MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmcvfval Structured version   Visualization version   GIF version

Theorem nmcvfval 30128
Description: Value of the norm function in a normed complex vector space. (Contributed by NM, 25-Apr-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmfval.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nmcvfval 𝑁 = (2nd𝑈)

Proof of Theorem nmcvfval
StepHypRef Expression
1 nmfval.6 . 2 𝑁 = (normCV𝑈)
2 df-nmcv 30121 . . 3 normCV = 2nd
32fveq1i 6892 . 2 (normCV𝑈) = (2nd𝑈)
41, 3eqtri 2759 1 𝑁 = (2nd𝑈)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cfv 6543  2nd c2nd 7978  normCVcnmcv 30111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-in 3955  df-ss 3965  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-nmcv 30121
This theorem is referenced by:  nvop2  30129  nvop  30197  cnnvnm  30202  phop  30339  h2hnm  30497  hhssnm  30780
  Copyright terms: Public domain W3C validator