| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvop2 | Structured version Visualization version GIF version | ||
| Description: A normed complex vector space is an ordered pair of a vector space and a norm operation. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvop2.1 | ⊢ 𝑊 = (1st ‘𝑈) |
| nvop2.6 | ⊢ 𝑁 = (normCV‘𝑈) |
| Ref | Expression |
|---|---|
| nvop2 | ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈𝑊, 𝑁〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvrel 30588 | . . 3 ⊢ Rel NrmCVec | |
| 2 | 1st2nd 8043 | . . 3 ⊢ ((Rel NrmCVec ∧ 𝑈 ∈ NrmCVec) → 𝑈 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉) |
| 4 | nvop2.1 | . . 3 ⊢ 𝑊 = (1st ‘𝑈) | |
| 5 | nvop2.6 | . . . 4 ⊢ 𝑁 = (normCV‘𝑈) | |
| 6 | 5 | nmcvfval 30593 | . . 3 ⊢ 𝑁 = (2nd ‘𝑈) |
| 7 | 4, 6 | opeq12i 4859 | . 2 ⊢ 〈𝑊, 𝑁〉 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉 |
| 8 | 3, 7 | eqtr4di 2789 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈𝑊, 𝑁〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4612 Rel wrel 5664 ‘cfv 6536 1st c1st 7991 2nd c2nd 7992 NrmCVeccnv 30570 normCVcnmcv 30576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fv 6544 df-oprab 7414 df-1st 7993 df-2nd 7994 df-nv 30578 df-nmcv 30586 |
| This theorem is referenced by: nvvop 30595 nvi 30600 |
| Copyright terms: Public domain | W3C validator |