MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfci Structured version   Visualization version   GIF version

Theorem nfci 2887
Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfci.1 𝑥 𝑦𝐴
Assertion
Ref Expression
nfci 𝑥𝐴
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem nfci
StepHypRef Expression
1 df-nfc 2886 . 2 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
2 nfci.1 . 2 𝑥 𝑦𝐴
31, 2mpgbir 1799 1 𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  wnf 1783  wcel 2109  wnfc 2884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795
This theorem depends on definitions:  df-bi 207  df-nfc 2886
This theorem is referenced by:  nfcii  2888  nfcv  2899  nfab1  2901  nfab  2905  nfabg  2906  nfaba1  2907  nfdif  4109  nfun  4150  nfin  4204  nfiu1  5008  iinabrex  32555  fpwrelmap  32715  esumfzf  34105  fsumiunss  45571  climsuse  45604  climinff  45607  fnlimfvre  45670  limsupre3uzlem  45731  pimdecfgtioc  46711  pimincfltioc  46712  smfmullem4  46790  smflimsupmpt  46825
  Copyright terms: Public domain W3C validator