Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfci | Structured version Visualization version GIF version |
Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfci.1 | ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
Ref | Expression |
---|---|
nfci | ⊢ Ⅎ𝑥𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nfc 2889 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
2 | nfci.1 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 | |
3 | 1, 2 | mpgbir 1802 | 1 ⊢ Ⅎ𝑥𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1786 ∈ wcel 2106 Ⅎwnfc 2887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 |
This theorem depends on definitions: df-bi 206 df-nfc 2889 |
This theorem is referenced by: nfcii 2891 nfcv 2907 nfab1 2909 nfab 2913 nfabg 2914 iinabrex 30908 fpwrelmap 31068 esumfzf 32037 fsumiunss 43116 climsuse 43149 climinff 43152 fnlimfvre 43215 limsupre3uzlem 43276 pimdecfgtioc 44252 pimincfltioc 44253 smfmullem4 44328 smflimsupmpt 44362 |
Copyright terms: Public domain | W3C validator |