![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvop2 | Structured version Visualization version GIF version |
Description: A normed complex vector space is an ordered pair of a vector space and a norm operation. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvop2.1 | ⊢ 𝑊 = (1st ‘𝑈) |
nvop2.6 | ⊢ 𝑁 = (normCV‘𝑈) |
Ref | Expression |
---|---|
nvop2 | ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈𝑊, 𝑁〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvrel 30634 | . . 3 ⊢ Rel NrmCVec | |
2 | 1st2nd 8080 | . . 3 ⊢ ((Rel NrmCVec ∧ 𝑈 ∈ NrmCVec) → 𝑈 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉) | |
3 | 1, 2 | mpan 689 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉) |
4 | nvop2.1 | . . 3 ⊢ 𝑊 = (1st ‘𝑈) | |
5 | nvop2.6 | . . . 4 ⊢ 𝑁 = (normCV‘𝑈) | |
6 | 5 | nmcvfval 30639 | . . 3 ⊢ 𝑁 = (2nd ‘𝑈) |
7 | 4, 6 | opeq12i 4902 | . 2 ⊢ 〈𝑊, 𝑁〉 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉 |
8 | 3, 7 | eqtr4di 2798 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈𝑊, 𝑁〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 〈cop 4654 Rel wrel 5705 ‘cfv 6573 1st c1st 8028 2nd c2nd 8029 NrmCVeccnv 30616 normCVcnmcv 30622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fv 6581 df-oprab 7452 df-1st 8030 df-2nd 8031 df-nv 30624 df-nmcv 30632 |
This theorem is referenced by: nvvop 30641 nvi 30646 |
Copyright terms: Public domain | W3C validator |