MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phop Structured version   Visualization version   GIF version

Theorem phop 30850
Description: A complex inner product space in terms of ordered pair components. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
phop.2 𝐺 = ( +𝑣𝑈)
phop.4 𝑆 = ( ·𝑠OLD𝑈)
phop.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
phop (𝑈 ∈ CPreHilOLD𝑈 = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)

Proof of Theorem phop
StepHypRef Expression
1 phrel 30847 . . 3 Rel CPreHilOLD
2 1st2nd 8080 . . 3 ((Rel CPreHilOLD𝑈 ∈ CPreHilOLD) → 𝑈 = ⟨(1st𝑈), (2nd𝑈)⟩)
31, 2mpan 689 . 2 (𝑈 ∈ CPreHilOLD𝑈 = ⟨(1st𝑈), (2nd𝑈)⟩)
4 phop.6 . . . . 5 𝑁 = (normCV𝑈)
54nmcvfval 30639 . . . 4 𝑁 = (2nd𝑈)
65opeq2i 4901 . . 3 ⟨(1st𝑈), 𝑁⟩ = ⟨(1st𝑈), (2nd𝑈)⟩
7 phnv 30846 . . . . 5 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
8 eqid 2740 . . . . . 6 (1st𝑈) = (1st𝑈)
98nvvc 30647 . . . . 5 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
10 vcrel 30592 . . . . . . 7 Rel CVecOLD
11 1st2nd 8080 . . . . . . 7 ((Rel CVecOLD ∧ (1st𝑈) ∈ CVecOLD) → (1st𝑈) = ⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩)
1210, 11mpan 689 . . . . . 6 ((1st𝑈) ∈ CVecOLD → (1st𝑈) = ⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩)
13 phop.2 . . . . . . . 8 𝐺 = ( +𝑣𝑈)
1413vafval 30635 . . . . . . 7 𝐺 = (1st ‘(1st𝑈))
15 phop.4 . . . . . . . 8 𝑆 = ( ·𝑠OLD𝑈)
1615smfval 30637 . . . . . . 7 𝑆 = (2nd ‘(1st𝑈))
1714, 16opeq12i 4902 . . . . . 6 𝐺, 𝑆⟩ = ⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩
1812, 17eqtr4di 2798 . . . . 5 ((1st𝑈) ∈ CVecOLD → (1st𝑈) = ⟨𝐺, 𝑆⟩)
197, 9, 183syl 18 . . . 4 (𝑈 ∈ CPreHilOLD → (1st𝑈) = ⟨𝐺, 𝑆⟩)
2019opeq1d 4903 . . 3 (𝑈 ∈ CPreHilOLD → ⟨(1st𝑈), 𝑁⟩ = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)
216, 20eqtr3id 2794 . 2 (𝑈 ∈ CPreHilOLD → ⟨(1st𝑈), (2nd𝑈)⟩ = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)
223, 21eqtrd 2780 1 (𝑈 ∈ CPreHilOLD𝑈 = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cop 4654  Rel wrel 5705  cfv 6573  1st c1st 8028  2nd c2nd 8029  CVecOLDcvc 30590  NrmCVeccnv 30616   +𝑣 cpv 30617   ·𝑠OLD cns 30619  normCVcnmcv 30622  CPreHilOLDccphlo 30844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-1st 8030  df-2nd 8031  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-nmcv 30632  df-ph 30845
This theorem is referenced by:  phpar  30856
  Copyright terms: Public domain W3C validator