MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmcvfval Structured version   Visualization version   GIF version

Theorem nmcvfval 30579
Description: Value of the norm function in a normed complex vector space. (Contributed by NM, 25-Apr-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmfval.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nmcvfval 𝑁 = (2nd𝑈)

Proof of Theorem nmcvfval
StepHypRef Expression
1 nmfval.6 . 2 𝑁 = (normCV𝑈)
2 df-nmcv 30572 . . 3 normCV = 2nd
32fveq1i 6818 . 2 (normCV𝑈) = (2nd𝑈)
41, 3eqtri 2754 1 𝑁 = (2nd𝑈)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cfv 6476  2nd c2nd 7915  normCVcnmcv 30562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-ss 3914  df-uni 4855  df-br 5087  df-iota 6432  df-fv 6484  df-nmcv 30572
This theorem is referenced by:  nvop2  30580  nvop  30648  cnnvnm  30653  phop  30790  h2hnm  30948  hhssnm  31231
  Copyright terms: Public domain W3C validator