MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfoprab3 Structured version   Visualization version   GIF version

Theorem nfoprab3 7316
Description: The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 22-Aug-2013.)
Assertion
Ref Expression
nfoprab3 𝑧{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}

Proof of Theorem nfoprab3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-oprab 7259 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
2 nfe1 2149 . . . . 5 𝑧𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
32nfex 2322 . . . 4 𝑧𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
43nfex 2322 . . 3 𝑧𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
54nfab 2912 . 2 𝑧{𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
61, 5nfcxfr 2904 1 𝑧{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wex 1783  {cab 2715  wnfc 2886  cop 4564  {coprab 7256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-oprab 7259
This theorem is referenced by:  ssoprab2b  7322  eqoprab2bw  7323  ov3  7413  tposoprab  8049
  Copyright terms: Public domain W3C validator