MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phop Structured version   Visualization version   GIF version

Theorem phop 30066
Description: A complex inner product space in terms of ordered pair components. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
phop.2 ๐บ = ( +๐‘ฃ โ€˜๐‘ˆ)
phop.4 ๐‘† = ( ยท๐‘ OLD โ€˜๐‘ˆ)
phop.6 ๐‘ = (normCVโ€˜๐‘ˆ)
Assertion
Ref Expression
phop (๐‘ˆ โˆˆ CPreHilOLD โ†’ ๐‘ˆ = โŸจโŸจ๐บ, ๐‘†โŸฉ, ๐‘โŸฉ)

Proof of Theorem phop
StepHypRef Expression
1 phrel 30063 . . 3 Rel CPreHilOLD
2 1st2nd 8024 . . 3 ((Rel CPreHilOLD โˆง ๐‘ˆ โˆˆ CPreHilOLD) โ†’ ๐‘ˆ = โŸจ(1st โ€˜๐‘ˆ), (2nd โ€˜๐‘ˆ)โŸฉ)
31, 2mpan 688 . 2 (๐‘ˆ โˆˆ CPreHilOLD โ†’ ๐‘ˆ = โŸจ(1st โ€˜๐‘ˆ), (2nd โ€˜๐‘ˆ)โŸฉ)
4 phop.6 . . . . 5 ๐‘ = (normCVโ€˜๐‘ˆ)
54nmcvfval 29855 . . . 4 ๐‘ = (2nd โ€˜๐‘ˆ)
65opeq2i 4877 . . 3 โŸจ(1st โ€˜๐‘ˆ), ๐‘โŸฉ = โŸจ(1st โ€˜๐‘ˆ), (2nd โ€˜๐‘ˆ)โŸฉ
7 phnv 30062 . . . . 5 (๐‘ˆ โˆˆ CPreHilOLD โ†’ ๐‘ˆ โˆˆ NrmCVec)
8 eqid 2732 . . . . . 6 (1st โ€˜๐‘ˆ) = (1st โ€˜๐‘ˆ)
98nvvc 29863 . . . . 5 (๐‘ˆ โˆˆ NrmCVec โ†’ (1st โ€˜๐‘ˆ) โˆˆ CVecOLD)
10 vcrel 29808 . . . . . . 7 Rel CVecOLD
11 1st2nd 8024 . . . . . . 7 ((Rel CVecOLD โˆง (1st โ€˜๐‘ˆ) โˆˆ CVecOLD) โ†’ (1st โ€˜๐‘ˆ) = โŸจ(1st โ€˜(1st โ€˜๐‘ˆ)), (2nd โ€˜(1st โ€˜๐‘ˆ))โŸฉ)
1210, 11mpan 688 . . . . . 6 ((1st โ€˜๐‘ˆ) โˆˆ CVecOLD โ†’ (1st โ€˜๐‘ˆ) = โŸจ(1st โ€˜(1st โ€˜๐‘ˆ)), (2nd โ€˜(1st โ€˜๐‘ˆ))โŸฉ)
13 phop.2 . . . . . . . 8 ๐บ = ( +๐‘ฃ โ€˜๐‘ˆ)
1413vafval 29851 . . . . . . 7 ๐บ = (1st โ€˜(1st โ€˜๐‘ˆ))
15 phop.4 . . . . . . . 8 ๐‘† = ( ยท๐‘ OLD โ€˜๐‘ˆ)
1615smfval 29853 . . . . . . 7 ๐‘† = (2nd โ€˜(1st โ€˜๐‘ˆ))
1714, 16opeq12i 4878 . . . . . 6 โŸจ๐บ, ๐‘†โŸฉ = โŸจ(1st โ€˜(1st โ€˜๐‘ˆ)), (2nd โ€˜(1st โ€˜๐‘ˆ))โŸฉ
1812, 17eqtr4di 2790 . . . . 5 ((1st โ€˜๐‘ˆ) โˆˆ CVecOLD โ†’ (1st โ€˜๐‘ˆ) = โŸจ๐บ, ๐‘†โŸฉ)
197, 9, 183syl 18 . . . 4 (๐‘ˆ โˆˆ CPreHilOLD โ†’ (1st โ€˜๐‘ˆ) = โŸจ๐บ, ๐‘†โŸฉ)
2019opeq1d 4879 . . 3 (๐‘ˆ โˆˆ CPreHilOLD โ†’ โŸจ(1st โ€˜๐‘ˆ), ๐‘โŸฉ = โŸจโŸจ๐บ, ๐‘†โŸฉ, ๐‘โŸฉ)
216, 20eqtr3id 2786 . 2 (๐‘ˆ โˆˆ CPreHilOLD โ†’ โŸจ(1st โ€˜๐‘ˆ), (2nd โ€˜๐‘ˆ)โŸฉ = โŸจโŸจ๐บ, ๐‘†โŸฉ, ๐‘โŸฉ)
223, 21eqtrd 2772 1 (๐‘ˆ โˆˆ CPreHilOLD โ†’ ๐‘ˆ = โŸจโŸจ๐บ, ๐‘†โŸฉ, ๐‘โŸฉ)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   = wceq 1541   โˆˆ wcel 2106  โŸจcop 4634  Rel wrel 5681  โ€˜cfv 6543  1st c1st 7972  2nd c2nd 7973  CVecOLDcvc 29806  NrmCVeccnv 29832   +๐‘ฃ cpv 29833   ยท๐‘ OLD cns 29835  normCVcnmcv 29838  CPreHilOLDccphlo 30060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-1st 7974  df-2nd 7975  df-vc 29807  df-nv 29840  df-va 29843  df-ba 29844  df-sm 29845  df-0v 29846  df-nmcv 29848  df-ph 30061
This theorem is referenced by:  phpar  30072
  Copyright terms: Public domain W3C validator