![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > h2hnm | Structured version Visualization version GIF version |
Description: The norm function of Hilbert space. (Contributed by NM, 5-Jun-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
h2h.1 | ⊢ 𝑈 = ⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩ |
h2h.2 | ⊢ 𝑈 ∈ NrmCVec |
Ref | Expression |
---|---|
h2hnm | ⊢ normℎ = (normCV‘𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | h2h.1 | . . 3 ⊢ 𝑈 = ⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩ | |
2 | 1 | fveq2i 6885 | . 2 ⊢ (normCV‘𝑈) = (normCV‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) |
3 | eqid 2724 | . . 3 ⊢ (normCV‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) = (normCV‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) | |
4 | 3 | nmcvfval 30332 | . 2 ⊢ (normCV‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) = (2nd ‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) |
5 | opex 5455 | . . 3 ⊢ ⟨ +ℎ , ·ℎ ⟩ ∈ V | |
6 | h2h.2 | . . . . . 6 ⊢ 𝑈 ∈ NrmCVec | |
7 | 1, 6 | eqeltrri 2822 | . . . . 5 ⊢ ⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩ ∈ NrmCVec |
8 | nvex 30336 | . . . . 5 ⊢ (⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩ ∈ NrmCVec → ( +ℎ ∈ V ∧ ·ℎ ∈ V ∧ normℎ ∈ V)) | |
9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ ( +ℎ ∈ V ∧ ·ℎ ∈ V ∧ normℎ ∈ V) |
10 | 9 | simp3i 1138 | . . 3 ⊢ normℎ ∈ V |
11 | 5, 10 | op2nd 7978 | . 2 ⊢ (2nd ‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) = normℎ |
12 | 2, 4, 11 | 3eqtrri 2757 | 1 ⊢ normℎ = (normCV‘𝑈) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ⟨cop 4627 ‘cfv 6534 2nd c2nd 7968 NrmCVeccnv 30309 normCVcnmcv 30315 +ℎ cva 30645 ·ℎ csm 30646 normℎcno 30648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-iota 6486 df-fun 6536 df-fv 6542 df-oprab 7406 df-2nd 7970 df-vc 30284 df-nv 30317 df-nmcv 30325 |
This theorem is referenced by: h2hmetdval 30703 hhnm 30896 |
Copyright terms: Public domain | W3C validator |