Step | Hyp | Ref
| Expression |
1 | | metust.1 |
. . . . . . 7
⊢ 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) |
2 | 1 | metustel 23704 |
. . . . . 6
⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝑥 ∈ 𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝑥 = (◡𝐷 “ (0[,)𝑎)))) |
3 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 = (◡𝐷 “ (0[,)𝑎))) → 𝑥 = (◡𝐷 “ (0[,)𝑎))) |
4 | | cnvimass 5988 |
. . . . . . . . . 10
⊢ (◡𝐷 “ (0[,)𝑎)) ⊆ dom 𝐷 |
5 | | psmetf 23457 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
6 | 5 | fdmd 6609 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ (PsMet‘𝑋) → dom 𝐷 = (𝑋 × 𝑋)) |
7 | 6 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 = (◡𝐷 “ (0[,)𝑎))) → dom 𝐷 = (𝑋 × 𝑋)) |
8 | 4, 7 | sseqtrid 3978 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 = (◡𝐷 “ (0[,)𝑎))) → (◡𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋)) |
9 | 3, 8 | eqsstrd 3964 |
. . . . . . . 8
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 = (◡𝐷 “ (0[,)𝑎))) → 𝑥 ⊆ (𝑋 × 𝑋)) |
10 | 9 | ex 413 |
. . . . . . 7
⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝑥 = (◡𝐷 “ (0[,)𝑎)) → 𝑥 ⊆ (𝑋 × 𝑋))) |
11 | 10 | rexlimdvw 3221 |
. . . . . 6
⊢ (𝐷 ∈ (PsMet‘𝑋) → (∃𝑎 ∈ ℝ+
𝑥 = (◡𝐷 “ (0[,)𝑎)) → 𝑥 ⊆ (𝑋 × 𝑋))) |
12 | 2, 11 | sylbid 239 |
. . . . 5
⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝑥 ∈ 𝐹 → 𝑥 ⊆ (𝑋 × 𝑋))) |
13 | 12 | ralrimiv 3109 |
. . . 4
⊢ (𝐷 ∈ (PsMet‘𝑋) → ∀𝑥 ∈ 𝐹 𝑥 ⊆ (𝑋 × 𝑋)) |
14 | | pwssb 5035 |
. . . 4
⊢ (𝐹 ⊆ 𝒫 (𝑋 × 𝑋) ↔ ∀𝑥 ∈ 𝐹 𝑥 ⊆ (𝑋 × 𝑋)) |
15 | 13, 14 | sylibr 233 |
. . 3
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐹 ⊆ 𝒫 (𝑋 × 𝑋)) |
16 | 15 | adantl 482 |
. 2
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → 𝐹 ⊆ 𝒫 (𝑋 × 𝑋)) |
17 | | cnvexg 7765 |
. . . . . . 7
⊢ (𝐷 ∈ (PsMet‘𝑋) → ◡𝐷 ∈ V) |
18 | | imaexg 7756 |
. . . . . . 7
⊢ (◡𝐷 ∈ V → (◡𝐷 “ (0[,)1)) ∈ V) |
19 | | elisset 2822 |
. . . . . . 7
⊢ ((◡𝐷 “ (0[,)1)) ∈ V →
∃𝑥 𝑥 = (◡𝐷 “ (0[,)1))) |
20 | | 1rp 12733 |
. . . . . . . . 9
⊢ 1 ∈
ℝ+ |
21 | | oveq2 7279 |
. . . . . . . . . . 11
⊢ (𝑎 = 1 → (0[,)𝑎) = (0[,)1)) |
22 | 21 | imaeq2d 5968 |
. . . . . . . . . 10
⊢ (𝑎 = 1 → (◡𝐷 “ (0[,)𝑎)) = (◡𝐷 “ (0[,)1))) |
23 | 22 | rspceeqv 3576 |
. . . . . . . . 9
⊢ ((1
∈ ℝ+ ∧ 𝑥 = (◡𝐷 “ (0[,)1))) → ∃𝑎 ∈ ℝ+
𝑥 = (◡𝐷 “ (0[,)𝑎))) |
24 | 20, 23 | mpan 687 |
. . . . . . . 8
⊢ (𝑥 = (◡𝐷 “ (0[,)1)) → ∃𝑎 ∈ ℝ+
𝑥 = (◡𝐷 “ (0[,)𝑎))) |
25 | 24 | eximi 1841 |
. . . . . . 7
⊢
