Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eldifi | Structured version Visualization version GIF version |
Description: Implication of membership in a class difference. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
eldifi | ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3893 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ 𝐵) |
Copyright terms: Public domain | W3C validator |