| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > h2hnm | Structured version Visualization version GIF version | ||
| Description: The norm function of Hilbert space. (Contributed by NM, 5-Jun-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| h2h.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| h2h.2 | ⊢ 𝑈 ∈ NrmCVec |
| Ref | Expression |
|---|---|
| h2hnm | ⊢ normℎ = (normCV‘𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | h2h.1 | . . 3 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 2 | 1 | fveq2i 6825 | . 2 ⊢ (normCV‘𝑈) = (normCV‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 3 | eqid 2729 | . . 3 ⊢ (normCV‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = (normCV‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
| 4 | 3 | nmcvfval 30551 | . 2 ⊢ (normCV‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = (2nd ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 5 | opex 5407 | . . 3 ⊢ 〈 +ℎ , ·ℎ 〉 ∈ V | |
| 6 | h2h.2 | . . . . . 6 ⊢ 𝑈 ∈ NrmCVec | |
| 7 | 1, 6 | eqeltrri 2825 | . . . . 5 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec |
| 8 | nvex 30555 | . . . . 5 ⊢ (〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec → ( +ℎ ∈ V ∧ ·ℎ ∈ V ∧ normℎ ∈ V)) | |
| 9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ ( +ℎ ∈ V ∧ ·ℎ ∈ V ∧ normℎ ∈ V) |
| 10 | 9 | simp3i 1141 | . . 3 ⊢ normℎ ∈ V |
| 11 | 5, 10 | op2nd 7933 | . 2 ⊢ (2nd ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = normℎ |
| 12 | 2, 4, 11 | 3eqtrri 2757 | 1 ⊢ normℎ = (normCV‘𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3436 〈cop 4583 ‘cfv 6482 2nd c2nd 7923 NrmCVeccnv 30528 normCVcnmcv 30534 +ℎ cva 30864 ·ℎ csm 30865 normℎcno 30867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fv 6490 df-oprab 7353 df-2nd 7925 df-vc 30503 df-nv 30536 df-nmcv 30544 |
| This theorem is referenced by: h2hmetdval 30922 hhnm 31115 |
| Copyright terms: Public domain | W3C validator |