![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfci | Structured version Visualization version GIF version |
Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfci.1 | ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
Ref | Expression |
---|---|
nfci | ⊢ Ⅎ𝑥𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nfc 2890 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
2 | nfci.1 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 | |
3 | 1, 2 | mpgbir 1796 | 1 ⊢ Ⅎ𝑥𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1780 ∈ wcel 2106 Ⅎwnfc 2888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 |
This theorem depends on definitions: df-bi 207 df-nfc 2890 |
This theorem is referenced by: nfcii 2892 nfcv 2903 nfab1 2905 nfab 2909 nfabg 2910 nfaba1 2911 nfdif 4139 nfun 4180 nfin 4232 nfiu1 5032 iinabrex 32589 fpwrelmap 32751 esumfzf 34050 fsumiunss 45531 climsuse 45564 climinff 45567 fnlimfvre 45630 limsupre3uzlem 45691 pimdecfgtioc 46671 pimincfltioc 46672 smfmullem4 46750 smflimsupmpt 46785 |
Copyright terms: Public domain | W3C validator |