HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h2hnm Structured version   Visualization version   GIF version

Theorem h2hnm 30955
Description: The norm function of Hilbert space. (Contributed by NM, 5-Jun-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
h2h.1 𝑈 = ⟨⟨ + , · ⟩, norm
h2h.2 𝑈 ∈ NrmCVec
Assertion
Ref Expression
h2hnm norm = (normCV𝑈)

Proof of Theorem h2hnm
StepHypRef Expression
1 h2h.1 . . 3 𝑈 = ⟨⟨ + , · ⟩, norm
21fveq2i 6843 . 2 (normCV𝑈) = (normCV‘⟨⟨ + , · ⟩, norm⟩)
3 eqid 2729 . . 3 (normCV‘⟨⟨ + , · ⟩, norm⟩) = (normCV‘⟨⟨ + , · ⟩, norm⟩)
43nmcvfval 30586 . 2 (normCV‘⟨⟨ + , · ⟩, norm⟩) = (2nd ‘⟨⟨ + , · ⟩, norm⟩)
5 opex 5419 . . 3 ⟨ + , · ⟩ ∈ V
6 h2h.2 . . . . . 6 𝑈 ∈ NrmCVec
71, 6eqeltrri 2825 . . . . 5 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
8 nvex 30590 . . . . 5 (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec → ( + ∈ V ∧ · ∈ V ∧ norm ∈ V))
97, 8ax-mp 5 . . . 4 ( + ∈ V ∧ · ∈ V ∧ norm ∈ V)
109simp3i 1141 . . 3 norm ∈ V
115, 10op2nd 7956 . 2 (2nd ‘⟨⟨ + , · ⟩, norm⟩) = norm
122, 4, 113eqtrri 2757 1 norm = (normCV𝑈)
Colors of variables: wff setvar class
Syntax hints:  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3444  cop 4591  cfv 6499  2nd c2nd 7946  NrmCVeccnv 30563  normCVcnmcv 30569   + cva 30899   · csm 30900  normcno 30902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fv 6507  df-oprab 7373  df-2nd 7948  df-vc 30538  df-nv 30571  df-nmcv 30579
This theorem is referenced by:  h2hmetdval  30957  hhnm  31150
  Copyright terms: Public domain W3C validator