![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > h2hnm | Structured version Visualization version GIF version |
Description: The norm function of Hilbert space. (Contributed by NM, 5-Jun-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
h2h.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
h2h.2 | ⊢ 𝑈 ∈ NrmCVec |
Ref | Expression |
---|---|
h2hnm | ⊢ normℎ = (normCV‘𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | h2h.1 | . . 3 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
2 | 1 | fveq2i 6923 | . 2 ⊢ (normCV‘𝑈) = (normCV‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
3 | eqid 2740 | . . 3 ⊢ (normCV‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = (normCV‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
4 | 3 | nmcvfval 30639 | . 2 ⊢ (normCV‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = (2nd ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
5 | opex 5484 | . . 3 ⊢ 〈 +ℎ , ·ℎ 〉 ∈ V | |
6 | h2h.2 | . . . . . 6 ⊢ 𝑈 ∈ NrmCVec | |
7 | 1, 6 | eqeltrri 2841 | . . . . 5 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec |
8 | nvex 30643 | . . . . 5 ⊢ (〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec → ( +ℎ ∈ V ∧ ·ℎ ∈ V ∧ normℎ ∈ V)) | |
9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ ( +ℎ ∈ V ∧ ·ℎ ∈ V ∧ normℎ ∈ V) |
10 | 9 | simp3i 1141 | . . 3 ⊢ normℎ ∈ V |
11 | 5, 10 | op2nd 8039 | . 2 ⊢ (2nd ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = normℎ |
12 | 2, 4, 11 | 3eqtrri 2773 | 1 ⊢ normℎ = (normCV‘𝑈) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 Vcvv 3488 〈cop 4654 ‘cfv 6573 2nd c2nd 8029 NrmCVeccnv 30616 normCVcnmcv 30622 +ℎ cva 30952 ·ℎ csm 30953 normℎcno 30955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fv 6581 df-oprab 7452 df-2nd 8031 df-vc 30591 df-nv 30624 df-nmcv 30632 |
This theorem is referenced by: h2hmetdval 31010 hhnm 31203 |
Copyright terms: Public domain | W3C validator |