Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfmpo | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.) |
Ref | Expression |
---|---|
nfmpo.1 | ⊢ Ⅎ𝑧𝐴 |
nfmpo.2 | ⊢ Ⅎ𝑧𝐵 |
nfmpo.3 | ⊢ Ⅎ𝑧𝐶 |
Ref | Expression |
---|---|
nfmpo | ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpo 7260 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑤〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐶)} | |
2 | nfmpo.1 | . . . . . 6 ⊢ Ⅎ𝑧𝐴 | |
3 | 2 | nfcri 2893 | . . . . 5 ⊢ Ⅎ𝑧 𝑥 ∈ 𝐴 |
4 | nfmpo.2 | . . . . . 6 ⊢ Ⅎ𝑧𝐵 | |
5 | 4 | nfcri 2893 | . . . . 5 ⊢ Ⅎ𝑧 𝑦 ∈ 𝐵 |
6 | 3, 5 | nfan 1903 | . . . 4 ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
7 | nfmpo.3 | . . . . 5 ⊢ Ⅎ𝑧𝐶 | |
8 | 7 | nfeq2 2923 | . . . 4 ⊢ Ⅎ𝑧 𝑤 = 𝐶 |
9 | 6, 8 | nfan 1903 | . . 3 ⊢ Ⅎ𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐶) |
10 | 9 | nfoprab 7317 | . 2 ⊢ Ⅎ𝑧{〈〈𝑥, 𝑦〉, 𝑤〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐶)} |
11 | 1, 10 | nfcxfr 2904 | 1 ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 Ⅎwnfc 2886 {coprab 7256 ∈ cmpo 7257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-oprab 7259 df-mpo 7260 |
This theorem is referenced by: nfof 7517 el2mpocsbcl 7896 nfseq 13659 ptbasfi 22640 sdclem1 35828 fmuldfeqlem1 43013 stoweidlem51 43482 vonicc 44113 |
Copyright terms: Public domain | W3C validator |