Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfmpo | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.) |
Ref | Expression |
---|---|
nfmpo.1 | ⊢ Ⅎ𝑧𝐴 |
nfmpo.2 | ⊢ Ⅎ𝑧𝐵 |
nfmpo.3 | ⊢ Ⅎ𝑧𝐶 |
Ref | Expression |
---|---|
nfmpo | ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpo 7280 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑤〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐶)} | |
2 | nfmpo.1 | . . . . . 6 ⊢ Ⅎ𝑧𝐴 | |
3 | 2 | nfcri 2894 | . . . . 5 ⊢ Ⅎ𝑧 𝑥 ∈ 𝐴 |
4 | nfmpo.2 | . . . . . 6 ⊢ Ⅎ𝑧𝐵 | |
5 | 4 | nfcri 2894 | . . . . 5 ⊢ Ⅎ𝑧 𝑦 ∈ 𝐵 |
6 | 3, 5 | nfan 1902 | . . . 4 ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
7 | nfmpo.3 | . . . . 5 ⊢ Ⅎ𝑧𝐶 | |
8 | 7 | nfeq2 2924 | . . . 4 ⊢ Ⅎ𝑧 𝑤 = 𝐶 |
9 | 6, 8 | nfan 1902 | . . 3 ⊢ Ⅎ𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐶) |
10 | 9 | nfoprab 7339 | . 2 ⊢ Ⅎ𝑧{〈〈𝑥, 𝑦〉, 𝑤〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐶)} |
11 | 1, 10 | nfcxfr 2905 | 1 ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∈ wcel 2106 Ⅎwnfc 2887 {coprab 7276 ∈ cmpo 7277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-oprab 7279 df-mpo 7280 |
This theorem is referenced by: nfof 7539 el2mpocsbcl 7925 nfseq 13731 ptbasfi 22732 sdclem1 35901 fmuldfeqlem1 43123 stoweidlem51 43592 vonicc 44223 |
Copyright terms: Public domain | W3C validator |