MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmcvfval Structured version   Visualization version   GIF version

Theorem nmcvfval 30636
Description: Value of the norm function in a normed complex vector space. (Contributed by NM, 25-Apr-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmfval.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nmcvfval 𝑁 = (2nd𝑈)

Proof of Theorem nmcvfval
StepHypRef Expression
1 nmfval.6 . 2 𝑁 = (normCV𝑈)
2 df-nmcv 30629 . . 3 normCV = 2nd
32fveq1i 6908 . 2 (normCV𝑈) = (2nd𝑈)
41, 3eqtri 2763 1 𝑁 = (2nd𝑈)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cfv 6563  2nd c2nd 8012  normCVcnmcv 30619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-ss 3980  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-nmcv 30629
This theorem is referenced by:  nvop2  30637  nvop  30705  cnnvnm  30710  phop  30847  h2hnm  31005  hhssnm  31288
  Copyright terms: Public domain W3C validator