(∃𝑥 𝑥 = (◡𝐷 “ (0[,)1)) → ∃𝑥∃𝑎 ∈ ℝ+ 𝑥 = (◡𝐷 “ (0[,)𝑎))) |
26 | 17, 18, 19, 25 | 4syl 19 |
. . . . . 6
⊢ (𝐷 ∈ (PsMet‘𝑋) → ∃𝑥∃𝑎 ∈ ℝ+ 𝑥 = (◡𝐷 “ (0[,)𝑎))) |
27 | 2 | exbidv 1928 |
. . . . . 6
⊢ (𝐷 ∈ (PsMet‘𝑋) → (∃𝑥 𝑥 ∈ 𝐹 ↔ ∃𝑥∃𝑎 ∈ ℝ+ 𝑥 = (◡𝐷 “ (0[,)𝑎)))) |
28 | 26, 27 | mpbird 256 |
. . . . 5
⊢ (𝐷 ∈ (PsMet‘𝑋) → ∃𝑥 𝑥 ∈ 𝐹) |
29 | 28 | adantl 482 |
. . . 4
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ∃𝑥 𝑥 ∈ 𝐹) |
30 | | n0 4286 |
. . . 4
⊢ (𝐹 ≠ ∅ ↔
∃𝑥 𝑥 ∈ 𝐹) |
31 | 29, 30 | sylibr 233 |
. . 3
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → 𝐹 ≠ ∅) |
32 | 1 | metustid 23708 |
. . . . . . 7
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ 𝐹) → ( I ↾ 𝑋) ⊆ 𝑥) |
33 | 32 | adantll 711 |
. . . . . 6
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑥 ∈ 𝐹) → ( I ↾ 𝑋) ⊆ 𝑥) |
34 | | n0 4286 |
. . . . . . . . . 10
⊢ (𝑋 ≠ ∅ ↔
∃𝑝 𝑝 ∈ 𝑋) |
35 | 34 | biimpi 215 |
. . . . . . . . 9
⊢ (𝑋 ≠ ∅ →
∃𝑝 𝑝 ∈ 𝑋) |
36 | 35 | adantr 481 |
. . . . . . . 8
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ∃𝑝 𝑝 ∈ 𝑋) |
37 | | opelidres 5902 |
. . . . . . . . . . 11
⊢ (𝑝 ∈ 𝑋 → (〈𝑝, 𝑝〉 ∈ ( I ↾ 𝑋) ↔ 𝑝 ∈ 𝑋)) |
38 | 37 | ibir 267 |
. . . . . . . . . 10
⊢ (𝑝 ∈ 𝑋 → 〈𝑝, 𝑝〉 ∈ ( I ↾ 𝑋)) |
39 | 38 | ne0d 4275 |
. . . . . . . . 9
⊢ (𝑝 ∈ 𝑋 → ( I ↾ 𝑋) ≠ ∅) |
40 | 39 | exlimiv 1937 |
. . . . . . . 8
⊢
(∃𝑝 𝑝 ∈ 𝑋 → ( I ↾ 𝑋) ≠ ∅) |
41 | 36, 40 | syl 17 |
. . . . . . 7
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ( I ↾ 𝑋) ≠ ∅) |
42 | 41 | adantr 481 |
. . . . . 6
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑥 ∈ 𝐹) → ( I ↾ 𝑋) ≠ ∅) |
43 | | ssn0 4340 |
. . . . . 6
⊢ ((( I
↾ 𝑋) ⊆ 𝑥 ∧ ( I ↾ 𝑋) ≠ ∅) → 𝑥 ≠ ∅) |
44 | 33, 42, 43 | syl2anc 584 |
. . . . 5
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑥 ∈ 𝐹) → 𝑥 ≠ ∅) |
45 | 44 | nelrdva 3644 |
. . . 4
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ¬ ∅ ∈
𝐹) |
46 | | df-nel 3052 |
. . . 4
⊢ (∅
∉ 𝐹 ↔ ¬
∅ ∈ 𝐹) |
47 | 45, 46 | sylibr 233 |
. . 3
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ∅ ∉ 𝐹) |
48 | | df-ss 3909 |
. . . . . . . . 9
⊢ (𝑥 ⊆ 𝑦 ↔ (𝑥 ∩ 𝑦) = 𝑥) |
49 | 48 | biimpi 215 |
. . . . . . . 8
⊢ (𝑥 ⊆ 𝑦 → (𝑥 ∩ 𝑦) = 𝑥) |
50 | 49 | adantl 482 |
. . . . . . 7
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) ∧ 𝑥 ⊆ 𝑦) → (𝑥 ∩ 𝑦) = 𝑥) |
51 | | simplrl 774 |
. . . . . . 7
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) ∧ 𝑥 ⊆ 𝑦) → 𝑥 ∈ 𝐹) |
52 | 50, 51 | eqeltrd 2841 |
. . . . . 6
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) ∧ 𝑥 ⊆ 𝑦) → (𝑥 ∩ 𝑦) ∈ 𝐹) |
