MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phop Structured version   Visualization version   GIF version

Theorem phop 30798
Description: A complex inner product space in terms of ordered pair components. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
phop.2 𝐺 = ( +𝑣𝑈)
phop.4 𝑆 = ( ·𝑠OLD𝑈)
phop.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
phop (𝑈 ∈ CPreHilOLD𝑈 = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)

Proof of Theorem phop
StepHypRef Expression
1 phrel 30795 . . 3 Rel CPreHilOLD
2 1st2nd 7971 . . 3 ((Rel CPreHilOLD𝑈 ∈ CPreHilOLD) → 𝑈 = ⟨(1st𝑈), (2nd𝑈)⟩)
31, 2mpan 690 . 2 (𝑈 ∈ CPreHilOLD𝑈 = ⟨(1st𝑈), (2nd𝑈)⟩)
4 phop.6 . . . . 5 𝑁 = (normCV𝑈)
54nmcvfval 30587 . . . 4 𝑁 = (2nd𝑈)
65opeq2i 4826 . . 3 ⟨(1st𝑈), 𝑁⟩ = ⟨(1st𝑈), (2nd𝑈)⟩
7 phnv 30794 . . . . 5 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
8 eqid 2731 . . . . . 6 (1st𝑈) = (1st𝑈)
98nvvc 30595 . . . . 5 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
10 vcrel 30540 . . . . . . 7 Rel CVecOLD
11 1st2nd 7971 . . . . . . 7 ((Rel CVecOLD ∧ (1st𝑈) ∈ CVecOLD) → (1st𝑈) = ⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩)
1210, 11mpan 690 . . . . . 6 ((1st𝑈) ∈ CVecOLD → (1st𝑈) = ⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩)
13 phop.2 . . . . . . . 8 𝐺 = ( +𝑣𝑈)
1413vafval 30583 . . . . . . 7 𝐺 = (1st ‘(1st𝑈))
15 phop.4 . . . . . . . 8 𝑆 = ( ·𝑠OLD𝑈)
1615smfval 30585 . . . . . . 7 𝑆 = (2nd ‘(1st𝑈))
1714, 16opeq12i 4827 . . . . . 6 𝐺, 𝑆⟩ = ⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩
1812, 17eqtr4di 2784 . . . . 5 ((1st𝑈) ∈ CVecOLD → (1st𝑈) = ⟨𝐺, 𝑆⟩)
197, 9, 183syl 18 . . . 4 (𝑈 ∈ CPreHilOLD → (1st𝑈) = ⟨𝐺, 𝑆⟩)
2019opeq1d 4828 . . 3 (𝑈 ∈ CPreHilOLD → ⟨(1st𝑈), 𝑁⟩ = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)
216, 20eqtr3id 2780 . 2 (𝑈 ∈ CPreHilOLD → ⟨(1st𝑈), (2nd𝑈)⟩ = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)
223, 21eqtrd 2766 1 (𝑈 ∈ CPreHilOLD𝑈 = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cop 4579  Rel wrel 5619  cfv 6481  1st c1st 7919  2nd c2nd 7920  CVecOLDcvc 30538  NrmCVeccnv 30564   +𝑣 cpv 30565   ·𝑠OLD cns 30567  normCVcnmcv 30570  CPreHilOLDccphlo 30792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-1st 7921  df-2nd 7922  df-vc 30539  df-nv 30572  df-va 30575  df-ba 30576  df-sm 30577  df-0v 30578  df-nmcv 30580  df-ph 30793
This theorem is referenced by:  phpar  30804
  Copyright terms: Public domain W3C validator