MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfci Structured version   Visualization version   GIF version

Theorem nfci 2889
Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfci.1 𝑥 𝑦𝐴
Assertion
Ref Expression
nfci 𝑥𝐴
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem nfci
StepHypRef Expression
1 df-nfc 2888 . 2 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
2 nfci.1 . 2 𝑥 𝑦𝐴
31, 2mpgbir 1803 1 𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  wnf 1787  wcel 2108  wnfc 2886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799
This theorem depends on definitions:  df-bi 206  df-nfc 2888
This theorem is referenced by:  nfcii  2890  nfcv  2906  nfab1  2908  nfab  2912  nfabg  2913  iinabrex  30809  fpwrelmap  30970  esumfzf  31937  fsumiunss  43006  climsuse  43039  climinff  43042  fnlimfvre  43105  limsupre3uzlem  43166  pimdecfgtioc  44139  pimincfltioc  44140  smfmullem4  44215  smflimsupmpt  44249
  Copyright terms: Public domain W3C validator