HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h2hnm Structured version   Visualization version   GIF version

Theorem h2hnm 31008
Description: The norm function of Hilbert space. (Contributed by NM, 5-Jun-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
h2h.1 𝑈 = ⟨⟨ + , · ⟩, norm
h2h.2 𝑈 ∈ NrmCVec
Assertion
Ref Expression
h2hnm norm = (normCV𝑈)

Proof of Theorem h2hnm
StepHypRef Expression
1 h2h.1 . . 3 𝑈 = ⟨⟨ + , · ⟩, norm
21fveq2i 6923 . 2 (normCV𝑈) = (normCV‘⟨⟨ + , · ⟩, norm⟩)
3 eqid 2740 . . 3 (normCV‘⟨⟨ + , · ⟩, norm⟩) = (normCV‘⟨⟨ + , · ⟩, norm⟩)
43nmcvfval 30639 . 2 (normCV‘⟨⟨ + , · ⟩, norm⟩) = (2nd ‘⟨⟨ + , · ⟩, norm⟩)
5 opex 5484 . . 3 ⟨ + , · ⟩ ∈ V
6 h2h.2 . . . . . 6 𝑈 ∈ NrmCVec
71, 6eqeltrri 2841 . . . . 5 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
8 nvex 30643 . . . . 5 (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec → ( + ∈ V ∧ · ∈ V ∧ norm ∈ V))
97, 8ax-mp 5 . . . 4 ( + ∈ V ∧ · ∈ V ∧ norm ∈ V)
109simp3i 1141 . . 3 norm ∈ V
115, 10op2nd 8039 . 2 (2nd ‘⟨⟨ + , · ⟩, norm⟩) = norm
122, 4, 113eqtrri 2773 1 norm = (normCV𝑈)
Colors of variables: wff setvar class
Syntax hints:  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  cop 4654  cfv 6573  2nd c2nd 8029  NrmCVeccnv 30616  normCVcnmcv 30622   + cva 30952   · csm 30953  normcno 30955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fv 6581  df-oprab 7452  df-2nd 8031  df-vc 30591  df-nv 30624  df-nmcv 30632
This theorem is referenced by:  h2hmetdval  31010  hhnm  31203
  Copyright terms: Public domain W3C validator