MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfci Structured version   Visualization version   GIF version

Theorem nfci 2879
Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfci.1 𝑥 𝑦𝐴
Assertion
Ref Expression
nfci 𝑥𝐴
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem nfci
StepHypRef Expression
1 df-nfc 2878 . 2 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
2 nfci.1 . 2 𝑥 𝑦𝐴
31, 2mpgbir 1799 1 𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  wnf 1783  wcel 2109  wnfc 2876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795
This theorem depends on definitions:  df-bi 207  df-nfc 2878
This theorem is referenced by:  nfcii  2880  nfcv  2891  nfab1  2893  nfab  2897  nfabg  2898  nfaba1  2899  nfdif  4082  nfun  4123  nfin  4177  nfiu1  4980  iinabrex  32531  fpwrelmap  32689  esumfzf  34038  fsumiunss  45560  climsuse  45593  climinff  45596  fnlimfvre  45659  limsupre3uzlem  45720  pimdecfgtioc  46700  pimincfltioc  46701  smfmullem4  46779  smflimsupmpt  46814
  Copyright terms: Public domain W3C validator