| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfci | Structured version Visualization version GIF version | ||
| Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfci.1 | ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| Ref | Expression |
|---|---|
| nfci | ⊢ Ⅎ𝑥𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nfc 2878 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
| 2 | nfci.1 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 | |
| 3 | 1, 2 | mpgbir 1799 | 1 ⊢ Ⅎ𝑥𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-nfc 2878 |
| This theorem is referenced by: nfcii 2880 nfcv 2891 nfab1 2893 nfab 2897 nfabg 2898 nfaba1 2899 nfdif 4082 nfun 4123 nfin 4177 nfiu1 4980 iinabrex 32531 fpwrelmap 32689 esumfzf 34038 fsumiunss 45560 climsuse 45593 climinff 45596 fnlimfvre 45659 limsupre3uzlem 45720 pimdecfgtioc 46700 pimincfltioc 46701 smfmullem4 46779 smflimsupmpt 46814 |
| Copyright terms: Public domain | W3C validator |