MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiing Structured version   Visualization version   GIF version

Theorem nfiing 5008
Description: Bound-variable hypothesis builder for indexed intersection. Usage of this theorem is discouraged because it depends on ax-13 2375. See nfiin 5006 for a version with more disjoint variable conditions, but not requiring ax-13 2375. (Contributed by Mario Carneiro, 25-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfiung.1 𝑦𝐴
nfiung.2 𝑦𝐵
Assertion
Ref Expression
nfiing 𝑦 𝑥𝐴 𝐵

Proof of Theorem nfiing
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-iin 4976 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∀𝑥𝐴 𝑧𝐵}
2 nfiung.1 . . . 4 𝑦𝐴
3 nfiung.2 . . . . 5 𝑦𝐵
43nfcri 2889 . . . 4 𝑦 𝑧𝐵
52, 4nfral 3358 . . 3 𝑦𝑥𝐴 𝑧𝐵
65nfabg 2904 . 2 𝑦{𝑧 ∣ ∀𝑥𝐴 𝑧𝐵}
71, 6nfcxfr 2895 1 𝑦 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  {cab 2712  wnfc 2882  wral 3050   ciin 4974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-13 2375  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-iin 4976
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator