MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfci Structured version   Visualization version   GIF version

Theorem nfci 2887
Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfci.1 𝑥 𝑦𝐴
Assertion
Ref Expression
nfci 𝑥𝐴
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem nfci
StepHypRef Expression
1 df-nfc 2886 . 2 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
2 nfci.1 . 2 𝑥 𝑦𝐴
31, 2mpgbir 1802 1 𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  wnf 1786  wcel 2107  wnfc 2884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798
This theorem depends on definitions:  df-bi 206  df-nfc 2886
This theorem is referenced by:  nfcii  2888  nfcv  2904  nfab1  2906  nfab  2910  nfabg  2911  iinabrex  31800  fpwrelmap  31958  esumfzf  33067  fsumiunss  44291  climsuse  44324  climinff  44327  fnlimfvre  44390  limsupre3uzlem  44451  pimdecfgtioc  45431  pimincfltioc  45432  smfmullem4  45510  smflimsupmpt  45545
  Copyright terms: Public domain W3C validator