| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvop2 | Structured version Visualization version GIF version | ||
| Description: A normed complex vector space is an ordered pair of a vector space and a norm operation. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvop2.1 | ⊢ 𝑊 = (1st ‘𝑈) |
| nvop2.6 | ⊢ 𝑁 = (normCV‘𝑈) |
| Ref | Expression |
|---|---|
| nvop2 | ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈𝑊, 𝑁〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvrel 30582 | . . 3 ⊢ Rel NrmCVec | |
| 2 | 1st2nd 7971 | . . 3 ⊢ ((Rel NrmCVec ∧ 𝑈 ∈ NrmCVec) → 𝑈 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉) |
| 4 | nvop2.1 | . . 3 ⊢ 𝑊 = (1st ‘𝑈) | |
| 5 | nvop2.6 | . . . 4 ⊢ 𝑁 = (normCV‘𝑈) | |
| 6 | 5 | nmcvfval 30587 | . . 3 ⊢ 𝑁 = (2nd ‘𝑈) |
| 7 | 4, 6 | opeq12i 4827 | . 2 ⊢ 〈𝑊, 𝑁〉 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉 |
| 8 | 3, 7 | eqtr4di 2784 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈𝑊, 𝑁〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 〈cop 4579 Rel wrel 5619 ‘cfv 6481 1st c1st 7919 2nd c2nd 7920 NrmCVeccnv 30564 normCVcnmcv 30570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fv 6489 df-oprab 7350 df-1st 7921 df-2nd 7922 df-nv 30572 df-nmcv 30580 |
| This theorem is referenced by: nvvop 30589 nvi 30594 |
| Copyright terms: Public domain | W3C validator |