HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h2hnm Structured version   Visualization version   GIF version

Theorem h2hnm 30701
Description: The norm function of Hilbert space. (Contributed by NM, 5-Jun-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
h2h.1 𝑈 = ⟨⟨ + , · ⟩, norm
h2h.2 𝑈 ∈ NrmCVec
Assertion
Ref Expression
h2hnm norm = (normCV𝑈)

Proof of Theorem h2hnm
StepHypRef Expression
1 h2h.1 . . 3 𝑈 = ⟨⟨ + , · ⟩, norm
21fveq2i 6885 . 2 (normCV𝑈) = (normCV‘⟨⟨ + , · ⟩, norm⟩)
3 eqid 2724 . . 3 (normCV‘⟨⟨ + , · ⟩, norm⟩) = (normCV‘⟨⟨ + , · ⟩, norm⟩)
43nmcvfval 30332 . 2 (normCV‘⟨⟨ + , · ⟩, norm⟩) = (2nd ‘⟨⟨ + , · ⟩, norm⟩)
5 opex 5455 . . 3 ⟨ + , · ⟩ ∈ V
6 h2h.2 . . . . . 6 𝑈 ∈ NrmCVec
71, 6eqeltrri 2822 . . . . 5 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
8 nvex 30336 . . . . 5 (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec → ( + ∈ V ∧ · ∈ V ∧ norm ∈ V))
97, 8ax-mp 5 . . . 4 ( + ∈ V ∧ · ∈ V ∧ norm ∈ V)
109simp3i 1138 . . 3 norm ∈ V
115, 10op2nd 7978 . 2 (2nd ‘⟨⟨ + , · ⟩, norm⟩) = norm
122, 4, 113eqtrri 2757 1 norm = (normCV𝑈)
Colors of variables: wff setvar class
Syntax hints:  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3466  cop 4627  cfv 6534  2nd c2nd 7968  NrmCVeccnv 30309  normCVcnmcv 30315   + cva 30645   · csm 30646  normcno 30648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-iota 6486  df-fun 6536  df-fv 6542  df-oprab 7406  df-2nd 7970  df-vc 30284  df-nv 30317  df-nmcv 30325
This theorem is referenced by:  h2hmetdval  30703  hhnm  30896
  Copyright terms: Public domain W3C validator