MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmcvfval Structured version   Visualization version   GIF version

Theorem nmcvfval 30593
Description: Value of the norm function in a normed complex vector space. (Contributed by NM, 25-Apr-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmfval.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nmcvfval 𝑁 = (2nd𝑈)

Proof of Theorem nmcvfval
StepHypRef Expression
1 nmfval.6 . 2 𝑁 = (normCV𝑈)
2 df-nmcv 30586 . . 3 normCV = 2nd
32fveq1i 6882 . 2 (normCV𝑈) = (2nd𝑈)
41, 3eqtri 2759 1 𝑁 = (2nd𝑈)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cfv 6536  2nd c2nd 7992  normCVcnmcv 30576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-ss 3948  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544  df-nmcv 30586
This theorem is referenced by:  nvop2  30594  nvop  30662  cnnvnm  30667  phop  30804  h2hnm  30962  hhssnm  31245
  Copyright terms: Public domain W3C validator