| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfoprab3 | Structured version Visualization version GIF version | ||
| Description: The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 22-Aug-2013.) |
| Ref | Expression |
|---|---|
| nfoprab3 | ⊢ Ⅎ𝑧{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-oprab 7435 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} | |
| 2 | nfe1 2150 | . . . . 5 ⊢ Ⅎ𝑧∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) | |
| 3 | 2 | nfex 2324 | . . . 4 ⊢ Ⅎ𝑧∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
| 4 | 3 | nfex 2324 | . . 3 ⊢ Ⅎ𝑧∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
| 5 | 4 | nfab 2911 | . 2 ⊢ Ⅎ𝑧{𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
| 6 | 1, 5 | nfcxfr 2903 | 1 ⊢ Ⅎ𝑧{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 {cab 2714 Ⅎwnfc 2890 〈cop 4632 {coprab 7432 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-oprab 7435 |
| This theorem is referenced by: ssoprab2b 7502 eqoprab2bw 7503 ov3 7596 tposoprab 8287 |
| Copyright terms: Public domain | W3C validator |