MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfmpo Structured version   Visualization version   GIF version

Theorem nfmpo 7335
Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.)
Hypotheses
Ref Expression
nfmpo.1 𝑧𝐴
nfmpo.2 𝑧𝐵
nfmpo.3 𝑧𝐶
Assertion
Ref Expression
nfmpo 𝑧(𝑥𝐴, 𝑦𝐵𝐶)
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧)

Proof of Theorem nfmpo
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-mpo 7260 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)}
2 nfmpo.1 . . . . . 6 𝑧𝐴
32nfcri 2893 . . . . 5 𝑧 𝑥𝐴
4 nfmpo.2 . . . . . 6 𝑧𝐵
54nfcri 2893 . . . . 5 𝑧 𝑦𝐵
63, 5nfan 1903 . . . 4 𝑧(𝑥𝐴𝑦𝐵)
7 nfmpo.3 . . . . 5 𝑧𝐶
87nfeq2 2923 . . . 4 𝑧 𝑤 = 𝐶
96, 8nfan 1903 . . 3 𝑧((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)
109nfoprab 7317 . 2 𝑧{⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)}
111, 10nfcxfr 2904 1 𝑧(𝑥𝐴, 𝑦𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  wnfc 2886  {coprab 7256  cmpo 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-oprab 7259  df-mpo 7260
This theorem is referenced by:  nfof  7517  el2mpocsbcl  7896  nfseq  13659  ptbasfi  22640  sdclem1  35828  fmuldfeqlem1  43013  stoweidlem51  43482  vonicc  44113
  Copyright terms: Public domain W3C validator