MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phop Structured version   Visualization version   GIF version

Theorem phop 28589
Description: A complex inner product space in terms of ordered pair components. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
phop.2 𝐺 = ( +𝑣𝑈)
phop.4 𝑆 = ( ·𝑠OLD𝑈)
phop.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
phop (𝑈 ∈ CPreHilOLD𝑈 = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)

Proof of Theorem phop
StepHypRef Expression
1 phrel 28586 . . 3 Rel CPreHilOLD
2 1st2nd 7732 . . 3 ((Rel CPreHilOLD𝑈 ∈ CPreHilOLD) → 𝑈 = ⟨(1st𝑈), (2nd𝑈)⟩)
31, 2mpan 688 . 2 (𝑈 ∈ CPreHilOLD𝑈 = ⟨(1st𝑈), (2nd𝑈)⟩)
4 phop.6 . . . . 5 𝑁 = (normCV𝑈)
54nmcvfval 28378 . . . 4 𝑁 = (2nd𝑈)
65opeq2i 4800 . . 3 ⟨(1st𝑈), 𝑁⟩ = ⟨(1st𝑈), (2nd𝑈)⟩
7 phnv 28585 . . . . 5 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
8 eqid 2821 . . . . . 6 (1st𝑈) = (1st𝑈)
98nvvc 28386 . . . . 5 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
10 vcrel 28331 . . . . . . 7 Rel CVecOLD
11 1st2nd 7732 . . . . . . 7 ((Rel CVecOLD ∧ (1st𝑈) ∈ CVecOLD) → (1st𝑈) = ⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩)
1210, 11mpan 688 . . . . . 6 ((1st𝑈) ∈ CVecOLD → (1st𝑈) = ⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩)
13 phop.2 . . . . . . . 8 𝐺 = ( +𝑣𝑈)
1413vafval 28374 . . . . . . 7 𝐺 = (1st ‘(1st𝑈))
15 phop.4 . . . . . . . 8 𝑆 = ( ·𝑠OLD𝑈)
1615smfval 28376 . . . . . . 7 𝑆 = (2nd ‘(1st𝑈))
1714, 16opeq12i 4801 . . . . . 6 𝐺, 𝑆⟩ = ⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩
1812, 17syl6eqr 2874 . . . . 5 ((1st𝑈) ∈ CVecOLD → (1st𝑈) = ⟨𝐺, 𝑆⟩)
197, 9, 183syl 18 . . . 4 (𝑈 ∈ CPreHilOLD → (1st𝑈) = ⟨𝐺, 𝑆⟩)
2019opeq1d 4802 . . 3 (𝑈 ∈ CPreHilOLD → ⟨(1st𝑈), 𝑁⟩ = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)
216, 20syl5eqr 2870 . 2 (𝑈 ∈ CPreHilOLD → ⟨(1st𝑈), (2nd𝑈)⟩ = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)
223, 21eqtrd 2856 1 (𝑈 ∈ CPreHilOLD𝑈 = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  cop 4566  Rel wrel 5554  cfv 6349  1st c1st 7681  2nd c2nd 7682  CVecOLDcvc 28329  NrmCVeccnv 28355   +𝑣 cpv 28356   ·𝑠OLD cns 28358  normCVcnmcv 28361  CPreHilOLDccphlo 28583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-1st 7683  df-2nd 7684  df-vc 28330  df-nv 28363  df-va 28366  df-ba 28367  df-sm 28368  df-0v 28369  df-nmcv 28371  df-ph 28584
This theorem is referenced by:  phpar  28595
  Copyright terms: Public domain W3C validator