| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfmpo | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.) |
| Ref | Expression |
|---|---|
| nfmpo.1 | ⊢ Ⅎ𝑧𝐴 |
| nfmpo.2 | ⊢ Ⅎ𝑧𝐵 |
| nfmpo.3 | ⊢ Ⅎ𝑧𝐶 |
| Ref | Expression |
|---|---|
| nfmpo | ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpo 7410 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑤〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐶)} | |
| 2 | nfmpo.1 | . . . . . 6 ⊢ Ⅎ𝑧𝐴 | |
| 3 | 2 | nfcri 2890 | . . . . 5 ⊢ Ⅎ𝑧 𝑥 ∈ 𝐴 |
| 4 | nfmpo.2 | . . . . . 6 ⊢ Ⅎ𝑧𝐵 | |
| 5 | 4 | nfcri 2890 | . . . . 5 ⊢ Ⅎ𝑧 𝑦 ∈ 𝐵 |
| 6 | 3, 5 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
| 7 | nfmpo.3 | . . . . 5 ⊢ Ⅎ𝑧𝐶 | |
| 8 | 7 | nfeq2 2916 | . . . 4 ⊢ Ⅎ𝑧 𝑤 = 𝐶 |
| 9 | 6, 8 | nfan 1899 | . . 3 ⊢ Ⅎ𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐶) |
| 10 | 9 | nfoprab 7471 | . 2 ⊢ Ⅎ𝑧{〈〈𝑥, 𝑦〉, 𝑤〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐶)} |
| 11 | 1, 10 | nfcxfr 2896 | 1 ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 Ⅎwnfc 2883 {coprab 7406 ∈ cmpo 7407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-oprab 7409 df-mpo 7410 |
| This theorem is referenced by: nfof 7677 el2mpocsbcl 8084 nfseq 14029 ptbasfi 23519 nfseqs 28233 sdclem1 37767 fmuldfeqlem1 45611 stoweidlem51 46080 vonicc 46714 |
| Copyright terms: Public domain | W3C validator |