| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > h2hnm | Structured version Visualization version GIF version | ||
| Description: The norm function of Hilbert space. (Contributed by NM, 5-Jun-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| h2h.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| h2h.2 | ⊢ 𝑈 ∈ NrmCVec |
| Ref | Expression |
|---|---|
| h2hnm | ⊢ normℎ = (normCV‘𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | h2h.1 | . . 3 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 2 | 1 | fveq2i 6825 | . 2 ⊢ (normCV‘𝑈) = (normCV‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 3 | eqid 2731 | . . 3 ⊢ (normCV‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = (normCV‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
| 4 | 3 | nmcvfval 30587 | . 2 ⊢ (normCV‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = (2nd ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 5 | opex 5402 | . . 3 ⊢ 〈 +ℎ , ·ℎ 〉 ∈ V | |
| 6 | h2h.2 | . . . . . 6 ⊢ 𝑈 ∈ NrmCVec | |
| 7 | 1, 6 | eqeltrri 2828 | . . . . 5 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec |
| 8 | nvex 30591 | . . . . 5 ⊢ (〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec → ( +ℎ ∈ V ∧ ·ℎ ∈ V ∧ normℎ ∈ V)) | |
| 9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ ( +ℎ ∈ V ∧ ·ℎ ∈ V ∧ normℎ ∈ V) |
| 10 | 9 | simp3i 1141 | . . 3 ⊢ normℎ ∈ V |
| 11 | 5, 10 | op2nd 7930 | . 2 ⊢ (2nd ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = normℎ |
| 12 | 2, 4, 11 | 3eqtrri 2759 | 1 ⊢ normℎ = (normCV‘𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4579 ‘cfv 6481 2nd c2nd 7920 NrmCVeccnv 30564 normCVcnmcv 30570 +ℎ cva 30900 ·ℎ csm 30901 normℎcno 30903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fv 6489 df-oprab 7350 df-2nd 7922 df-vc 30539 df-nv 30572 df-nmcv 30580 |
| This theorem is referenced by: h2hmetdval 30958 hhnm 31151 |
| Copyright terms: Public domain | W3C validator |