Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem72 Structured version   Visualization version   GIF version

Theorem fourierdlem72 46338
Description: The derivative of 𝑂 is continuous on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem72.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem72.xre (𝜑𝑋 ∈ ℝ)
fourierdlem72.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem72.m (𝜑𝑀 ∈ ℕ)
fourierdlem72.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem72.dvcn ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
fourierdlem72.a (𝜑𝐴 ∈ ℝ)
fourierdlem72.b (𝜑𝐵 ∈ ℝ)
fourierdlem72.altb (𝜑𝐴 < 𝐵)
fourierdlem72.ab (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
fourierdlem72.n0 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
fourierdlem72.c (𝜑𝐶 ∈ ℝ)
fourierdlem72.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
fourierdlem72.u (𝜑𝑈 ∈ (0..^𝑀))
fourierdlem72.abss (𝜑 → (𝐴(,)𝐵) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1))))
fourierdlem72.h 𝐻 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠))
fourierdlem72.k 𝐾 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
fourierdlem72.o 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐻𝑠) · (𝐾𝑠)))
Assertion
Ref Expression
fourierdlem72 (𝜑 → (ℝ D 𝑂) ∈ ((𝐴(,)𝐵)–cn→ℂ))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐶,𝑠   𝑖,𝐹   𝐹,𝑠   𝐻,𝑠   𝐾,𝑠   𝑖,𝑀,𝑚,𝑝   𝑈,𝑖   𝑖,𝑉,𝑝   𝑖,𝑋,𝑚,𝑝   𝑋,𝑠   𝜑,𝑖   𝜑,𝑠
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑖,𝑚,𝑝)   𝐵(𝑖,𝑚,𝑝)   𝐶(𝑖,𝑚,𝑝)   𝑃(𝑖,𝑚,𝑠,𝑝)   𝑄(𝑖,𝑚,𝑠,𝑝)   𝑈(𝑚,𝑠,𝑝)   𝐹(𝑚,𝑝)   𝐻(𝑖,𝑚,𝑝)   𝐾(𝑖,𝑚,𝑝)   𝑀(𝑠)   𝑂(𝑖,𝑚,𝑠,𝑝)   𝑉(𝑚,𝑠)

Proof of Theorem fourierdlem72
StepHypRef Expression
1 fourierdlem72.o . . . 4 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐻𝑠) · (𝐾𝑠)))
2 ovex 7388 . . . . . 6 (𝐴(,)𝐵) ∈ V
32a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ∈ V)
4 fourierdlem72.f . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶ℝ)
54adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐹:ℝ⟶ℝ)
6 fourierdlem72.xre . . . . . . . . . . . 12 (𝜑𝑋 ∈ ℝ)
76adantr 480 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ)
8 elioore 13282 . . . . . . . . . . . 12 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
98adantl 481 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
107, 9readdcld 11152 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
115, 10ffvelcdmd 7027 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
12 fourierdlem72.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ)
1312adantr 480 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℝ)
1411, 13resubcld 11556 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℝ)
15 ioossicc 13340 . . . . . . . . . . . 12 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
1615sseli 3926 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ (𝐴[,]𝐵))
1716ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑠 ≠ 0) → 𝑠 ∈ (𝐴[,]𝐵))
18 id 22 . . . . . . . . . . . . 13 (𝑠 ≠ 0 → 𝑠 ≠ 0)
1918necon1bi 2957 . . . . . . . . . . . 12 𝑠 ≠ 0 → 𝑠 = 0)
2019eleq1d 2818 . . . . . . . . . . 11 𝑠 ≠ 0 → (𝑠 ∈ (𝐴[,]𝐵) ↔ 0 ∈ (𝐴[,]𝐵)))
2120adantl 481 . . . . . . . . . 10 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑠 ≠ 0) → (𝑠 ∈ (𝐴[,]𝐵) ↔ 0 ∈ (𝐴[,]𝐵)))
2217, 21mpbid 232 . . . . . . . . 9 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑠 ≠ 0) → 0 ∈ (𝐴[,]𝐵))
23 fourierdlem72.n0 . . . . . . . . . 10 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
