MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfci Structured version   Visualization version   GIF version

Theorem nfci 2882
Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfci.1 𝑥 𝑦𝐴
Assertion
Ref Expression
nfci 𝑥𝐴
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem nfci
StepHypRef Expression
1 df-nfc 2881 . 2 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
2 nfci.1 . 2 𝑥 𝑦𝐴
31, 2mpgbir 1800 1 𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  wnf 1784  wcel 2111  wnfc 2879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796
This theorem depends on definitions:  df-bi 207  df-nfc 2881
This theorem is referenced by:  nfcii  2883  nfcv  2894  nfab1  2896  nfab  2900  nfabg  2901  nfaba1  2902  nfdif  4079  nfun  4120  nfin  4174  nfiu1  4977  iinabrex  32547  fpwrelmap  32714  esumfzf  34080  fsumiunss  45621  climsuse  45654  climinff  45657  fnlimfvre  45718  limsupre3uzlem  45779  pimdecfgtioc  46759  pimincfltioc  46760  smfmullem4  46838  smflimsupmpt  46873
  Copyright terms: Public domain W3C validator