MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfif3 Structured version   Visualization version   GIF version

Theorem dfif3 4240
Description: Alternate definition of the conditional operator df-if 4227. Note that 𝜑 is independent of 𝑥 i.e. a constant true or false. (Contributed by NM, 25-Aug-2013.) (Revised by Mario Carneiro, 8-Sep-2013.)
Hypothesis
Ref Expression
dfif3.1 𝐶 = {𝑥𝜑}
Assertion
Ref Expression
dfif3 if(𝜑, 𝐴, 𝐵) = ((𝐴𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶)))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem dfif3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfif6 4229 . 2 if(𝜑, 𝐴, 𝐵) = ({𝑦𝐴𝜑} ∪ {𝑦𝐵 ∣ ¬ 𝜑})
2 dfif3.1 . . . . . 6 𝐶 = {𝑥𝜑}
3 biidd 252 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜑))
43cbvabv 2896 . . . . . 6 {𝑥𝜑} = {𝑦𝜑}
52, 4eqtri 2793 . . . . 5 𝐶 = {𝑦𝜑}
65ineq2i 3962 . . . 4 (𝐴𝐶) = (𝐴 ∩ {𝑦𝜑})
7 dfrab3 4050 . . . 4 {𝑦𝐴𝜑} = (𝐴 ∩ {𝑦𝜑})
86, 7eqtr4i 2796 . . 3 (𝐴𝐶) = {𝑦𝐴𝜑}
9 dfrab3 4050 . . . 4 {𝑦𝐵 ∣ ¬ 𝜑} = (𝐵 ∩ {𝑦 ∣ ¬ 𝜑})
10 notab 4045 . . . . . 6 {𝑦 ∣ ¬ 𝜑} = (V ∖ {𝑦𝜑})
115difeq2i 3876 . . . . . 6 (V ∖ 𝐶) = (V ∖ {𝑦𝜑})
1210, 11eqtr4i 2796 . . . . 5 {𝑦 ∣ ¬ 𝜑} = (V ∖ 𝐶)
1312ineq2i 3962 . . . 4 (𝐵 ∩ {𝑦 ∣ ¬ 𝜑}) = (𝐵 ∩ (V ∖ 𝐶))
149, 13eqtr2i 2794 . . 3 (𝐵 ∩ (V ∖ 𝐶)) = {𝑦𝐵 ∣ ¬ 𝜑}
158, 14uneq12i 3916 . 2 ((𝐴𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶))) = ({𝑦𝐴𝜑} ∪ {𝑦𝐵 ∣ ¬ 𝜑})
161, 15eqtr4i 2796 1 if(𝜑, 𝐴, 𝐵) = ((𝐴𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1631  {cab 2757  {crab 3065  Vcvv 3351  cdif 3720  cun 3721  cin 3722  ifcif 4226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-if 4227
This theorem is referenced by:  dfif4  4241
  Copyright terms: Public domain W3C validator