)
318rehalfcld 11525 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℝ)
3231resincld 15157 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℝ)
3330, 32remulcld 10324 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
34 2cnd 11350 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
358recnd 10322 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ)
3635halfcld 11523 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℂ)
3736sincld 15144 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ)
38 2ne0 11383 . . . . . . . . . 10 2 ≠ 0
3938a1i 11 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
40 fourierdlem72.ab . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
4140sselda 3761 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (-π[,]π))
42 fourierdlem44 40937 . . . . . . . . . 10 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
4341, 24, 42syl2anc 579 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ≠ 0)
4434, 37, 39, 43mulne0d 10933 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
458, 33, 44redivcld 11107 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
46 fourierdlem72.k . . . . . . 7 𝐾 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
4745, 46fmptd 6574 . . . . . 6 (𝜑𝐾:(𝐴(,)𝐵)⟶ℝ)
4847ffvelrnda 6549 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐾𝑠) ∈ ℝ)
4927feqmptd 6438 . . . . 5 (𝜑𝐻 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐻𝑠)))
5047feqmptd 6438 . . . . 5 (𝜑𝐾 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠)))
512, 28, 48, 49, 50offval2 7112 . . . 4 (𝜑 → (𝐻𝑓 · 𝐾) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐻𝑠) · (𝐾𝑠))))
52 fourierdlem72.o . . . 4 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐻𝑠) · (𝐾𝑠)))
5351, 52syl6reqr 2818 . . 3 (𝜑𝑂 = (𝐻𝑓 · 𝐾))
5453oveq2d 6858 . 2 (𝜑 → (ℝ D 𝑂) = (ℝ D (𝐻𝑓 · 𝐾)))
55 reelprrecn 10281 . . . 4 ℝ ∈ {ℝ, ℂ}
5655a1i 11 . . 3 (𝜑 → ℝ ∈ {ℝ, ℂ})
5710recnd 10322 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
5811recnd 10322 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
5958adantr 472 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℂ)
6057, 59subcld 10646 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ)
61 ioossre 12437 . . . . . . . 8 (𝐴(,)𝐵) ⊆ ℝ
6261a1i 11 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
6362sselda 3761 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
6463recnd 10322 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ)
6560, 64, 24divcld 11055 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) ∈ ℂ)
6665, 26fmptd 6574 . . 3 (𝜑𝐻:(𝐴(,)𝐵)⟶ℂ)
6764halfcld 11523 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℂ)
6867sincld 15144 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ)
6934, 68mulcld 10314 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
7064, 69, 44divcld 11055 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℂ)
7170, 46fmptd 6574 . . 3 (𝜑𝐾:(𝐴(,)𝐵)⟶ℂ)
72 ax-resscn 10246 . . . . . 6 ℝ ⊆ ℂ
7372a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
74 ssid 3783 . . . . . 6 ℂ ⊆ ℂ
7574a1i 11 . . . . 5 (𝜑 → ℂ ⊆ ℂ)
76 cncfss 22981 . . . . 5 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℝ) ⊆ ((𝐴(,)𝐵)–cn→ℂ))
7773, 75, 76syl2anc 579 . . . 4 (𝜑 → ((𝐴(,)𝐵)–cn→ℝ) ⊆ ((𝐴(,)𝐵)–cn→ℂ))
