| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > h2hnm | Structured version Visualization version GIF version | ||
| Description: The norm function of Hilbert space. (Contributed by NM, 5-Jun-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| h2h.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| h2h.2 | ⊢ 𝑈 ∈ NrmCVec |
| Ref | Expression |
|---|---|
| h2hnm | ⊢ normℎ = (normCV‘𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | h2h.1 | . . 3 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 2 | 1 | fveq2i 6879 | . 2 ⊢ (normCV‘𝑈) = (normCV‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 3 | eqid 2735 | . . 3 ⊢ (normCV‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = (normCV‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
| 4 | 3 | nmcvfval 30588 | . 2 ⊢ (normCV‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = (2nd ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 5 | opex 5439 | . . 3 ⊢ 〈 +ℎ , ·ℎ 〉 ∈ V | |
| 6 | h2h.2 | . . . . . 6 ⊢ 𝑈 ∈ NrmCVec | |
| 7 | 1, 6 | eqeltrri 2831 | . . . . 5 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec |
| 8 | nvex 30592 | . . . . 5 ⊢ (〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec → ( +ℎ ∈ V ∧ ·ℎ ∈ V ∧ normℎ ∈ V)) | |
| 9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ ( +ℎ ∈ V ∧ ·ℎ ∈ V ∧ normℎ ∈ V) |
| 10 | 9 | simp3i 1141 | . . 3 ⊢ normℎ ∈ V |
| 11 | 5, 10 | op2nd 7997 | . 2 ⊢ (2nd ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = normℎ |
| 12 | 2, 4, 11 | 3eqtrri 2763 | 1 ⊢ normℎ = (normCV‘𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 Vcvv 3459 〈cop 4607 ‘cfv 6531 2nd c2nd 7987 NrmCVeccnv 30565 normCVcnmcv 30571 +ℎ cva 30901 ·ℎ csm 30902 normℎcno 30904 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fv 6539 df-oprab 7409 df-2nd 7989 df-vc 30540 df-nv 30573 df-nmcv 30581 |
| This theorem is referenced by: h2hmetdval 30959 hhnm 31152 |
| Copyright terms: Public domain | W3C validator |