| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfci | Structured version Visualization version GIF version | ||
| Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfci.1 | ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| Ref | Expression |
|---|---|
| nfci | ⊢ Ⅎ𝑥𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nfc 2881 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
| 2 | nfci.1 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 | |
| 3 | 1, 2 | mpgbir 1800 | 1 ⊢ Ⅎ𝑥𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 |
| This theorem depends on definitions: df-bi 207 df-nfc 2881 |
| This theorem is referenced by: nfcii 2883 nfcv 2894 nfab1 2896 nfab 2900 nfabg 2901 nfaba1 2902 nfdif 4079 nfun 4120 nfin 4174 nfiu1 4977 iinabrex 32547 fpwrelmap 32714 esumfzf 34080 fsumiunss 45621 climsuse 45654 climinff 45657 fnlimfvre 45718 limsupre3uzlem 45779 pimdecfgtioc 46759 pimincfltioc 46760 smfmullem4 46838 smflimsupmpt 46873 |
| Copyright terms: Public domain | W3C validator |