| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvop | Structured version Visualization version GIF version | ||
| Description: A complex inner product space in terms of ordered pair components. (Contributed by NM, 11-Sep-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvop.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| nvop.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| nvop.6 | ⊢ 𝑁 = (normCV‘𝑈) |
| Ref | Expression |
|---|---|
| nvop | ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvrel 30538 | . . 3 ⊢ Rel NrmCVec | |
| 2 | 1st2nd 8021 | . . 3 ⊢ ((Rel NrmCVec ∧ 𝑈 ∈ NrmCVec) → 𝑈 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉) |
| 4 | nvop.6 | . . . . 5 ⊢ 𝑁 = (normCV‘𝑈) | |
| 5 | 4 | nmcvfval 30543 | . . . 4 ⊢ 𝑁 = (2nd ‘𝑈) |
| 6 | 5 | opeq2i 4844 | . . 3 ⊢ 〈(1st ‘𝑈), 𝑁〉 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉 |
| 7 | eqid 2730 | . . . . 5 ⊢ (1st ‘𝑈) = (1st ‘𝑈) | |
| 8 | nvop.2 | . . . . 5 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 9 | nvop.4 | . . . . 5 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 10 | 7, 8, 9 | nvvop 30545 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → (1st ‘𝑈) = 〈𝐺, 𝑆〉) |
| 11 | 10 | opeq1d 4846 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 〈(1st ‘𝑈), 𝑁〉 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
| 12 | 6, 11 | eqtr3id 2779 | . 2 ⊢ (𝑈 ∈ NrmCVec → 〈(1st ‘𝑈), (2nd ‘𝑈)〉 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
| 13 | 3, 12 | eqtrd 2765 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4598 Rel wrel 5646 ‘cfv 6514 1st c1st 7969 2nd c2nd 7970 NrmCVeccnv 30520 +𝑣 cpv 30521 ·𝑠OLD cns 30523 normCVcnmcv 30526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 df-fv 6522 df-oprab 7394 df-1st 7971 df-2nd 7972 df-vc 30495 df-nv 30528 df-va 30531 df-sm 30533 df-nmcv 30536 |
| This theorem is referenced by: sspval 30659 isph 30758 hilhhi 31100 |
| Copyright terms: Public domain | W3C validator |