![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvop | Structured version Visualization version GIF version |
Description: A complex inner product space in terms of ordered pair components. (Contributed by NM, 11-Sep-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvop.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
nvop.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
nvop.6 | ⊢ 𝑁 = (normCV‘𝑈) |
Ref | Expression |
---|---|
nvop | ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvrel 28058 | . . 3 ⊢ Rel NrmCVec | |
2 | 1st2nd 7585 | . . 3 ⊢ ((Rel NrmCVec ∧ 𝑈 ∈ NrmCVec) → 𝑈 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉) | |
3 | 1, 2 | mpan 686 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉) |
4 | nvop.6 | . . . . 5 ⊢ 𝑁 = (normCV‘𝑈) | |
5 | 4 | nmcvfval 28063 | . . . 4 ⊢ 𝑁 = (2nd ‘𝑈) |
6 | 5 | opeq2i 4708 | . . 3 ⊢ 〈(1st ‘𝑈), 𝑁〉 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉 |
7 | eqid 2793 | . . . . 5 ⊢ (1st ‘𝑈) = (1st ‘𝑈) | |
8 | nvop.2 | . . . . 5 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
9 | nvop.4 | . . . . 5 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
10 | 7, 8, 9 | nvvop 28065 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → (1st ‘𝑈) = 〈𝐺, 𝑆〉) |
11 | 10 | opeq1d 4710 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 〈(1st ‘𝑈), 𝑁〉 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
12 | 6, 11 | syl5eqr 2843 | . 2 ⊢ (𝑈 ∈ NrmCVec → 〈(1st ‘𝑈), (2nd ‘𝑈)〉 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
13 | 3, 12 | eqtrd 2829 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1520 ∈ wcel 2079 〈cop 4472 Rel wrel 5440 ‘cfv 6217 1st c1st 7534 2nd c2nd 7535 NrmCVeccnv 28040 +𝑣 cpv 28041 ·𝑠OLD cns 28043 normCVcnmcv 28046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-ral 3108 df-rex 3109 df-rab 3112 df-v 3434 df-sbc 3702 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-nul 4207 df-if 4376 df-sn 4467 df-pr 4469 df-op 4473 df-uni 4740 df-br 4957 df-opab 5019 df-mpt 5036 df-id 5340 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-fo 6223 df-fv 6225 df-oprab 7011 df-1st 7536 df-2nd 7537 df-vc 28015 df-nv 28048 df-va 28051 df-sm 28053 df-nmcv 28056 |
This theorem is referenced by: sspval 28179 isph 28278 hilhhi 28620 |
Copyright terms: Public domain | W3C validator |