![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > h2hnm | Structured version Visualization version GIF version |
Description: The norm function of Hilbert space. (Contributed by NM, 5-Jun-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
h2h.1 | ⊢ 𝑈 = ⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩ |
h2h.2 | ⊢ 𝑈 ∈ NrmCVec |
Ref | Expression |
---|---|
h2hnm | ⊢ normℎ = (normCV‘𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | h2h.1 | . . 3 ⊢ 𝑈 = ⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩ | |
2 | 1 | fveq2i 6894 | . 2 ⊢ (normCV‘𝑈) = (normCV‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) |
3 | eqid 2732 | . . 3 ⊢ (normCV‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) = (normCV‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) | |
4 | 3 | nmcvfval 29855 | . 2 ⊢ (normCV‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) = (2nd ‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) |
5 | opex 5464 | . . 3 ⊢ ⟨ +ℎ , ·ℎ ⟩ ∈ V | |
6 | h2h.2 | . . . . . 6 ⊢ 𝑈 ∈ NrmCVec | |
7 | 1, 6 | eqeltrri 2830 | . . . . 5 ⊢ ⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩ ∈ NrmCVec |
8 | nvex 29859 | . . . . 5 ⊢ (⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩ ∈ NrmCVec → ( +ℎ ∈ V ∧ ·ℎ ∈ V ∧ normℎ ∈ V)) | |
9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ ( +ℎ ∈ V ∧ ·ℎ ∈ V ∧ normℎ ∈ V) |
10 | 9 | simp3i 1141 | . . 3 ⊢ normℎ ∈ V |
11 | 5, 10 | op2nd 7983 | . 2 ⊢ (2nd ‘⟨⟨ +ℎ , ·ℎ ⟩, normℎ⟩) = normℎ |
12 | 2, 4, 11 | 3eqtrri 2765 | 1 ⊢ normℎ = (normCV‘𝑈) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⟨cop 4634 ‘cfv 6543 2nd c2nd 7973 NrmCVeccnv 29832 normCVcnmcv 29838 +ℎ cva 30168 ·ℎ csm 30169 normℎcno 30171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fv 6551 df-oprab 7412 df-2nd 7975 df-vc 29807 df-nv 29840 df-nmcv 29848 |
This theorem is referenced by: h2hmetdval 30226 hhnm 30419 |
Copyright terms: Public domain | W3C validator |