2423ad2antrr 726 . . . . . . . . 9 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑠 ≠ 0) → ¬ 0 ∈ (𝐴[,]𝐵))
2522, 24condan 817 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0)
2614, 9, 25redivcld 11960 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) ∈ ℝ)
27 fourierdlem72.h . . . . . . 7 𝐻 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠))
2826, 27fmptd 7056 . . . . . 6 (𝜑𝐻:(𝐴(,)𝐵)⟶ℝ)
2928ffvelcdmda 7026 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐻𝑠) ∈ ℝ)
30 2re 12210 . . . . . . . . . 10 2 ∈ ℝ
3130a1i 11 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ)
329rehalfcld 12379 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℝ)
3332resincld 16059 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℝ)
3431, 33remulcld 11153 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
35 2cnd 12214 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
369recnd 11151 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ)
3736halfcld 12377 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℂ)
3837sincld 16046 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ)
39 2ne0 12240 . . . . . . . . . 10 2 ≠ 0
4039a1i 11 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
41 fourierdlem72.ab . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
4241sselda 3930 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (-π[,]π))
43 fourierdlem44 46311 . . . . . . . . . 10 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
4442, 25, 43syl2anc 584 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ≠ 0)
4535, 38, 40, 44mulne0d 11780 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
469, 34, 45redivcld 11960 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
47 fourierdlem72.k . . . . . . 7 𝐾 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
4846, 47fmptd 7056 . . . . . 6 (𝜑𝐾:(𝐴(,)𝐵)⟶ℝ)
4948ffvelcdmda 7026 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐾𝑠) ∈ ℝ)
5028feqmptd 6899 . . . . 5 (𝜑𝐻 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐻𝑠)))
5148feqmptd 6899 . . . . 5 (𝜑𝐾 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠)))
523, 29, 49, 50, 51offval2 7639 . . . 4 (𝜑 → (𝐻f · 𝐾) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐻𝑠) · (𝐾𝑠))))
531, 52eqtr4id 2787 . . 3 (𝜑𝑂 = (𝐻f · 𝐾))
5453oveq2d 7371 . 2 (𝜑 → (ℝ D 𝑂) = (ℝ D (𝐻f · 𝐾)))
55 reelprrecn 11109 . . . 4 ℝ ∈ {ℝ, ℂ}
5655a1i 11 . . 3 (𝜑 → ℝ ∈ {ℝ, ℂ})
5711recnd 11151 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
5812recnd 11151 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
5958adantr 480 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℂ)
6057, 59subcld 11483 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ)
61 ioossre 13314 . . . . . . . 8 (𝐴(,)𝐵) ⊆ ℝ
6261a1i 11 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
6362sselda 3930 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
6463recnd 11151 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ)
6560, 64, 25divcld 11908 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) ∈ ℂ)
6665, 27fmptd 7056 . . 3 (𝜑𝐻:(𝐴(,)𝐵)⟶ℂ)
6764halfcld 12377 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℂ)
6867sincld 16046 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ)
6935, 68mulcld 11143 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
7064, 69, 45divcld 11908 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℂ)
