![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvop2 | Structured version Visualization version GIF version |
Description: A normed complex vector space is an ordered pair of a vector space and a norm operation. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvop2.1 | ⊢ 𝑊 = (1st ‘𝑈) |
nvop2.6 | ⊢ 𝑁 = (normCV‘𝑈) |
Ref | Expression |
---|---|
nvop2 | ⊢ (𝑈 ∈ NrmCVec → 𝑈 = ⟨𝑊, 𝑁⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvrel 29842 | . . 3 ⊢ Rel NrmCVec | |
2 | 1st2nd 8021 | . . 3 ⊢ ((Rel NrmCVec ∧ 𝑈 ∈ NrmCVec) → 𝑈 = ⟨(1st ‘𝑈), (2nd ‘𝑈)⟩) | |
3 | 1, 2 | mpan 688 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑈 = ⟨(1st ‘𝑈), (2nd ‘𝑈)⟩) |
4 | nvop2.1 | . . 3 ⊢ 𝑊 = (1st ‘𝑈) | |
5 | nvop2.6 | . . . 4 ⊢ 𝑁 = (normCV‘𝑈) | |
6 | 5 | nmcvfval 29847 | . . 3 ⊢ 𝑁 = (2nd ‘𝑈) |
7 | 4, 6 | opeq12i 4877 | . 2 ⊢ ⟨𝑊, 𝑁⟩ = ⟨(1st ‘𝑈), (2nd ‘𝑈)⟩ |
8 | 3, 7 | eqtr4di 2790 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑈 = ⟨𝑊, 𝑁⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ⟨cop 4633 Rel wrel 5680 ‘cfv 6540 1st c1st 7969 2nd c2nd 7970 NrmCVeccnv 29824 normCVcnmcv 29830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6492 df-fun 6542 df-fv 6548 df-oprab 7409 df-1st 7971 df-2nd 7972 df-nv 29832 df-nmcv 29840 |
This theorem is referenced by: nvvop 29849 nvi 29854 |
Copyright terms: Public domain | W3C validator |