| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvop | Structured version Visualization version GIF version | ||
| Description: A complex inner product space in terms of ordered pair components. (Contributed by NM, 11-Sep-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvop.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| nvop.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| nvop.6 | ⊢ 𝑁 = (normCV‘𝑈) |
| Ref | Expression |
|---|---|
| nvop | ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvrel 30581 | . . 3 ⊢ Rel NrmCVec | |
| 2 | 1st2nd 7997 | . . 3 ⊢ ((Rel NrmCVec ∧ 𝑈 ∈ NrmCVec) → 𝑈 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉) |
| 4 | nvop.6 | . . . . 5 ⊢ 𝑁 = (normCV‘𝑈) | |
| 5 | 4 | nmcvfval 30586 | . . . 4 ⊢ 𝑁 = (2nd ‘𝑈) |
| 6 | 5 | opeq2i 4837 | . . 3 ⊢ 〈(1st ‘𝑈), 𝑁〉 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉 |
| 7 | eqid 2729 | . . . . 5 ⊢ (1st ‘𝑈) = (1st ‘𝑈) | |
| 8 | nvop.2 | . . . . 5 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 9 | nvop.4 | . . . . 5 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 10 | 7, 8, 9 | nvvop 30588 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → (1st ‘𝑈) = 〈𝐺, 𝑆〉) |
| 11 | 10 | opeq1d 4839 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 〈(1st ‘𝑈), 𝑁〉 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
| 12 | 6, 11 | eqtr3id 2778 | . 2 ⊢ (𝑈 ∈ NrmCVec → 〈(1st ‘𝑈), (2nd ‘𝑈)〉 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
| 13 | 3, 12 | eqtrd 2764 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4591 Rel wrel 5636 ‘cfv 6499 1st c1st 7945 2nd c2nd 7946 NrmCVeccnv 30563 +𝑣 cpv 30564 ·𝑠OLD cns 30566 normCVcnmcv 30569 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fo 6505 df-fv 6507 df-oprab 7373 df-1st 7947 df-2nd 7948 df-vc 30538 df-nv 30571 df-va 30574 df-sm 30576 df-nmcv 30579 |
| This theorem is referenced by: sspval 30702 isph 30801 hilhhi 31143 |
| Copyright terms: Public domain | W3C validator |