MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfci Structured version   Visualization version   GIF version

Theorem nfci 2896
Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfci.1 𝑥 𝑦𝐴
Assertion
Ref Expression
nfci 𝑥𝐴
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem nfci
StepHypRef Expression
1 df-nfc 2895 . 2 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
2 nfci.1 . 2 𝑥 𝑦𝐴
31, 2mpgbir 1797 1 𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  wnf 1781  wcel 2108  wnfc 2893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793
This theorem depends on definitions:  df-bi 207  df-nfc 2895
This theorem is referenced by:  nfcii  2897  nfcv  2908  nfab1  2910  nfab  2914  nfabg  2915  nfaba1  2916  nfdif  4152  nfun  4193  nfin  4245  nfiu1  5050  iinabrex  32591  fpwrelmap  32747  esumfzf  34033  fsumiunss  45496  climsuse  45529  climinff  45532  fnlimfvre  45595  limsupre3uzlem  45656  pimdecfgtioc  46636  pimincfltioc  46637  smfmullem4  46715  smflimsupmpt  46750
  Copyright terms: Public domain W3C validator