MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvop2 Structured version   Visualization version   GIF version

Theorem nvop2 28871
Description: A normed complex vector space is an ordered pair of a vector space and a norm operation. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvop2.1 𝑊 = (1st𝑈)
nvop2.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvop2 (𝑈 ∈ NrmCVec → 𝑈 = ⟨𝑊, 𝑁⟩)

Proof of Theorem nvop2
StepHypRef Expression
1 nvrel 28865 . . 3 Rel NrmCVec
2 1st2nd 7853 . . 3 ((Rel NrmCVec ∧ 𝑈 ∈ NrmCVec) → 𝑈 = ⟨(1st𝑈), (2nd𝑈)⟩)
31, 2mpan 686 . 2 (𝑈 ∈ NrmCVec → 𝑈 = ⟨(1st𝑈), (2nd𝑈)⟩)
4 nvop2.1 . . 3 𝑊 = (1st𝑈)
5 nvop2.6 . . . 4 𝑁 = (normCV𝑈)
65nmcvfval 28870 . . 3 𝑁 = (2nd𝑈)
74, 6opeq12i 4806 . 2 𝑊, 𝑁⟩ = ⟨(1st𝑈), (2nd𝑈)⟩
83, 7eqtr4di 2797 1 (𝑈 ∈ NrmCVec → 𝑈 = ⟨𝑊, 𝑁⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cop 4564  Rel wrel 5585  cfv 6418  1st c1st 7802  2nd c2nd 7803  NrmCVeccnv 28847  normCVcnmcv 28853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426  df-oprab 7259  df-1st 7804  df-2nd 7805  df-nv 28855  df-nmcv 28863
This theorem is referenced by:  nvvop  28872  nvi  28877
  Copyright terms: Public domain W3C validator