| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phop | Structured version Visualization version GIF version | ||
| Description: A complex inner product space in terms of ordered pair components. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| phop.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| phop.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| phop.6 | ⊢ 𝑁 = (normCV‘𝑈) |
| Ref | Expression |
|---|---|
| phop | ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phrel 30759 | . . 3 ⊢ Rel CPreHilOLD | |
| 2 | 1st2nd 7974 | . . 3 ⊢ ((Rel CPreHilOLD ∧ 𝑈 ∈ CPreHilOLD) → 𝑈 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉) |
| 4 | phop.6 | . . . . 5 ⊢ 𝑁 = (normCV‘𝑈) | |
| 5 | 4 | nmcvfval 30551 | . . . 4 ⊢ 𝑁 = (2nd ‘𝑈) |
| 6 | 5 | opeq2i 4828 | . . 3 ⊢ 〈(1st ‘𝑈), 𝑁〉 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉 |
| 7 | phnv 30758 | . . . . 5 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
| 8 | eqid 2729 | . . . . . 6 ⊢ (1st ‘𝑈) = (1st ‘𝑈) | |
| 9 | 8 | nvvc 30559 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → (1st ‘𝑈) ∈ CVecOLD) |
| 10 | vcrel 30504 | . . . . . . 7 ⊢ Rel CVecOLD | |
| 11 | 1st2nd 7974 | . . . . . . 7 ⊢ ((Rel CVecOLD ∧ (1st ‘𝑈) ∈ CVecOLD) → (1st ‘𝑈) = 〈(1st ‘(1st ‘𝑈)), (2nd ‘(1st ‘𝑈))〉) | |
| 12 | 10, 11 | mpan 690 | . . . . . 6 ⊢ ((1st ‘𝑈) ∈ CVecOLD → (1st ‘𝑈) = 〈(1st ‘(1st ‘𝑈)), (2nd ‘(1st ‘𝑈))〉) |
| 13 | phop.2 | . . . . . . . 8 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 14 | 13 | vafval 30547 | . . . . . . 7 ⊢ 𝐺 = (1st ‘(1st ‘𝑈)) |
| 15 | phop.4 | . . . . . . . 8 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 16 | 15 | smfval 30549 | . . . . . . 7 ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) |
| 17 | 14, 16 | opeq12i 4829 | . . . . . 6 ⊢ 〈𝐺, 𝑆〉 = 〈(1st ‘(1st ‘𝑈)), (2nd ‘(1st ‘𝑈))〉 |
| 18 | 12, 17 | eqtr4di 2782 | . . . . 5 ⊢ ((1st ‘𝑈) ∈ CVecOLD → (1st ‘𝑈) = 〈𝐺, 𝑆〉) |
| 19 | 7, 9, 18 | 3syl 18 | . . . 4 ⊢ (𝑈 ∈ CPreHilOLD → (1st ‘𝑈) = 〈𝐺, 𝑆〉) |
| 20 | 19 | opeq1d 4830 | . . 3 ⊢ (𝑈 ∈ CPreHilOLD → 〈(1st ‘𝑈), 𝑁〉 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
| 21 | 6, 20 | eqtr3id 2778 | . 2 ⊢ (𝑈 ∈ CPreHilOLD → 〈(1st ‘𝑈), (2nd ‘𝑈)〉 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
| 22 | 3, 21 | eqtrd 2764 | 1 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4583 Rel wrel 5624 ‘cfv 6482 1st c1st 7922 2nd c2nd 7923 CVecOLDcvc 30502 NrmCVeccnv 30528 +𝑣 cpv 30529 ·𝑠OLD cns 30531 normCVcnmcv 30534 CPreHilOLDccphlo 30756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-1st 7924 df-2nd 7925 df-vc 30503 df-nv 30536 df-va 30539 df-ba 30540 df-sm 30541 df-0v 30542 df-nmcv 30544 df-ph 30757 |
| This theorem is referenced by: phpar 30768 |
| Copyright terms: Public domain | W3C validator |