7170, 47fmptd 7056 . . 3 (𝜑𝐾:(𝐴(,)𝐵)⟶ℂ)
72 ax-resscn 11074 . . . . . 6 ℝ ⊆ ℂ
7372a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
74 ssid 3953 . . . . . 6 ℂ ⊆ ℂ
7574a1i 11 . . . . 5 (𝜑 → ℂ ⊆ ℂ)
76 cncfss 24839 . . . . 5 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℝ) ⊆ ((𝐴(,)𝐵)–cn→ℂ))
7773, 75, 76syl2anc 584 . . . 4 (𝜑 → ((𝐴(,)𝐵)–cn→ℝ) ⊆ ((𝐴(,)𝐵)–cn→ℂ))
78 fourierdlem72.a . . . . 5 (𝜑𝐴 ∈ ℝ)
79 fourierdlem72.b . . . . 5 (𝜑𝐵 ∈ ℝ)
8025nelrdva 3660 . . . . 5 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
814, 73fssd 6676 . . . . . . . 8 (𝜑𝐹:ℝ⟶ℂ)
82 ssid 3953 . . . . . . . . 9 ℝ ⊆ ℝ
8382a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℝ)
84 ioossre 13314 . . . . . . . . 9 ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ
8584a1i 11 . . . . . . . 8 (𝜑 → ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ)
86 eqid 2733 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
87 tgioo4 24740 . . . . . . . . 9 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
8886, 87dvres 25859 . . . . . . . 8 (((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))))
8973, 81, 83, 85, 88syl22anc 838 . . . . . . 7 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))))
90 ioontr 45673 . . . . . . . 8 ((int‘(topGen‘ran (,)))‘((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))
9190reseq2i 5932 . . . . . . 7 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))
9289, 91eqtrdi 2784 . . . . . 6 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
93 fourierdlem72.v . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ (𝑃𝑀))
94 fourierdlem72.m . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℕ)
95 fourierdlem72.p . . . . . . . . . . . . . . . . 17 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
9695fourierdlem2 46269 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
9794, 96syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
9893, 97mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))))
9998simpld 494 . . . . . . . . . . . . 13 (𝜑𝑉 ∈ (ℝ ↑m (0...𝑀)))
100 elmapi 8782 . . . . . . . . . . . . 13 (𝑉 ∈ (ℝ ↑m (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
10199, 100syl 17 . . . . . . . . . . . 12 (𝜑𝑉:(0...𝑀)⟶ℝ)
102 fourierdlem72.u . . . . . . . . . . . . 13 (𝜑𝑈 ∈ (0..^𝑀))
103 elfzofz 13582 . . . . . . . . . . . . 13 (𝑈 ∈ (0..^𝑀) → 𝑈 ∈ (0...𝑀))
104102, 103syl 17 . . . . . . . . . . . 12 (𝜑𝑈 ∈ (0...𝑀))
105101, 104ffvelcdmd 7027 . . . . . . . . . . 11 (𝜑 → (𝑉𝑈) ∈ ℝ)
106105rexrd 11173 . . . . . . . . . 10 (𝜑 → (𝑉𝑈) ∈ ℝ*)
107 fzofzp1 13671 . . . . . . . . . . . . 13 (𝑈 ∈ (0..^𝑀) → (𝑈 + 1) ∈ (0...𝑀))
108102, 107syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑈 + 1) ∈ (0...𝑀))
109101, 108ffvelcdmd 7027 . . . . . . . . . . 11 (𝜑 → (𝑉‘(𝑈 + 1)) ∈ ℝ)
110109rexrd 11173 . . . . . . . . . 10 (𝜑 → (𝑉‘(𝑈 + 1)) ∈ ℝ*)
111 pire 26413 . . . . . . . . . . . . . . 15 π ∈ ℝ
112111a1i 11 . . . . . . . . . . . . . 14 (𝜑 → π ∈ ℝ)
113112renegcld 11555 . . . . . . . . . . . . 13 (𝜑 → -π ∈ ℝ)
114 fourierdlem72.q . . . . . . . . . . . . 13 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
115113, 112, 6, 95, 94, 93, 104, 114fourierdlem13 46280 . . . . . . . . . . . 12 (𝜑 → ((𝑄𝑈) = ((𝑉𝑈) − 𝑋) ∧ (𝑉𝑈) = (𝑋 + (𝑄𝑈))))
116115simprd 495 . . . . . . . . . . 11 (𝜑 → (𝑉𝑈) = (𝑋 + (𝑄𝑈)))
117115simpld 494 . . . . . . . . . . . . 13 (𝜑 → (𝑄𝑈) = ((𝑉𝑈) − 𝑋))
118105, 6resubcld 11556 . . . . . . . . . . . . 13 (𝜑 → ((𝑉𝑈) − 𝑋) ∈ ℝ)
