![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > h2hnm | Structured version Visualization version GIF version |
Description: The norm function of Hilbert space. (Contributed by NM, 5-Jun-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
h2h.1 | ⊢ 𝑈 = ⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩ |
h2h.2 | ⊢ 𝑈 ∈ NrmCVec |
Ref | Expression |
---|---|
h2hnm | ⊢ normℎ = (normCV‘𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | h2h.1 | . . 3 ⊢ 𝑈 = ⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩ | |
2 | 1 | fveq2i 6894 | . 2 ⊢ (normCV‘𝑈) = (normCV‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) |
3 | eqid 2728 | . . 3 ⊢ (normCV‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) = (normCV‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) | |
4 | 3 | nmcvfval 30410 | . 2 ⊢ (normCV‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) = (2nd ‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) |
5 | opex 5460 | . . 3 ⊢ ⟨ +ℎ , ·ℎ ⟩ ∈ V | |
6 | h2h.2 | . . . . . 6 ⊢ 𝑈 ∈ NrmCVec | |
7 | 1, 6 | eqeltrri 2826 | . . . . 5 ⊢ ⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩ ∈ NrmCVec |
8 | nvex 30414 | . . . . 5 ⊢ (⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩ ∈ NrmCVec → ( +ℎ ∈ V ∧ ·ℎ ∈ V ∧ normℎ ∈ V)) | |
9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ ( +ℎ ∈ V ∧ ·ℎ ∈ V ∧ normℎ ∈ V) |
10 | 9 | simp3i 1139 | . . 3 ⊢ normℎ ∈ V |
11 | 5, 10 | op2nd 7996 | . 2 ⊢ (2nd ‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) = normℎ |
12 | 2, 4, 11 | 3eqtrri 2761 | 1 ⊢ normℎ = (normCV‘𝑈) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 Vcvv 3470 ⟨cop 4630 ‘cfv 6542 2nd c2nd 7986 NrmCVeccnv 30387 normCVcnmcv 30393 +ℎ cva 30723 ·ℎ csm 30724 normℎcno 30726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-iota 6494 df-fun 6544 df-fv 6550 df-oprab 7418 df-2nd 7988 df-vc 30362 df-nv 30395 df-nmcv 30403 |
This theorem is referenced by: h2hmetdval 30781 hhnm 30974 |
Copyright terms: Public domain | W3C validator |