| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfci | Structured version Visualization version GIF version | ||
| Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfci.1 | ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| Ref | Expression |
|---|---|
| nfci | ⊢ Ⅎ𝑥𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nfc 2878 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
| 2 | nfci.1 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 | |
| 3 | 1, 2 | mpgbir 1799 | 1 ⊢ Ⅎ𝑥𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-nfc 2878 |
| This theorem is referenced by: nfcii 2880 nfcv 2891 nfab1 2893 nfab 2897 nfabg 2898 nfaba1 2899 nfdif 4092 nfun 4133 nfin 4187 nfiu1 4991 iinabrex 32498 fpwrelmap 32656 esumfzf 34059 fsumiunss 45573 climsuse 45606 climinff 45609 fnlimfvre 45672 limsupre3uzlem 45733 pimdecfgtioc 46713 pimincfltioc 46714 smfmullem4 46792 smflimsupmpt 46827 |
| Copyright terms: Public domain | W3C validator |