MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfci Structured version   Visualization version   GIF version

Theorem nfci 2892
Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfci.1 𝑥 𝑦𝐴
Assertion
Ref Expression
nfci 𝑥𝐴
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem nfci
StepHypRef Expression
1 df-nfc 2891 . 2 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
2 nfci.1 . 2 𝑥 𝑦𝐴
31, 2mpgbir 1798 1 𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  wnf 1782  wcel 2107  wnfc 2889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794
This theorem depends on definitions:  df-bi 207  df-nfc 2891
This theorem is referenced by:  nfcii  2893  nfcv  2904  nfab1  2906  nfab  2910  nfabg  2911  nfaba1  2912  nfdif  4128  nfun  4169  nfin  4223  nfiu1  5026  iinabrex  32583  fpwrelmap  32745  esumfzf  34071  fsumiunss  45595  climsuse  45628  climinff  45631  fnlimfvre  45694  limsupre3uzlem  45755  pimdecfgtioc  46735  pimincfltioc  46736  smfmullem4  46814  smflimsupmpt  46849
  Copyright terms: Public domain W3C validator