HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h2hnm Structured version   Visualization version   GIF version

Theorem h2hnm 28384
Description: The norm function of Hilbert space. (Contributed by NM, 5-Jun-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
h2h.1 𝑈 = ⟨⟨ + , · ⟩, norm
h2h.2 𝑈 ∈ NrmCVec
Assertion
Ref Expression
h2hnm norm = (normCV𝑈)

Proof of Theorem h2hnm
StepHypRef Expression
1 h2h.1 . . 3 𝑈 = ⟨⟨ + , · ⟩, norm
21fveq2i 6440 . 2 (normCV𝑈) = (normCV‘⟨⟨ + , · ⟩, norm⟩)
3 eqid 2825 . . 3 (normCV‘⟨⟨ + , · ⟩, norm⟩) = (normCV‘⟨⟨ + , · ⟩, norm⟩)
43nmcvfval 28013 . 2 (normCV‘⟨⟨ + , · ⟩, norm⟩) = (2nd ‘⟨⟨ + , · ⟩, norm⟩)
5 opex 5155 . . 3 ⟨ + , · ⟩ ∈ V
6 h2h.2 . . . . . 6 𝑈 ∈ NrmCVec
71, 6eqeltrri 2903 . . . . 5 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
8 nvex 28017 . . . . 5 (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec → ( + ∈ V ∧ · ∈ V ∧ norm ∈ V))
97, 8ax-mp 5 . . . 4 ( + ∈ V ∧ · ∈ V ∧ norm ∈ V)
109simp3i 1175 . . 3 norm ∈ V
115, 10op2nd 7442 . 2 (2nd ‘⟨⟨ + , · ⟩, norm⟩) = norm
122, 4, 113eqtrri 2854 1 norm = (normCV𝑈)
Colors of variables: wff setvar class
Syntax hints:  w3a 1111   = wceq 1656  wcel 2164  Vcvv 3414  cop 4405  cfv 6127  2nd c2nd 7432  NrmCVeccnv 27990  normCVcnmcv 27996   + cva 28328   · csm 28329  normcno 28331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-iota 6090  df-fun 6129  df-fv 6135  df-oprab 6914  df-2nd 7434  df-vc 27965  df-nv 27998  df-nmcv 28006
This theorem is referenced by:  h2hmetdval  28386  hhnm  28579
  Copyright terms: Public domain W3C validator