MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phop Structured version   Visualization version   GIF version

Theorem phop 30747
Description: A complex inner product space in terms of ordered pair components. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
phop.2 𝐺 = ( +𝑣𝑈)
phop.4 𝑆 = ( ·𝑠OLD𝑈)
phop.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
phop (𝑈 ∈ CPreHilOLD𝑈 = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)

Proof of Theorem phop
StepHypRef Expression
1 phrel 30744 . . 3 Rel CPreHilOLD
2 1st2nd 8018 . . 3 ((Rel CPreHilOLD𝑈 ∈ CPreHilOLD) → 𝑈 = ⟨(1st𝑈), (2nd𝑈)⟩)
31, 2mpan 690 . 2 (𝑈 ∈ CPreHilOLD𝑈 = ⟨(1st𝑈), (2nd𝑈)⟩)
4 phop.6 . . . . 5 𝑁 = (normCV𝑈)
54nmcvfval 30536 . . . 4 𝑁 = (2nd𝑈)
65opeq2i 4841 . . 3 ⟨(1st𝑈), 𝑁⟩ = ⟨(1st𝑈), (2nd𝑈)⟩
7 phnv 30743 . . . . 5 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
8 eqid 2729 . . . . . 6 (1st𝑈) = (1st𝑈)
98nvvc 30544 . . . . 5 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
10 vcrel 30489 . . . . . . 7 Rel CVecOLD
11 1st2nd 8018 . . . . . . 7 ((Rel CVecOLD ∧ (1st𝑈) ∈ CVecOLD) → (1st𝑈) = ⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩)
1210, 11mpan 690 . . . . . 6 ((1st𝑈) ∈ CVecOLD → (1st𝑈) = ⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩)
13 phop.2 . . . . . . . 8 𝐺 = ( +𝑣𝑈)
1413vafval 30532 . . . . . . 7 𝐺 = (1st ‘(1st𝑈))
15 phop.4 . . . . . . . 8 𝑆 = ( ·𝑠OLD𝑈)
1615smfval 30534 . . . . . . 7 𝑆 = (2nd ‘(1st𝑈))
1714, 16opeq12i 4842 . . . . . 6 𝐺, 𝑆⟩ = ⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩
1812, 17eqtr4di 2782 . . . . 5 ((1st𝑈) ∈ CVecOLD → (1st𝑈) = ⟨𝐺, 𝑆⟩)
197, 9, 183syl 18 . . . 4 (𝑈 ∈ CPreHilOLD → (1st𝑈) = ⟨𝐺, 𝑆⟩)
2019opeq1d 4843 . . 3 (𝑈 ∈ CPreHilOLD → ⟨(1st𝑈), 𝑁⟩ = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)
216, 20eqtr3id 2778 . 2 (𝑈 ∈ CPreHilOLD → ⟨(1st𝑈), (2nd𝑈)⟩ = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)
223, 21eqtrd 2764 1 (𝑈 ∈ CPreHilOLD𝑈 = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4595  Rel wrel 5643  cfv 6511  1st c1st 7966  2nd c2nd 7967  CVecOLDcvc 30487  NrmCVeccnv 30513   +𝑣 cpv 30514   ·𝑠OLD cns 30516  normCVcnmcv 30519  CPreHilOLDccphlo 30741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-1st 7968  df-2nd 7969  df-vc 30488  df-nv 30521  df-va 30524  df-ba 30525  df-sm 30526  df-0v 30527  df-nmcv 30529  df-ph 30742
This theorem is referenced by:  phpar  30753
  Copyright terms: Public domain W3C validator