MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustfbas Structured version   Visualization version   GIF version

Theorem metustfbas 24461
Description: The filter base generated by a metric 𝐷. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metustfbas ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → 𝐹 ∈ (fBas‘(𝑋 × 𝑋)))
Distinct variable groups:   𝐷,𝑎   𝑋,𝑎   𝐹,𝑎

Proof of Theorem metustfbas
Dummy variables 𝑝 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metust.1 . . . . . . 7 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
21metustel 24454 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → (𝑥𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝑥 = (𝐷 “ (0[,)𝑎))))
3 simpr 484 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 = (𝐷 “ (0[,)𝑎))) → 𝑥 = (𝐷 “ (0[,)𝑎)))
4 cnvimass 6037 . . . . . . . . . 10 (𝐷 “ (0[,)𝑎)) ⊆ dom 𝐷
5 psmetf 24210 . . . . . . . . . . . 12 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
65fdmd 6666 . . . . . . . . . . 11 (𝐷 ∈ (PsMet‘𝑋) → dom 𝐷 = (𝑋 × 𝑋))
76adantr 480 . . . . . . . . . 10 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 = (𝐷 “ (0[,)𝑎))) → dom 𝐷 = (𝑋 × 𝑋))
84, 7sseqtrid 3980 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 = (𝐷 “ (0[,)𝑎))) → (𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋))
93, 8eqsstrd 3972 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 = (𝐷 “ (0[,)𝑎))) → 𝑥 ⊆ (𝑋 × 𝑋))
109ex 412 . . . . . . 7 (𝐷 ∈ (PsMet‘𝑋) → (𝑥 = (𝐷 “ (0[,)𝑎)) → 𝑥 ⊆ (𝑋 × 𝑋)))
1110rexlimdvw 3135 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → (∃𝑎 ∈ ℝ+ 𝑥 = (𝐷 “ (0[,)𝑎)) → 𝑥 ⊆ (𝑋 × 𝑋)))
122, 11sylbid 240 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → (𝑥𝐹𝑥 ⊆ (𝑋 × 𝑋)))
1312ralrimiv 3120 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → ∀𝑥𝐹 𝑥 ⊆ (𝑋 × 𝑋))
14 pwssb 5053 . . . 4 (𝐹 ⊆ 𝒫 (𝑋 × 𝑋) ↔ ∀𝑥𝐹 𝑥 ⊆ (𝑋 × 𝑋))
1513, 14sylibr 234 . . 3 (𝐷 ∈ (PsMet‘𝑋) → 𝐹 ⊆ 𝒫 (𝑋 × 𝑋))
1615adantl 481 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → 𝐹 ⊆ 𝒫 (𝑋 × 𝑋))
17 cnvexg 7864 . . . . . . 7 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ∈ V)
18 imaexg 7853 . . . . . . 7 (𝐷 ∈ V → (𝐷 “ (0[,)1)) ∈ V)
19 elisset 2810 . . . . . . 7 ((𝐷 “ (0[,)1)) ∈ V → ∃𝑥 𝑥 = (𝐷 “ (0[,)1)))
20 1rp 12915 . . . . . . . . 9 1 ∈ ℝ+
21 oveq2 7361 . . . . . . . . . . 11 (𝑎 = 1 → (0[,)𝑎) = (0[,)1))
2221imaeq2d 6015 . . . . . . . . . 10 (𝑎 = 1 → (𝐷 “ (0[,)𝑎)) = (𝐷 “ (0[,)1)))
2322rspceeqv 3602 . . . . . . . . 9 ((1 ∈ ℝ+𝑥 = (𝐷 “ (0[,)1))) → ∃𝑎 ∈ ℝ+ 𝑥 = (𝐷 “ (0[,)𝑎)))
2420, 23mpan 690 . . . . . . . 8 (𝑥 = (𝐷 “ (0[,)1)) → ∃𝑎 ∈ ℝ+ 𝑥 = (𝐷 “ (0[,)𝑎)))
2524eximi 1835 . . . . . . 7 (∃𝑥 𝑥 = (𝐷 “ (0[,)1)) → ∃𝑥𝑎 ∈ ℝ+ 𝑥 = (𝐷 “ (0[,)𝑎)))
2617, 18, 19, 254syl 19 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → ∃𝑥𝑎 ∈ ℝ+ 𝑥 = (𝐷 “ (0[,)𝑎)))
272exbidv 1921 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → (∃𝑥 𝑥𝐹 ↔ ∃𝑥𝑎 ∈ ℝ+ 𝑥 = (𝐷 “ (0[,)𝑎))))
2826, 27mpbird 257 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → ∃𝑥 𝑥𝐹)
2928adantl 481 . . . 4 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ∃𝑥 𝑥𝐹)
30 n0 4306 . . . 4 (𝐹 ≠ ∅ ↔ ∃𝑥 𝑥𝐹)
3129, 30sylibr 234 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → 𝐹 ≠ ∅)
321metustid 24458 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝐹) → ( I ↾ 𝑋) ⊆ 𝑥)
3332adantll 714 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑥𝐹) → ( I ↾ 𝑋) ⊆ 𝑥)
34 n0 4306 . . . . . . . . . 10 (𝑋 ≠ ∅ ↔ ∃𝑝 𝑝𝑋)
3534biimpi 216 . . . . . . . . 9 (𝑋 ≠ ∅ → ∃𝑝 𝑝𝑋)
3635adantr 480 . . . . . . . 8 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ∃𝑝 𝑝𝑋)
37 opelidres 5946 . . . . . . . . . . 11 (𝑝𝑋 → (⟨𝑝, 𝑝⟩ ∈ ( I ↾ 𝑋) ↔ 𝑝𝑋))
3837ibir 268 . . . . . . . . . 10 (𝑝𝑋 → ⟨𝑝, 𝑝⟩ ∈ ( I ↾ 𝑋))
3938ne0d 4295 . . . . . . . . 9 (𝑝𝑋 → ( I ↾ 𝑋) ≠ ∅)
