![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfci | Structured version Visualization version GIF version |
Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfci.1 | ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
Ref | Expression |
---|---|
nfci | ⊢ Ⅎ𝑥𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nfc 2895 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
2 | nfci.1 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 | |
3 | 1, 2 | mpgbir 1797 | 1 ⊢ Ⅎ𝑥𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1781 ∈ wcel 2108 Ⅎwnfc 2893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 |
This theorem depends on definitions: df-bi 207 df-nfc 2895 |
This theorem is referenced by: nfcii 2897 nfcv 2908 nfab1 2910 nfab 2914 nfabg 2915 nfaba1 2916 nfdif 4152 nfun 4193 nfin 4245 nfiu1 5050 iinabrex 32591 fpwrelmap 32747 esumfzf 34033 fsumiunss 45496 climsuse 45529 climinff 45532 fnlimfvre 45595 limsupre3uzlem 45656 pimdecfgtioc 46636 pimincfltioc 46637 smfmullem4 46715 smflimsupmpt 46750 |
Copyright terms: Public domain | W3C validator |