MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfci Structured version   Visualization version   GIF version

Theorem nfci 2890
Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfci.1 𝑥 𝑦𝐴
Assertion
Ref Expression
nfci 𝑥𝐴
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem nfci
StepHypRef Expression
1 df-nfc 2889 . 2 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
2 nfci.1 . 2 𝑥 𝑦𝐴
31, 2mpgbir 1802 1 𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  wnf 1786  wcel 2106  wnfc 2887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798
This theorem depends on definitions:  df-bi 206  df-nfc 2889
This theorem is referenced by:  nfcii  2891  nfcv  2907  nfab1  2909  nfab  2913  nfabg  2914  iinabrex  30908  fpwrelmap  31068  esumfzf  32037  fsumiunss  43116  climsuse  43149  climinff  43152  fnlimfvre  43215  limsupre3uzlem  43276  pimdecfgtioc  44252  pimincfltioc  44253  smfmullem4  44328  smflimsupmpt  44362
  Copyright terms: Public domain W3C validator