MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfci Structured version   Visualization version   GIF version

Theorem nfci 2891
Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfci.1 𝑥 𝑦𝐴
Assertion
Ref Expression
nfci 𝑥𝐴
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem nfci
StepHypRef Expression
1 df-nfc 2890 . 2 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
2 nfci.1 . 2 𝑥 𝑦𝐴
31, 2mpgbir 1796 1 𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  wnf 1780  wcel 2106  wnfc 2888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792
This theorem depends on definitions:  df-bi 207  df-nfc 2890
This theorem is referenced by:  nfcii  2892  nfcv  2903  nfab1  2905  nfab  2909  nfabg  2910  nfaba1  2911  nfdif  4139  nfun  4180  nfin  4232  nfiu1  5032  iinabrex  32589  fpwrelmap  32751  esumfzf  34050  fsumiunss  45531  climsuse  45564  climinff  45567  fnlimfvre  45630  limsupre3uzlem  45691  pimdecfgtioc  46671  pimincfltioc  46672  smfmullem4  46750  smflimsupmpt  46785
  Copyright terms: Public domain W3C validator