| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfci | Structured version Visualization version GIF version | ||
| Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfci.1 | ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| Ref | Expression |
|---|---|
| nfci | ⊢ Ⅎ𝑥𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nfc 2886 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
| 2 | nfci.1 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 | |
| 3 | 1, 2 | mpgbir 1799 | 1 ⊢ Ⅎ𝑥𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-nfc 2886 |
| This theorem is referenced by: nfcii 2888 nfcv 2899 nfab1 2901 nfab 2905 nfabg 2906 nfaba1 2907 nfdif 4109 nfun 4150 nfin 4204 nfiu1 5008 iinabrex 32555 fpwrelmap 32715 esumfzf 34105 fsumiunss 45571 climsuse 45604 climinff 45607 fnlimfvre 45670 limsupre3uzlem 45731 pimdecfgtioc 46711 pimincfltioc 46712 smfmullem4 46790 smflimsupmpt 46825 |
| Copyright terms: Public domain | W3C validator |