![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phop | Structured version Visualization version GIF version |
Description: A complex inner product space in terms of ordered pair components. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
phop.2 | โข ๐บ = ( +๐ฃ โ๐) |
phop.4 | โข ๐ = ( ยท๐ OLD โ๐) |
phop.6 | โข ๐ = (normCVโ๐) |
Ref | Expression |
---|---|
phop | โข (๐ โ CPreHilOLD โ ๐ = โจโจ๐บ, ๐โฉ, ๐โฉ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phrel 30063 | . . 3 โข Rel CPreHilOLD | |
2 | 1st2nd 8024 | . . 3 โข ((Rel CPreHilOLD โง ๐ โ CPreHilOLD) โ ๐ = โจ(1st โ๐), (2nd โ๐)โฉ) | |
3 | 1, 2 | mpan 688 | . 2 โข (๐ โ CPreHilOLD โ ๐ = โจ(1st โ๐), (2nd โ๐)โฉ) |
4 | phop.6 | . . . . 5 โข ๐ = (normCVโ๐) | |
5 | 4 | nmcvfval 29855 | . . . 4 โข ๐ = (2nd โ๐) |
6 | 5 | opeq2i 4877 | . . 3 โข โจ(1st โ๐), ๐โฉ = โจ(1st โ๐), (2nd โ๐)โฉ |
7 | phnv 30062 | . . . . 5 โข (๐ โ CPreHilOLD โ ๐ โ NrmCVec) | |
8 | eqid 2732 | . . . . . 6 โข (1st โ๐) = (1st โ๐) | |
9 | 8 | nvvc 29863 | . . . . 5 โข (๐ โ NrmCVec โ (1st โ๐) โ CVecOLD) |
10 | vcrel 29808 | . . . . . . 7 โข Rel CVecOLD | |
11 | 1st2nd 8024 | . . . . . . 7 โข ((Rel CVecOLD โง (1st โ๐) โ CVecOLD) โ (1st โ๐) = โจ(1st โ(1st โ๐)), (2nd โ(1st โ๐))โฉ) | |
12 | 10, 11 | mpan 688 | . . . . . 6 โข ((1st โ๐) โ CVecOLD โ (1st โ๐) = โจ(1st โ(1st โ๐)), (2nd โ(1st โ๐))โฉ) |
13 | phop.2 | . . . . . . . 8 โข ๐บ = ( +๐ฃ โ๐) | |
14 | 13 | vafval 29851 | . . . . . . 7 โข ๐บ = (1st โ(1st โ๐)) |
15 | phop.4 | . . . . . . . 8 โข ๐ = ( ยท๐ OLD โ๐) | |
16 | 15 | smfval 29853 | . . . . . . 7 โข ๐ = (2nd โ(1st โ๐)) |
17 | 14, 16 | opeq12i 4878 | . . . . . 6 โข โจ๐บ, ๐โฉ = โจ(1st โ(1st โ๐)), (2nd โ(1st โ๐))โฉ |
18 | 12, 17 | eqtr4di 2790 | . . . . 5 โข ((1st โ๐) โ CVecOLD โ (1st โ๐) = โจ๐บ, ๐โฉ) |
19 | 7, 9, 18 | 3syl 18 | . . . 4 โข (๐ โ CPreHilOLD โ (1st โ๐) = โจ๐บ, ๐โฉ) |
20 | 19 | opeq1d 4879 | . . 3 โข (๐ โ CPreHilOLD โ โจ(1st โ๐), ๐โฉ = โจโจ๐บ, ๐โฉ, ๐โฉ) |
21 | 6, 20 | eqtr3id 2786 | . 2 โข (๐ โ CPreHilOLD โ โจ(1st โ๐), (2nd โ๐)โฉ = โจโจ๐บ, ๐โฉ, ๐โฉ) |
22 | 3, 21 | eqtrd 2772 | 1 โข (๐ โ CPreHilOLD โ ๐ = โจโจ๐บ, ๐โฉ, ๐โฉ) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1541 โ wcel 2106 โจcop 4634 Rel wrel 5681 โcfv 6543 1st c1st 7972 2nd c2nd 7973 CVecOLDcvc 29806 NrmCVeccnv 29832 +๐ฃ cpv 29833 ยท๐ OLD cns 29835 normCVcnmcv 29838 CPreHilOLDccphlo 30060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-1st 7974 df-2nd 7975 df-vc 29807 df-nv 29840 df-va 29843 df-ba 29844 df-sm 29845 df-0v 29846 df-nmcv 29848 df-ph 30061 |
This theorem is referenced by: phpar 30072 |
Copyright terms: Public domain | W3C validator |