| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfci | Structured version Visualization version GIF version | ||
| Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfci.1 | ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| Ref | Expression |
|---|---|
| nfci | ⊢ Ⅎ𝑥𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nfc 2882 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
| 2 | nfci.1 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 | |
| 3 | 1, 2 | mpgbir 1800 | 1 ⊢ Ⅎ𝑥𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1784 ∈ wcel 2113 Ⅎwnfc 2880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 |
| This theorem depends on definitions: df-bi 207 df-nfc 2882 |
| This theorem is referenced by: nfcii 2884 nfcv 2895 nfab1 2897 nfab 2901 nfabg 2902 nfaba1 2903 nfdif 4078 nfun 4119 nfin 4173 nfiu1 4979 iinabrex 32553 fpwrelmap 32722 esumfzf 34105 fsumiunss 45702 climsuse 45735 climinff 45738 fnlimfvre 45799 limsupre3uzlem 45860 pimdecfgtioc 46840 pimincfltioc 46841 smfmullem4 46919 smflimsupmpt 46954 |
| Copyright terms: Public domain | W3C validator |