MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvop Structured version   Visualization version   GIF version

Theorem nvop 30211
Description: A complex inner product space in terms of ordered pair components. (Contributed by NM, 11-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvop.2 𝐺 = ( +𝑣𝑈)
nvop.4 𝑆 = ( ·𝑠OLD𝑈)
nvop.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvop (𝑈 ∈ NrmCVec → 𝑈 = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)

Proof of Theorem nvop
StepHypRef Expression
1 nvrel 30137 . . 3 Rel NrmCVec
2 1st2nd 8029 . . 3 ((Rel NrmCVec ∧ 𝑈 ∈ NrmCVec) → 𝑈 = ⟨(1st𝑈), (2nd𝑈)⟩)
31, 2mpan 687 . 2 (𝑈 ∈ NrmCVec → 𝑈 = ⟨(1st𝑈), (2nd𝑈)⟩)
4 nvop.6 . . . . 5 𝑁 = (normCV𝑈)
54nmcvfval 30142 . . . 4 𝑁 = (2nd𝑈)
65opeq2i 4877 . . 3 ⟨(1st𝑈), 𝑁⟩ = ⟨(1st𝑈), (2nd𝑈)⟩
7 eqid 2731 . . . . 5 (1st𝑈) = (1st𝑈)
8 nvop.2 . . . . 5 𝐺 = ( +𝑣𝑈)
9 nvop.4 . . . . 5 𝑆 = ( ·𝑠OLD𝑈)
107, 8, 9nvvop 30144 . . . 4 (𝑈 ∈ NrmCVec → (1st𝑈) = ⟨𝐺, 𝑆⟩)
1110opeq1d 4879 . . 3 (𝑈 ∈ NrmCVec → ⟨(1st𝑈), 𝑁⟩ = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)
126, 11eqtr3id 2785 . 2 (𝑈 ∈ NrmCVec → ⟨(1st𝑈), (2nd𝑈)⟩ = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)
133, 12eqtrd 2771 1 (𝑈 ∈ NrmCVec → 𝑈 = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  cop 4634  Rel wrel 5681  cfv 6543  1st c1st 7977  2nd c2nd 7978  NrmCVeccnv 30119   +𝑣 cpv 30120   ·𝑠OLD cns 30122  normCVcnmcv 30125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fo 6549  df-fv 6551  df-oprab 7416  df-1st 7979  df-2nd 7980  df-vc 30094  df-nv 30127  df-va 30130  df-sm 30132  df-nmcv 30135
This theorem is referenced by:  sspval  30258  isph  30357  hilhhi  30699
  Copyright terms: Public domain W3C validator