78 fourierdlem72.a . . . . 5 (𝜑𝐴 ∈ ℝ)
79 fourierdlem72.b . . . . 5 (𝜑𝐵 ∈ ℝ)
8024nelrdva 3578 . . . . 5 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
813, 73fssd 6237 . . . . . . . 8 (𝜑𝐹:ℝ⟶ℂ)
82 ssid 3783 . . . . . . . . 9 ℝ ⊆ ℝ
8382a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℝ)
84 ioossre 12437 . . . . . . . . 9 ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ
8584a1i 11 . . . . . . . 8 (𝜑 → ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ)
86 eqid 2765 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
8786tgioo2 22885 . . . . . . . . 9 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
8886, 87dvres 23966 . . . . . . . 8 (((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))))
8973, 81, 83, 85, 88syl22anc 867 . . . . . . 7 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))))
90 ioontr 40308 . . . . . . . 8 ((int‘(topGen‘ran (,)))‘((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))
9190reseq2i 5562 . . . . . . 7 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))
9289, 91syl6eq 2815 . . . . . 6 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
93 fourierdlem72.v . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ (𝑃𝑀))
94 fourierdlem72.m . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℕ)
95 fourierdlem72.p . . . . . . . . . . . . . . . . 17 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
9695fourierdlem2 40895 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
9794, 96syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
9893, 97mpbid 223 . . . . . . . . . . . . . 14 (𝜑 → (𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))))
9998simpld 488 . . . . . . . . . . . . 13 (𝜑𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)))
100 elmapi 8082 . . . . . . . . . . . . 13 (𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
10199, 100syl 17 . . . . . . . . . . . 12 (𝜑𝑉:(0...𝑀)⟶ℝ)
102 fourierdlem72.u . . . . . . . . . . . . 13 (𝜑𝑈 ∈ (0..^𝑀))
103 elfzofz 12693 . . . . . . . . . . . . 13 (𝑈 ∈ (0..^𝑀) → 𝑈 ∈ (0...𝑀))
104102, 103syl 17 . . . . . . . . . . . 12 (𝜑𝑈 ∈ (0...𝑀))
105101, 104ffvelrnd 6550 . . . . . . . . . . 11 (𝜑 → (𝑉𝑈) ∈ ℝ)
106105rexrd 10343 . . . . . . . . . 10 (𝜑 → (𝑉𝑈) ∈ ℝ*)
107 fzofzp1 12773 . . . . . . . . . . . . 13 (𝑈 ∈ (0..^𝑀) → (𝑈 + 1) ∈ (0...𝑀))
108102, 107syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑈 + 1) ∈ (0...𝑀))
109101, 108ffvelrnd 6550 . . . . . . . . . . 11 (𝜑 → (𝑉‘(𝑈 + 1)) ∈ ℝ)
110109rexrd 10343 . . . . . . . . . 10 (𝜑 → (𝑉‘(𝑈 + 1)) ∈ ℝ*)
111 pire 24502 . . . . . . . . . . . . . . 15 π ∈ ℝ
112111a1i 11 . . . . . . . . . . . . . 14 (𝜑 → π ∈ ℝ)
113112renegcld 10711 . . . . . . . . . . . . 13 (𝜑 → -π ∈ ℝ)
114 fourierdlem72.q . . . . . . . . . . . . 13 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
115113, 112, 5, 95, 94, 93, 104, 114fourierdlem13 40906 . . . . . . . . . . . 12 (𝜑 → ((𝑄𝑈) = ((𝑉𝑈) − 𝑋) ∧ (𝑉𝑈) = (𝑋 + (𝑄𝑈))))
116115simprd 489 . . . . . . . . . . 11 (𝜑 → (𝑉𝑈) = (𝑋 + (𝑄𝑈)))
117115simpld 488 . . . . . . . . . . . . 13 (𝜑 → (𝑄𝑈) = ((𝑉𝑈) − 𝑋))
118105, 5resubcld 10712 . . . . . . . . . . . . 13 (𝜑 → ((𝑉𝑈) − 𝑋) ∈ ℝ)
119117, 118eqeltrd 2844 . . . . . . . . . . . 12 (𝜑 → (𝑄𝑈) ∈ ℝ)
