![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfci | Structured version Visualization version GIF version |
Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfci.1 | ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
Ref | Expression |
---|---|
nfci | ⊢ Ⅎ𝑥𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nfc 2920 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
2 | nfci.1 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 | |
3 | 1, 2 | mpgbir 1843 | 1 ⊢ Ⅎ𝑥𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1827 ∈ wcel 2106 Ⅎwnfc 2918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 |
This theorem depends on definitions: df-bi 199 df-nfc 2920 |
This theorem is referenced by: nfcii 2922 nfcv 2933 nfab1 2935 nfab 2939 fpwrelmap 30074 esumfzf 30729 bj-nfab1 33362 fsumiunss 40708 climsuse 40741 climinff 40744 fnlimfvre 40807 limsupre3uzlem 40868 pimdecfgtioc 41845 pimincfltioc 41846 smfmullem4 41921 smflimsupmpt 41955 |
Copyright terms: Public domain | W3C validator |