MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfci Structured version   Visualization version   GIF version

Theorem nfci 2883
Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfci.1 𝑥 𝑦𝐴
Assertion
Ref Expression
nfci 𝑥𝐴
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem nfci
StepHypRef Expression
1 df-nfc 2882 . 2 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
2 nfci.1 . 2 𝑥 𝑦𝐴
31, 2mpgbir 1800 1 𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  wnf 1784  wcel 2113  wnfc 2880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796
This theorem depends on definitions:  df-bi 207  df-nfc 2882
This theorem is referenced by:  nfcii  2884  nfcv  2895  nfab1  2897  nfab  2901  nfabg  2902  nfaba1  2903  nfdif  4078  nfun  4119  nfin  4173  nfiu1  4979  iinabrex  32553  fpwrelmap  32722  esumfzf  34105  fsumiunss  45702  climsuse  45735  climinff  45738  fnlimfvre  45799  limsupre3uzlem  45860  pimdecfgtioc  46840  pimincfltioc  46841  smfmullem4  46919  smflimsupmpt  46954
  Copyright terms: Public domain W3C validator