53 | | sseqin2 4155 |
. . . . . . . . 9
⊢ (𝑦 ⊆ 𝑥 ↔ (𝑥 ∩ 𝑦) = 𝑦) |
54 | 53 | biimpi 215 |
. . . . . . . 8
⊢ (𝑦 ⊆ 𝑥 → (𝑥 ∩ 𝑦) = 𝑦) |
55 | 54 | adantl 482 |
. . . . . . 7
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) ∧ 𝑦 ⊆ 𝑥) → (𝑥 ∩ 𝑦) = 𝑦) |
56 | | simplrr 775 |
. . . . . . 7
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ 𝐹) |
57 | 55, 56 | eqeltrd 2841 |
. . . . . 6
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) ∧ 𝑦 ⊆ 𝑥) → (𝑥 ∩ 𝑦) ∈ 𝐹) |
58 | | simplr 766 |
. . . . . . 7
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → 𝐷 ∈ (PsMet‘𝑋)) |
59 | | simprl 768 |
. . . . . . 7
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → 𝑥 ∈ 𝐹) |
60 | | simprr 770 |
. . . . . . 7
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → 𝑦 ∈ 𝐹) |
61 | 1 | metustto 23707 |
. . . . . . 7
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
62 | 58, 59, 60, 61 | syl3anc 1370 |
. . . . . 6
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
63 | 52, 57, 62 | mpjaodan 956 |
. . . . 5
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → (𝑥 ∩ 𝑦) ∈ 𝐹) |
64 | | ssidd 3949 |
. . . . 5
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → (𝑥 ∩ 𝑦) ⊆ (𝑥 ∩ 𝑦)) |
65 | | sseq1 3951 |
. . . . . 6
⊢ (𝑧 = (𝑥 ∩ 𝑦) → (𝑧 ⊆ (𝑥 ∩ 𝑦) ↔ (𝑥 ∩ 𝑦) ⊆ (𝑥 ∩ 𝑦))) |
66 | 65 | rspcev 3561 |
. . . . 5
⊢ (((𝑥 ∩ 𝑦) ∈ 𝐹 ∧ (𝑥 ∩ 𝑦) ⊆ (𝑥 ∩ 𝑦)) → ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦)) |
67 | 63, 64, 66 | syl2anc 584 |
. . . 4
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦)) |
68 | 67 | ralrimivva 3117 |
. . 3
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦)) |
69 | 31, 47, 68 | 3jca 1127 |
. 2
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦))) |
70 | | elfvex 6804 |
. . . . 5
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V) |
71 | 70 | adantl 482 |
. . . 4
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → 𝑋 ∈ V) |
72 | 71, 71 | xpexd 7595 |
. . 3
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑋 × 𝑋) ∈ V) |
73 | | isfbas2 22984 |
. . 3
⊢ ((𝑋 × 𝑋) ∈ V → (𝐹 ∈ (fBas‘(𝑋 × 𝑋)) ↔ (𝐹 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦))))) |
74 | 72, 73 | syl 17 |
. 2
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐹 ∈ (fBas‘(𝑋 × 𝑋)) ↔ (𝐹 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 ∃𝑧 ∈ 𝐹 𝑧 ⊆ (𝑥 ∩ 𝑦))))) |
75 | 16, 69, 74 | mpbir2and 710 |
1
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → 𝐹 ∈ (fBas‘(𝑋 × 𝑋))) |