Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > phop | Structured version Visualization version GIF version |
Description: A complex inner product space in terms of ordered pair components. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
phop.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
phop.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
phop.6 | ⊢ 𝑁 = (normCV‘𝑈) |
Ref | Expression |
---|---|
phop | ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phrel 29177 | . . 3 ⊢ Rel CPreHilOLD | |
2 | 1st2nd 7880 | . . 3 ⊢ ((Rel CPreHilOLD ∧ 𝑈 ∈ CPreHilOLD) → 𝑈 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉) | |
3 | 1, 2 | mpan 687 | . 2 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉) |
4 | phop.6 | . . . . 5 ⊢ 𝑁 = (normCV‘𝑈) | |
5 | 4 | nmcvfval 28969 | . . . 4 ⊢ 𝑁 = (2nd ‘𝑈) |
6 | 5 | opeq2i 4808 | . . 3 ⊢ 〈(1st ‘𝑈), 𝑁〉 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉 |
7 | phnv 29176 | . . . . 5 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
8 | eqid 2738 | . . . . . 6 ⊢ (1st ‘𝑈) = (1st ‘𝑈) | |
9 | 8 | nvvc 28977 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → (1st ‘𝑈) ∈ CVecOLD) |
10 | vcrel 28922 | . . . . . . 7 ⊢ Rel CVecOLD | |
11 | 1st2nd 7880 | . . . . . . 7 ⊢ ((Rel CVecOLD ∧ (1st ‘𝑈) ∈ CVecOLD) → (1st ‘𝑈) = 〈(1st ‘(1st ‘𝑈)), (2nd ‘(1st ‘𝑈))〉) | |
12 | 10, 11 | mpan 687 | . . . . . 6 ⊢ ((1st ‘𝑈) ∈ CVecOLD → (1st ‘𝑈) = 〈(1st ‘(1st ‘𝑈)), (2nd ‘(1st ‘𝑈))〉) |
13 | phop.2 | . . . . . . . 8 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
14 | 13 | vafval 28965 | . . . . . . 7 ⊢ 𝐺 = (1st ‘(1st ‘𝑈)) |
15 | phop.4 | . . . . . . . 8 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
16 | 15 | smfval 28967 | . . . . . . 7 ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) |
17 | 14, 16 | opeq12i 4809 | . . . . . 6 ⊢ 〈𝐺, 𝑆〉 = 〈(1st ‘(1st ‘𝑈)), (2nd ‘(1st ‘𝑈))〉 |
18 | 12, 17 | eqtr4di 2796 | . . . . 5 ⊢ ((1st ‘𝑈) ∈ CVecOLD → (1st ‘𝑈) = 〈𝐺, 𝑆〉) |
19 | 7, 9, 18 | 3syl 18 | . . . 4 ⊢ (𝑈 ∈ CPreHilOLD → (1st ‘𝑈) = 〈𝐺, 𝑆〉) |
20 | 19 | opeq1d 4810 | . . 3 ⊢ (𝑈 ∈ CPreHilOLD → 〈(1st ‘𝑈), 𝑁〉 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
21 | 6, 20 | eqtr3id 2792 | . 2 ⊢ (𝑈 ∈ CPreHilOLD → 〈(1st ‘𝑈), (2nd ‘𝑈)〉 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
22 | 3, 21 | eqtrd 2778 | 1 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 〈cop 4567 Rel wrel 5594 ‘cfv 6433 1st c1st 7829 2nd c2nd 7830 CVecOLDcvc 28920 NrmCVeccnv 28946 +𝑣 cpv 28947 ·𝑠OLD cns 28949 normCVcnmcv 28952 CPreHilOLDccphlo 29174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-1st 7831 df-2nd 7832 df-vc 28921 df-nv 28954 df-va 28957 df-ba 28958 df-sm 28959 df-0v 28960 df-nmcv 28962 df-ph 29175 |
This theorem is referenced by: phpar 29186 |
Copyright terms: Public domain | W3C validator |