Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvop Structured version   Visualization version   GIF version

Theorem nvop 28503
 Description: A complex inner product space in terms of ordered pair components. (Contributed by NM, 11-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvop.2 𝐺 = ( +𝑣𝑈)
nvop.4 𝑆 = ( ·𝑠OLD𝑈)
nvop.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvop (𝑈 ∈ NrmCVec → 𝑈 = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)

Proof of Theorem nvop
StepHypRef Expression
1 nvrel 28429 . . 3 Rel NrmCVec
2 1st2nd 7733 . . 3 ((Rel NrmCVec ∧ 𝑈 ∈ NrmCVec) → 𝑈 = ⟨(1st𝑈), (2nd𝑈)⟩)
31, 2mpan 689 . 2 (𝑈 ∈ NrmCVec → 𝑈 = ⟨(1st𝑈), (2nd𝑈)⟩)
4 nvop.6 . . . . 5 𝑁 = (normCV𝑈)
54nmcvfval 28434 . . . 4 𝑁 = (2nd𝑈)
65opeq2i 4773 . . 3 ⟨(1st𝑈), 𝑁⟩ = ⟨(1st𝑈), (2nd𝑈)⟩
7 eqid 2798 . . . . 5 (1st𝑈) = (1st𝑈)
8 nvop.2 . . . . 5 𝐺 = ( +𝑣𝑈)
9 nvop.4 . . . . 5 𝑆 = ( ·𝑠OLD𝑈)
107, 8, 9nvvop 28436 . . . 4 (𝑈 ∈ NrmCVec → (1st𝑈) = ⟨𝐺, 𝑆⟩)
1110opeq1d 4775 . . 3 (𝑈 ∈ NrmCVec → ⟨(1st𝑈), 𝑁⟩ = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)
126, 11syl5eqr 2847 . 2 (𝑈 ∈ NrmCVec → ⟨(1st𝑈), (2nd𝑈)⟩ = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)
133, 12eqtrd 2833 1 (𝑈 ∈ NrmCVec → 𝑈 = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2111  ⟨cop 4534  Rel wrel 5528  ‘cfv 6332  1st c1st 7682  2nd c2nd 7683  NrmCVeccnv 28411   +𝑣 cpv 28412   ·𝑠OLD cns 28414  normCVcnmcv 28417 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5171  ax-nul 5178  ax-pr 5299  ax-un 7454 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3444  df-sbc 3723  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4805  df-br 5035  df-opab 5097  df-mpt 5115  df-id 5429  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-fo 6338  df-fv 6340  df-oprab 7149  df-1st 7684  df-2nd 7685  df-vc 28386  df-nv 28419  df-va 28422  df-sm 28424  df-nmcv 28427 This theorem is referenced by:  sspval  28550  isph  28649  hilhhi  28991
 Copyright terms: Public domain W3C validator