MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmcvfval Structured version   Visualization version   GIF version

Theorem nmcvfval 28948
Description: Value of the norm function in a normed complex vector space. (Contributed by NM, 25-Apr-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmfval.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nmcvfval 𝑁 = (2nd𝑈)

Proof of Theorem nmcvfval
StepHypRef Expression
1 nmfval.6 . 2 𝑁 = (normCV𝑈)
2 df-nmcv 28941 . . 3 normCV = 2nd
32fveq1i 6769 . 2 (normCV𝑈) = (2nd𝑈)
41, 3eqtri 2767 1 𝑁 = (2nd𝑈)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cfv 6430  2nd c2nd 7816  normCVcnmcv 28931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3432  df-in 3898  df-ss 3908  df-uni 4845  df-br 5079  df-iota 6388  df-fv 6438  df-nmcv 28941
This theorem is referenced by:  nvop2  28949  nvop  29017  cnnvnm  29022  phop  29159  h2hnm  29317  hhssnm  29600
  Copyright terms: Public domain W3C validator