| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfci | Structured version Visualization version GIF version | ||
| Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfci.1 | ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| Ref | Expression |
|---|---|
| nfci | ⊢ Ⅎ𝑥𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nfc 2891 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
| 2 | nfci.1 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 | |
| 3 | 1, 2 | mpgbir 1798 | 1 ⊢ Ⅎ𝑥𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1782 ∈ wcel 2107 Ⅎwnfc 2889 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 |
| This theorem depends on definitions: df-bi 207 df-nfc 2891 |
| This theorem is referenced by: nfcii 2893 nfcv 2904 nfab1 2906 nfab 2910 nfabg 2911 nfaba1 2912 nfdif 4128 nfun 4169 nfin 4223 nfiu1 5026 iinabrex 32583 fpwrelmap 32745 esumfzf 34071 fsumiunss 45595 climsuse 45628 climinff 45631 fnlimfvre 45694 limsupre3uzlem 45755 pimdecfgtioc 46735 pimincfltioc 46736 smfmullem4 46814 smflimsupmpt 46849 |
| Copyright terms: Public domain | W3C validator |