119117, 118eqeltrd 2833 . . . . . . . . . . . 12 (𝜑 → (𝑄𝑈) ∈ ℝ)
120113, 112, 6, 95, 94, 93, 108, 114fourierdlem13 46280 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑄‘(𝑈 + 1)) = ((𝑉‘(𝑈 + 1)) − 𝑋) ∧ (𝑉‘(𝑈 + 1)) = (𝑋 + (𝑄‘(𝑈 + 1)))))
121120simpld 494 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄‘(𝑈 + 1)) = ((𝑉‘(𝑈 + 1)) − 𝑋))
122109, 6resubcld 11556 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑉‘(𝑈 + 1)) − 𝑋) ∈ ℝ)
123121, 122eqeltrd 2833 . . . . . . . . . . . . . 14 (𝜑 → (𝑄‘(𝑈 + 1)) ∈ ℝ)
124 fourierdlem72.altb . . . . . . . . . . . . . 14 (𝜑𝐴 < 𝐵)
125 fourierdlem72.abss . . . . . . . . . . . . . 14 (𝜑 → (𝐴(,)𝐵) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1))))
126119, 123, 78, 79, 124, 125fourierdlem10 46277 . . . . . . . . . . . . 13 (𝜑 → ((𝑄𝑈) ≤ 𝐴𝐵 ≤ (𝑄‘(𝑈 + 1))))
127126simpld 494 . . . . . . . . . . . 12 (𝜑 → (𝑄𝑈) ≤ 𝐴)
128119, 78, 6, 127leadd2dd 11743 . . . . . . . . . . 11 (𝜑 → (𝑋 + (𝑄𝑈)) ≤ (𝑋 + 𝐴))
129116, 128eqbrtrd 5117 . . . . . . . . . 10 (𝜑 → (𝑉𝑈) ≤ (𝑋 + 𝐴))
130126simprd 495 . . . . . . . . . . . 12 (𝜑𝐵 ≤ (𝑄‘(𝑈 + 1)))
13179, 123, 6, 130leadd2dd 11743 . . . . . . . . . . 11 (𝜑 → (𝑋 + 𝐵) ≤ (𝑋 + (𝑄‘(𝑈 + 1))))
132120simprd 495 . . . . . . . . . . 11 (𝜑 → (𝑉‘(𝑈 + 1)) = (𝑋 + (𝑄‘(𝑈 + 1))))
133131, 132breqtrrd 5123 . . . . . . . . . 10 (𝜑 → (𝑋 + 𝐵) ≤ (𝑉‘(𝑈 + 1)))
134 ioossioo 13348 . . . . . . . . . 10 ((((𝑉𝑈) ∈ ℝ* ∧ (𝑉‘(𝑈 + 1)) ∈ ℝ*) ∧ ((𝑉𝑈) ≤ (𝑋 + 𝐴) ∧ (𝑋 + 𝐵) ≤ (𝑉‘(𝑈 + 1)))) → ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1))))
135106, 110, 129, 133, 134syl22anc 838 . . . . . . . . 9 (𝜑 → ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1))))
136135resabs1d 5964 . . . . . . . 8 (𝜑 → (((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
137136eqcomd 2739 . . . . . . 7 (𝜑 → ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = (((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
138102ancli 548 . . . . . . . . 9 (𝜑 → (𝜑𝑈 ∈ (0..^𝑀)))
139 eleq1 2821 . . . . . . . . . . . 12 (𝑖 = 𝑈 → (𝑖 ∈ (0..^𝑀) ↔ 𝑈 ∈ (0..^𝑀)))
140139anbi2d 630 . . . . . . . . . . 11 (𝑖 = 𝑈 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑𝑈 ∈ (0..^𝑀))))
141 fveq2 6831 . . . . . . . . . . . . . 14 (𝑖 = 𝑈 → (𝑉𝑖) = (𝑉𝑈))
142 oveq1 7362 . . . . . . . . . . . . . . 15 (𝑖 = 𝑈 → (𝑖 + 1) = (𝑈 + 1))
143142fveq2d 6835 . . . . . . . . . . . . . 14 (𝑖 = 𝑈 → (𝑉‘(𝑖 + 1)) = (𝑉‘(𝑈 + 1)))
144141, 143oveq12d 7373 . . . . . . . . . . . . 13 (𝑖 = 𝑈 → ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) = ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1))))
145144reseq2d 5935 . . . . . . . . . . . 12 (𝑖 = 𝑈 → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))))
146144oveq1d 7370 . . . . . . . . . . . 12 (𝑖 = 𝑈 → (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ) = (((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ))
147145, 146eleq12d 2827 . . . . . . . . . . 11 (𝑖 = 𝑈 → (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ) ↔ ((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ)))
148140, 147imbi12d 344 . . . . . . . . . 10 (𝑖 = 𝑈 → (((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ)) ↔ ((𝜑𝑈 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ))))
149 fourierdlem72.dvcn . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
150148, 149vtoclg 3508 . . . . . . . . 9 (𝑈 ∈ (0..^𝑀) → ((𝜑𝑈 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ)))
151102, 138, 150sylc 65 . . . . . . . 8 (𝜑 → ((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ))
