Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nvop | Structured version Visualization version GIF version |
Description: A complex inner product space in terms of ordered pair components. (Contributed by NM, 11-Sep-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvop.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
nvop.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
nvop.6 | ⊢ 𝑁 = (normCV‘𝑈) |
Ref | Expression |
---|---|
nvop | ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvrel 28683 | . . 3 ⊢ Rel NrmCVec | |
2 | 1st2nd 7810 | . . 3 ⊢ ((Rel NrmCVec ∧ 𝑈 ∈ NrmCVec) → 𝑈 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉) | |
3 | 1, 2 | mpan 690 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉) |
4 | nvop.6 | . . . . 5 ⊢ 𝑁 = (normCV‘𝑈) | |
5 | 4 | nmcvfval 28688 | . . . 4 ⊢ 𝑁 = (2nd ‘𝑈) |
6 | 5 | opeq2i 4788 | . . 3 ⊢ 〈(1st ‘𝑈), 𝑁〉 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉 |
7 | eqid 2737 | . . . . 5 ⊢ (1st ‘𝑈) = (1st ‘𝑈) | |
8 | nvop.2 | . . . . 5 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
9 | nvop.4 | . . . . 5 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
10 | 7, 8, 9 | nvvop 28690 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → (1st ‘𝑈) = 〈𝐺, 𝑆〉) |
11 | 10 | opeq1d 4790 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 〈(1st ‘𝑈), 𝑁〉 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
12 | 6, 11 | eqtr3id 2792 | . 2 ⊢ (𝑈 ∈ NrmCVec → 〈(1st ‘𝑈), (2nd ‘𝑈)〉 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
13 | 3, 12 | eqtrd 2777 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 〈cop 4547 Rel wrel 5556 ‘cfv 6380 1st c1st 7759 2nd c2nd 7760 NrmCVeccnv 28665 +𝑣 cpv 28666 ·𝑠OLD cns 28668 normCVcnmcv 28671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-fo 6386 df-fv 6388 df-oprab 7217 df-1st 7761 df-2nd 7762 df-vc 28640 df-nv 28673 df-va 28676 df-sm 28678 df-nmcv 28681 |
This theorem is referenced by: sspval 28804 isph 28903 hilhhi 29245 |
Copyright terms: Public domain | W3C validator |