Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nvop2 | Structured version Visualization version GIF version |
Description: A normed complex vector space is an ordered pair of a vector space and a norm operation. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvop2.1 | ⊢ 𝑊 = (1st ‘𝑈) |
nvop2.6 | ⊢ 𝑁 = (normCV‘𝑈) |
Ref | Expression |
---|---|
nvop2 | ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈𝑊, 𝑁〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvrel 28964 | . . 3 ⊢ Rel NrmCVec | |
2 | 1st2nd 7880 | . . 3 ⊢ ((Rel NrmCVec ∧ 𝑈 ∈ NrmCVec) → 𝑈 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉) | |
3 | 1, 2 | mpan 687 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉) |
4 | nvop2.1 | . . 3 ⊢ 𝑊 = (1st ‘𝑈) | |
5 | nvop2.6 | . . . 4 ⊢ 𝑁 = (normCV‘𝑈) | |
6 | 5 | nmcvfval 28969 | . . 3 ⊢ 𝑁 = (2nd ‘𝑈) |
7 | 4, 6 | opeq12i 4809 | . 2 ⊢ 〈𝑊, 𝑁〉 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉 |
8 | 3, 7 | eqtr4di 2796 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈𝑊, 𝑁〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 〈cop 4567 Rel wrel 5594 ‘cfv 6433 1st c1st 7829 2nd c2nd 7830 NrmCVeccnv 28946 normCVcnmcv 28952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fv 6441 df-oprab 7279 df-1st 7831 df-2nd 7832 df-nv 28954 df-nmcv 28962 |
This theorem is referenced by: nvvop 28971 nvi 28976 |
Copyright terms: Public domain | W3C validator |