4039exlimiv 1930 . . . . . . . 8 (∃𝑝 𝑝𝑋 → ( I ↾ 𝑋) ≠ ∅)
4136, 40syl 17 . . . . . . 7 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ( I ↾ 𝑋) ≠ ∅)
4241adantr 480 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑥𝐹) → ( I ↾ 𝑋) ≠ ∅)
43 ssn0 4357 . . . . . 6 ((( I ↾ 𝑋) ⊆ 𝑥 ∧ ( I ↾ 𝑋) ≠ ∅) → 𝑥 ≠ ∅)
4433, 42, 43syl2anc 584 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑥𝐹) → 𝑥 ≠ ∅)
4544nelrdva 3667 . . . 4 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ¬ ∅ ∈ 𝐹)
46 df-nel 3030 . . . 4 (∅ ∉ 𝐹 ↔ ¬ ∅ ∈ 𝐹)
4745, 46sylibr 234 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ∅ ∉ 𝐹)
48 dfss2 3923 . . . . . . . . 9 (𝑥𝑦 ↔ (𝑥𝑦) = 𝑥)
4948biimpi 216 . . . . . . . 8 (𝑥𝑦 → (𝑥𝑦) = 𝑥)
5049adantl 481 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥𝐹𝑦𝐹)) ∧ 𝑥𝑦) → (𝑥𝑦) = 𝑥)
51 simplrl 776 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥𝐹𝑦𝐹)) ∧ 𝑥𝑦) → 𝑥𝐹)
5250, 51eqeltrd 2828 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥𝐹𝑦𝐹)) ∧ 𝑥𝑦) → (𝑥𝑦) ∈ 𝐹)
53 sseqin2 4176 . . . . . . . . 9 (𝑦𝑥 ↔ (𝑥𝑦) = 𝑦)
5453biimpi 216 . . . . . . . 8 (𝑦𝑥 → (𝑥𝑦) = 𝑦)
5554adantl 481 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥𝐹𝑦𝐹)) ∧ 𝑦𝑥) → (𝑥𝑦) = 𝑦)
56 simplrr 777 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥𝐹𝑦𝐹)) ∧ 𝑦𝑥) → 𝑦𝐹)
5755, 56eqeltrd 2828 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥𝐹𝑦𝐹)) ∧ 𝑦𝑥) → (𝑥𝑦) ∈ 𝐹)
58 simplr 768 . . . . . . 7 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥𝐹𝑦𝐹)) → 𝐷 ∈ (PsMet‘𝑋))
59 simprl 770 . . . . . . 7 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥𝐹𝑦𝐹)) → 𝑥𝐹)
60 simprr 772 . . . . . . 7 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥𝐹𝑦𝐹)) → 𝑦𝐹)
611metustto 24457 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝐹𝑦𝐹) → (𝑥𝑦𝑦𝑥))
6258, 59, 60, 61syl3anc 1373 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥𝐹𝑦𝐹)) → (𝑥𝑦𝑦𝑥))
6352, 57, 62mpjaodan 960 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥𝐹𝑦𝐹)) → (𝑥𝑦) ∈ 𝐹)
64 ssidd 3961 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥𝐹𝑦𝐹)) → (𝑥𝑦) ⊆ (𝑥𝑦))
65 sseq1 3963 . . . . . 6 (𝑧 = (𝑥𝑦) → (𝑧 ⊆ (𝑥𝑦) ↔ (𝑥𝑦) ⊆ (𝑥𝑦)))
6665rspcev 3579 . . . . 5 (((𝑥𝑦) ∈ 𝐹 ∧ (𝑥𝑦) ⊆ (𝑥𝑦)) → ∃𝑧𝐹 𝑧 ⊆ (𝑥𝑦))
6763, 64, 66syl2anc 584 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥𝐹𝑦𝐹)) → ∃𝑧𝐹 𝑧 ⊆ (𝑥𝑦))
6867ralrimivva 3172 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦))
6931, 47, 683jca 1128 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦)))
70 elfvex 6862 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V)
7170adantl 481 . . . 4 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → 𝑋 ∈ V)
7271, 71xpexd 7691 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑋 × 𝑋) ∈ V)
73 isfbas2 23738 . . 3 ((𝑋 × 𝑋) ∈ V → (𝐹 ∈ (fBas‘(𝑋 × 𝑋)) ↔ (𝐹 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦)))))
7472, 73syl 17 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐹 ∈ (fBas‘(𝑋 × 𝑋)) ↔ (𝐹 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦)))))
7516, 69, 74mpbir2and 713 1 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → 𝐹 ∈ (fBas‘(𝑋 × 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wnel 3029  wral 3044  wrex 3053  Vcvv 3438  cin 3904  wss 3905  c0 4286  𝒫 cpw 4553  cop 4585  cmpt 5176   I cid 5517   × cxp 5621  ccnv 5622  dom cdm 5623  ran crn 5624  cres 5625  cima 5626  cfv 6486  (class class class)co 7353  0cc0 11028  1c1 11029  *cxr 11167  +crp 12911  [,)cico 13268  PsMetcpsmet 21263  fBascfbas 21267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-rp 12912  df-ico 13272  df-psmet 21271  df-fbas 21276
This theorem is referenced by:  metust  24462  cfilucfil  24463  metuel  24468  psmetutop  24471  restmetu  24474  metucn  24475
  Copyright terms: Public domain W3C validator