120113, 112, 5, 95, 94, 93, 108, 114fourierdlem13 40906 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑄‘(𝑈 + 1)) = ((𝑉‘(𝑈 + 1)) − 𝑋) ∧ (𝑉‘(𝑈 + 1)) = (𝑋 + (𝑄‘(𝑈 + 1)))))
121120simpld 488 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄‘(𝑈 + 1)) = ((𝑉‘(𝑈 + 1)) − 𝑋))
122109, 5resubcld 10712 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑉‘(𝑈 + 1)) − 𝑋) ∈ ℝ)
123121, 122eqeltrd 2844 . . . . . . . . . . . . . 14 (𝜑 → (𝑄‘(𝑈 + 1)) ∈ ℝ)
124 fourierdlem72.altb . . . . . . . . . . . . . 14 (𝜑𝐴 < 𝐵)
125 fourierdlem72.abss . . . . . . . . . . . . . 14 (𝜑 → (𝐴(,)𝐵) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1))))
126119, 123, 78, 79, 124, 125fourierdlem10 40903 . . . . . . . . . . . . 13 (𝜑 → ((𝑄𝑈) ≤ 𝐴𝐵 ≤ (𝑄‘(𝑈 + 1))))
127126simpld 488 . . . . . . . . . . . 12 (𝜑 → (𝑄𝑈) ≤ 𝐴)
128119, 78, 5, 127leadd2dd 10896 . . . . . . . . . . 11 (𝜑 → (𝑋 + (𝑄𝑈)) ≤ (𝑋 + 𝐴))
129116, 128eqbrtrd 4831 . . . . . . . . . 10 (𝜑 → (𝑉𝑈) ≤ (𝑋 + 𝐴))
130126simprd 489 . . . . . . . . . . . 12 (𝜑𝐵 ≤ (𝑄‘(𝑈 + 1)))
13179, 123, 5, 130leadd2dd 10896 . . . . . . . . . . 11 (𝜑 → (𝑋 + 𝐵) ≤ (𝑋 + (𝑄‘(𝑈 + 1))))
132120simprd 489 . . . . . . . . . . 11 (𝜑 → (𝑉‘(𝑈 + 1)) = (𝑋 + (𝑄‘(𝑈 + 1))))
133131, 132breqtrrd 4837 . . . . . . . . . 10 (𝜑 → (𝑋 + 𝐵) ≤ (𝑉‘(𝑈 + 1)))
134 ioossioo 12468 . . . . . . . . . 10 ((((𝑉𝑈) ∈ ℝ* ∧ (𝑉‘(𝑈 + 1)) ∈ ℝ*) ∧ ((𝑉𝑈) ≤ (𝑋 + 𝐴) ∧ (𝑋 + 𝐵) ≤ (𝑉‘(𝑈 + 1)))) → ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1))))
135106, 110, 129, 133, 134syl22anc 867 . . . . . . . . 9 (𝜑 → ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1))))
136135resabs1d 5603 . . . . . . . 8 (𝜑 → (((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
137136eqcomd 2771 . . . . . . 7 (𝜑 → ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = (((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
138102ancli 544 . . . . . . . . 9 (𝜑 → (𝜑𝑈 ∈ (0..^𝑀)))
139 eleq1 2832 . . . . . . . . . . . 12 (𝑖 = 𝑈 → (𝑖 ∈ (0..^𝑀) ↔ 𝑈 ∈ (0..^𝑀)))
140139anbi2d 622 . . . . . . . . . . 11 (𝑖 = 𝑈 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑𝑈 ∈ (0..^𝑀))))
141 fveq2 6375 . . . . . . . . . . . . . 14 (𝑖 = 𝑈 → (𝑉𝑖) = (𝑉𝑈))
142 oveq1 6849 . . . . . . . . . . . . . . 15 (𝑖 = 𝑈 → (𝑖 + 1) = (𝑈 + 1))
143142fveq2d 6379 . . . . . . . . . . . . . 14 (𝑖 = 𝑈 → (𝑉‘(𝑖 + 1)) = (𝑉‘(𝑈 + 1)))
144141, 143oveq12d 6860 . . . . . . . . . . . . 13 (𝑖 = 𝑈 → ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) = ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1))))
145144reseq2d 5565 . . . . . . . . . . . 12 (𝑖 = 𝑈 → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))))
146144oveq1d 6857 . . . . . . . . . . . 12 (𝑖 = 𝑈 → (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ) = (((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ))
147145, 146eleq12d 2838 . . . . . . . . . . 11 (𝑖 = 𝑈 → (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ) ↔ ((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ)))
148140, 147imbi12d 335 . . . . . . . . . 10 (𝑖 = 𝑈 → (((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ)) ↔ ((𝜑𝑈 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ))))
149 fourierdlem72.dvcn . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
150148, 149vtoclg 3418 . . . . . . . . 9 (𝑈 ∈ (0..^𝑀) → ((𝜑𝑈 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ)))
