|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > dfif3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the conditional operator df-if 4526. Note that 𝜑 is independent of 𝑥 i.e. a constant true or false. (Contributed by NM, 25-Aug-2013.) (Revised by Mario Carneiro, 8-Sep-2013.) | 
| Ref | Expression | 
|---|---|
| dfif3.1 | ⊢ 𝐶 = {𝑥 ∣ 𝜑} | 
| Ref | Expression | 
|---|---|
| dfif3 | ⊢ if(𝜑, 𝐴, 𝐵) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfif6 4528 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = ({𝑦 ∈ 𝐴 ∣ 𝜑} ∪ {𝑦 ∈ 𝐵 ∣ ¬ 𝜑}) | |
| 2 | dfif3.1 | . . . . . 6 ⊢ 𝐶 = {𝑥 ∣ 𝜑} | |
| 3 | biidd 262 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜑)) | |
| 4 | 3 | cbvabv 2812 | . . . . . 6 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜑} | 
| 5 | 2, 4 | eqtri 2765 | . . . . 5 ⊢ 𝐶 = {𝑦 ∣ 𝜑} | 
| 6 | 5 | ineq2i 4217 | . . . 4 ⊢ (𝐴 ∩ 𝐶) = (𝐴 ∩ {𝑦 ∣ 𝜑}) | 
| 7 | dfrab3 4319 | . . . 4 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑦 ∣ 𝜑}) | |
| 8 | 6, 7 | eqtr4i 2768 | . . 3 ⊢ (𝐴 ∩ 𝐶) = {𝑦 ∈ 𝐴 ∣ 𝜑} | 
| 9 | dfrab3 4319 | . . . 4 ⊢ {𝑦 ∈ 𝐵 ∣ ¬ 𝜑} = (𝐵 ∩ {𝑦 ∣ ¬ 𝜑}) | |
| 10 | biidd 262 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜑)) | |
| 11 | 10 | notabw 4313 | . . . . . 6 ⊢ {𝑦 ∣ ¬ 𝜑} = (V ∖ {𝑧 ∣ 𝜑}) | 
| 12 | biidd 262 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜑)) | |
| 13 | 12 | cbvabv 2812 | . . . . . . . 8 ⊢ {𝑥 ∣ 𝜑} = {𝑧 ∣ 𝜑} | 
| 14 | 2, 13 | eqtri 2765 | . . . . . . 7 ⊢ 𝐶 = {𝑧 ∣ 𝜑} | 
| 15 | 14 | difeq2i 4123 | . . . . . 6 ⊢ (V ∖ 𝐶) = (V ∖ {𝑧 ∣ 𝜑}) | 
| 16 | 11, 15 | eqtr4i 2768 | . . . . 5 ⊢ {𝑦 ∣ ¬ 𝜑} = (V ∖ 𝐶) | 
| 17 | 16 | ineq2i 4217 | . . . 4 ⊢ (𝐵 ∩ {𝑦 ∣ ¬ 𝜑}) = (𝐵 ∩ (V ∖ 𝐶)) | 
| 18 | 9, 17 | eqtr2i 2766 | . . 3 ⊢ (𝐵 ∩ (V ∖ 𝐶)) = {𝑦 ∈ 𝐵 ∣ ¬ 𝜑} | 
| 19 | 8, 18 | uneq12i 4166 | . 2 ⊢ ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶))) = ({𝑦 ∈ 𝐴 ∣ 𝜑} ∪ {𝑦 ∈ 𝐵 ∣ ¬ 𝜑}) | 
| 20 | 1, 19 | eqtr4i 2768 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 = wceq 1540 {cab 2714 {crab 3436 Vcvv 3480 ∖ cdif 3948 ∪ cun 3949 ∩ cin 3950 ifcif 4525 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-if 4526 | 
| This theorem is referenced by: dfif4 4541 | 
| Copyright terms: Public domain | W3C validator |