152 rescncf 24837 . . . . . . . 8 (((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1))) → (((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ) → (((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ)))
153135, 151, 152sylc 65 . . . . . . 7 (𝜑 → (((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ))
154137, 153eqeltrd 2833 . . . . . 6 (𝜑 → ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ))
15592, 154eqeltrd 2833 . . . . 5 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ))
1564, 6, 78, 79, 80, 155, 12, 27fourierdlem59 46325 . . . 4 (𝜑 → (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℝ))
15777, 156sseldd 3931 . . 3 (𝜑 → (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℂ))
158 iooretop 24700 . . . . . 6 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
159158a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran (,)))
16047, 41, 80, 159fourierdlem58 46324 . . . 4 (𝜑 → (ℝ D 𝐾) ∈ ((𝐴(,)𝐵)–cn→ℝ))
16177, 160sseldd 3931 . . 3 (𝜑 → (ℝ D 𝐾) ∈ ((𝐴(,)𝐵)–cn→ℂ))
16256, 66, 71, 157, 161dvmulcncf 46085 . 2 (𝜑 → (ℝ D (𝐻f · 𝐾)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
16354, 162eqeltrd 2833 1 (𝜑 → (ℝ D 𝑂) ∈ ((𝐴(,)𝐵)–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  {crab 3396  Vcvv 3437  wss 3898  {cpr 4579   class class class wbr 5095  cmpt 5176  ran crn 5622  cres 5623  wf 6485  cfv 6489  (class class class)co 7355  f cof 7617  m cmap 8759  cc 11015  cr 11016  0cc0 11017  1c1 11018   + caddc 11020   · cmul 11022  *cxr 11156   < clt 11157  cle 11158  cmin 11355  -cneg 11356   / cdiv 11785  cn 12136  2c2 12191  (,)cioo 13252  [,]cicc 13255  ...cfz 13414  ..^cfzo 13561  sincsin 15977  πcpi 15980  TopOpenctopn 17332  topGenctg 17348  fldccnfld 21300  intcnt 22952  cnccncf 24816   D cdv 25811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095  ax-addf 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-fi 9306  df-sup 9337  df-inf 9338  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ioo 13256  df-ioc 13257  df-ico 13258  df-icc 13259  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-fac 14188  df-bc 14217  df-hash 14245  df-shft 14981  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-limsup 15385  df-clim 15402  df-rlim 15403  df-sum 15601  df-ef 15981  df-sin 15983  df-cos 15984  df-pi 15986  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-starv 17183  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-unif 17191  df-hom 17192  df-cco 17193  df-rest 17333  df-topn 17334  df-0g 17352  df-gsum 17353  df-topgen 17354  df-pt 17355  df-prds 17358  df-xrs 17414  df-qtop 17419  df-imas 17420  df-xps 17422  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-submnd 18700  df-mulg 18989  df-cntz 19237  df-cmn 19702  df-psmet 21292  df-xmet 21293  df-met 21294  df-bl 21295  df-mopn 21296  df-fbas 21297  df-fg 21298  df-cnfld 21301  df-top 22829  df-topon 22846  df-topsp 22868  df-bases 22881  df-cld 22954  df-ntr 22955  df-cls 22956  df-nei 23033  df-lp 23071  df-perf 23072  df-cn 23162  df-cnp 23163  df-t1 23249  df-haus 23250  df-tx 23497  df-hmeo 23690  df-fil 23781  df-fm 23873  df-flim 23874  df-flf 23875  df-xms 24255  df-ms 24256  df-tms 24257  df-cncf 24818  df-limc 25814  df-dv 25815
This theorem is referenced by:  fourierdlem103  46369  fourierdlem104  46370
  Copyright terms: Public domain W3C validator