151102, 138, 150sylc 65 . . . . . . . 8 (𝜑 → ((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ))
152 rescncf 22979 . . . . . . . 8 (((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1))) → (((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ) → (((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ)))
153135, 151, 152sylc 65 . . . . . . 7 (𝜑 → (((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ))
154137, 153eqeltrd 2844 . . . . . 6 (𝜑 → ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ))
15592, 154eqeltrd 2844 . . . . 5 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ))
1563, 5, 78, 79, 80, 155, 11, 26fourierdlem59 40951 . . . 4 (𝜑 → (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℝ))
15777, 156sseldd 3762 . . 3 (𝜑 → (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℂ))
158 iooretop 22848 . . . . . 6 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
159158a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran (,)))
16046, 40, 80, 159fourierdlem58 40950 . . . 4 (𝜑 → (ℝ D 𝐾) ∈ ((𝐴(,)𝐵)–cn→ℝ))
16177, 160sseldd 3762 . . 3 (𝜑 → (ℝ D 𝐾) ∈ ((𝐴(,)𝐵)–cn→ℂ))
16256, 66, 71, 157, 161dvmulcncf 40710 . 2 (𝜑 → (ℝ D (𝐻𝑓 · 𝐾)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
16354, 162eqeltrd 2844 1 (𝜑 → (ℝ D 𝑂) ∈ ((𝐴(,)𝐵)–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wne 2937  wral 3055  {crab 3059  Vcvv 3350  wss 3732  {cpr 4336   class class class wbr 4809  cmpt 4888  ran crn 5278  cres 5279  wf 6064  cfv 6068  (class class class)co 6842  𝑓 cof 7093  𝑚 cmap 8060  cc 10187  cr 10188  0cc0 10189  1c1 10190   + caddc 10192   · cmul 10194  *cxr 10327   < clt 10328  cle 10329  cmin 10520  -cneg 10521   / cdiv 10938  cn 11274  2c2 11327  (,)cioo 12377  [,]cicc 12380  ...cfz 12533  ..^cfzo 12673  sincsin 15078  πcpi 15081  TopOpenctopn 16350  topGenctg 16366  fldccnfld 20019  intcnt 21101  cnccncf 22958   D cdv 23918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ioc 12382  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14094  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-limsup 14489  df-clim 14506  df-rlim 14507  df-sum 14704  df-ef 15082  df-sin 15084  df-cos 15085  df-pi 15087  df-struct 16134  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-ress 16140  df-plusg 16229  df-mulr 16230  df-starv 16231  df-sca 16232  df-vsca 16233  df-ip 16234  df-tset 16235  df-ple 16236  df-ds 16238  df-unif 16239  df-hom 16240  df-cco 16241  df-rest 16351  df-topn 16352  df-0g 16370  df-gsum 16371  df-topgen 16372  df-pt 16373  df-prds 16376  df-xrs 16430  df-qtop 16435  df-imas 16436  df-xps 16438  df-mre 16514  df-mrc 16515  df-acs 16517  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-submnd 17604  df-mulg 17810  df-cntz 18015  df-cmn 18461  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-fbas 20016  df-fg 20017  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105  df-nei 21182  df-lp 21220  df-perf 21221  df-cn 21311  df-cnp 21312  df-t1 21398  df-haus 21399  df-tx 21645  df-hmeo 21838  df-fil 21929  df-fm 22021  df-flim 22022  df-flf 22023  df-xms 22404  df-ms 22405  df-tms 22406  df-cncf 22960  df-limc 23921  df-dv 23922
This theorem is referenced by:  fourierdlem103  40995  fourierdlem104  40996
  Copyright terms: Public domain W3C validator