![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hhssnm | Structured version Visualization version GIF version |
Description: The norm operation on a subspace. (Contributed by NM, 8-Apr-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhss.1 | ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 |
Ref | Expression |
---|---|
hhssnm | ⊢ (normℎ ↾ 𝐻) = (normCV‘𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2778 | . . 3 ⊢ (normCV‘𝑊) = (normCV‘𝑊) | |
2 | 1 | nmcvfval 28164 | . 2 ⊢ (normCV‘𝑊) = (2nd ‘𝑊) |
3 | hhss.1 | . . 3 ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 | |
4 | 3 | fveq2i 6504 | . 2 ⊢ (2nd ‘𝑊) = (2nd ‘〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉) |
5 | opex 5214 | . . 3 ⊢ 〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉 ∈ V | |
6 | normf 28682 | . . . . 5 ⊢ normℎ: ℋ⟶ℝ | |
7 | ax-hilex 28558 | . . . . 5 ⊢ ℋ ∈ V | |
8 | fex 6817 | . . . . 5 ⊢ ((normℎ: ℋ⟶ℝ ∧ ℋ ∈ V) → normℎ ∈ V) | |
9 | 6, 7, 8 | mp2an 679 | . . . 4 ⊢ normℎ ∈ V |
10 | 9 | resex 5746 | . . 3 ⊢ (normℎ ↾ 𝐻) ∈ V |
11 | 5, 10 | op2nd 7512 | . 2 ⊢ (2nd ‘〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉) = (normℎ ↾ 𝐻) |
12 | 2, 4, 11 | 3eqtrri 2807 | 1 ⊢ (normℎ ↾ 𝐻) = (normCV‘𝑊) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1507 ∈ wcel 2050 Vcvv 3415 〈cop 4448 × cxp 5406 ↾ cres 5410 ⟶wf 6186 ‘cfv 6190 2nd c2nd 7502 ℂcc 10335 ℝcr 10336 normCVcnmcv 28147 ℋchba 28478 +ℎ cva 28479 ·ℎ csm 28480 normℎcno 28482 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5050 ax-sep 5061 ax-nul 5068 ax-pow 5120 ax-pr 5187 ax-un 7281 ax-cnex 10393 ax-resscn 10394 ax-1cn 10395 ax-icn 10396 ax-addcl 10397 ax-addrcl 10398 ax-mulcl 10399 ax-mulrcl 10400 ax-mulcom 10401 ax-addass 10402 ax-mulass 10403 ax-distr 10404 ax-i2m1 10405 ax-1ne0 10406 ax-1rid 10407 ax-rnegex 10408 ax-rrecex 10409 ax-cnre 10410 ax-pre-lttri 10411 ax-pre-lttrn 10412 ax-pre-ltadd 10413 ax-pre-mulgt0 10414 ax-pre-sup 10415 ax-hilex 28558 ax-hv0cl 28562 ax-hvmul0 28569 ax-hfi 28638 ax-his1 28641 ax-his3 28643 ax-his4 28644 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4181 df-if 4352 df-pw 4425 df-sn 4443 df-pr 4445 df-tp 4447 df-op 4449 df-uni 4714 df-iun 4795 df-br 4931 df-opab 4993 df-mpt 5010 df-tr 5032 df-id 5313 df-eprel 5318 df-po 5327 df-so 5328 df-fr 5367 df-we 5369 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-pred 5988 df-ord 6034 df-on 6035 df-lim 6036 df-suc 6037 df-iota 6154 df-fun 6192 df-fn 6193 df-f 6194 df-f1 6195 df-fo 6196 df-f1o 6197 df-fv 6198 df-riota 6939 df-ov 6981 df-oprab 6982 df-mpo 6983 df-om 7399 df-2nd 7504 df-wrecs 7752 df-recs 7814 df-rdg 7852 df-er 8091 df-en 8309 df-dom 8310 df-sdom 8311 df-sup 8703 df-pnf 10478 df-mnf 10479 df-xr 10480 df-ltxr 10481 df-le 10482 df-sub 10674 df-neg 10675 df-div 11101 df-nn 11442 df-2 11506 df-3 11507 df-n0 11711 df-z 11797 df-uz 12062 df-rp 12208 df-seq 13188 df-exp 13248 df-cj 14322 df-re 14323 df-im 14324 df-sqrt 14458 df-nmcv 28157 df-hnorm 28527 |
This theorem is referenced by: hhsst 28825 hhsssh2 28829 hhssims 28834 hhssmetdval 28837 |
Copyright terms: Public domain | W3C validator |