MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfif3 Structured version   Visualization version   GIF version

Theorem dfif3 4484
Description: Alternate definition of the conditional operator df-if 4471. Note that 𝜑 is independent of 𝑥 i.e. a constant true or false. (Contributed by NM, 25-Aug-2013.) (Revised by Mario Carneiro, 8-Sep-2013.)
Hypothesis
Ref Expression
dfif3.1 𝐶 = {𝑥𝜑}
Assertion
Ref Expression
dfif3 if(𝜑, 𝐴, 𝐵) = ((𝐴𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶)))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem dfif3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfif6 4473 . 2 if(𝜑, 𝐴, 𝐵) = ({𝑦𝐴𝜑} ∪ {𝑦𝐵 ∣ ¬ 𝜑})
2 dfif3.1 . . . . . 6 𝐶 = {𝑥𝜑}
3 biidd 261 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜑))
43cbvabv 2809 . . . . . 6 {𝑥𝜑} = {𝑦𝜑}
52, 4eqtri 2764 . . . . 5 𝐶 = {𝑦𝜑}
65ineq2i 4153 . . . 4 (𝐴𝐶) = (𝐴 ∩ {𝑦𝜑})
7 dfrab3 4253 . . . 4 {𝑦𝐴𝜑} = (𝐴 ∩ {𝑦𝜑})
86, 7eqtr4i 2767 . . 3 (𝐴𝐶) = {𝑦𝐴𝜑}
9 dfrab3 4253 . . . 4 {𝑦𝐵 ∣ ¬ 𝜑} = (𝐵 ∩ {𝑦 ∣ ¬ 𝜑})
10 biidd 261 . . . . . . 7 (𝑦 = 𝑧 → (𝜑𝜑))
1110notabw 4247 . . . . . 6 {𝑦 ∣ ¬ 𝜑} = (V ∖ {𝑧𝜑})
12 biidd 261 . . . . . . . . 9 (𝑥 = 𝑧 → (𝜑𝜑))
1312cbvabv 2809 . . . . . . . 8 {𝑥𝜑} = {𝑧𝜑}
142, 13eqtri 2764 . . . . . . 7 𝐶 = {𝑧𝜑}
1514difeq2i 4064 . . . . . 6 (V ∖ 𝐶) = (V ∖ {𝑧𝜑})
1611, 15eqtr4i 2767 . . . . 5 {𝑦 ∣ ¬ 𝜑} = (V ∖ 𝐶)
1716ineq2i 4153 . . . 4 (𝐵 ∩ {𝑦 ∣ ¬ 𝜑}) = (𝐵 ∩ (V ∖ 𝐶))
189, 17eqtr2i 2765 . . 3 (𝐵 ∩ (V ∖ 𝐶)) = {𝑦𝐵 ∣ ¬ 𝜑}
198, 18uneq12i 4105 . 2 ((𝐴𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶))) = ({𝑦𝐴𝜑} ∪ {𝑦𝐵 ∣ ¬ 𝜑})
201, 19eqtr4i 2767 1 if(𝜑, 𝐴, 𝐵) = ((𝐴𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  {cab 2713  {crab 3403  Vcvv 3440  cdif 3893  cun 3894  cin 3895  ifcif 4470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3404  df-v 3442  df-dif 3899  df-un 3901  df-in 3903  df-if 4471
This theorem is referenced by:  dfif4  4485
  Copyright terms: Public domain W3C validator