| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfiing | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for indexed intersection. Usage of this theorem is discouraged because it depends on ax-13 2375. See nfiin 5006 for a version with more disjoint variable conditions, but not requiring ax-13 2375. (Contributed by Mario Carneiro, 25-Jan-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfiung.1 | ⊢ Ⅎ𝑦𝐴 |
| nfiung.2 | ⊢ Ⅎ𝑦𝐵 |
| Ref | Expression |
|---|---|
| nfiing | ⊢ Ⅎ𝑦∩ 𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iin 4976 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
| 2 | nfiung.1 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
| 3 | nfiung.2 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
| 4 | 3 | nfcri 2889 | . . . 4 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
| 5 | 2, 4 | nfral 3358 | . . 3 ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 |
| 6 | 5 | nfabg 2904 | . 2 ⊢ Ⅎ𝑦{𝑧 ∣ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} |
| 7 | 1, 6 | nfcxfr 2895 | 1 ⊢ Ⅎ𝑦∩ 𝑥 ∈ 𝐴 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 {cab 2712 Ⅎwnfc 2882 ∀wral 3050 ∩ ciin 4974 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-13 2375 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-iin 4976 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |